
Google Fusion Tables: Data Management, Integration and
Collaboration in the Cloud

Hector Gonzalez, Alon Halevy, Christian S. Jensen
∗

,
Anno Langen, Jayant Madhavan, Rebecca Shapley, Warren Shen

Google Inc.

ABSTRACT
Google Fusion Tables is a cloud-based service for data man-
agement and integration. Fusion Tables enables users to
upload tabular data files (spreadsheets, CSV, KML), cur-
rently of up to 100MB. The system provides several ways of
visualizing the data (e.g., charts, maps, and timelines) and
the ability to filter and aggregate the data. It supports the
integration of data from multiple sources by performing joins
across tables that may belong to different users. Users can
keep the data private, share it with a select set of collabora-
tors, or make it public and thus crawlable by search engines.
The discussion feature of Fusion Tables allows collaborators
to conduct detailed discussions of the data at the level of
tables and individual rows, columns, and cells. This paper
describes the inner workings of Fusion Tables, including the
storage of data in the system and the tight integration with
the Google Maps infrastructure.
Categories and Subject Descriptors: H.3.5 Online In-
formation Services: [Data sharing, Web-based services]
General Terms: Design, Algorithms
Keywords: Cloud Services, Visualization, Geo-spatial data

1. INTRODUCTION
Google Fusion Tables is a cloud-based service for data

management and integration. Launched in June’09, the ser-
vice (see tables.googlelabs.com) has since received consider-
able use. Although we have seen a wide range of applica-
tions, the service was originally designed for organizations
that are struggling with making their data available inter-
nally and externally, and for communities of users that need
to collaborate on data management across multiple enter-
prises.

Fusion Tables enables data upload from a variety of com-
mon sources (spreadsheets, CSV, KML, currently of up to
100MB). We make it extremely easy for users to explore their
data by proposing appropriate visualizations (e.g., charts,
maps, and timelines) based on the data types that are present

∗On leave from Aalborg University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SoCC’10, June 10–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0036-0/10/06 ...$10.00.

in the data, and by enabling filtering and aggregation. Fu-
sion Tables also provides a simple data integration platform:
users can perform joins across tables that may belong to
different users. To collaborate, users can share the data
with a select set of collaborators, or make it public and thus
crawlable by search engines. To further fuel collaboration,
the discussion feature of Fusion Tables allows users to con-
duct detailed discussions of the data at the level of individual
rows, columns or cells.

Given our target audience, we converged on a few princi-
ples that underlie the design of the service. First, our goal
is to offer a tool that makes data management easier, and
therefore approachable to a larger audience of users. Our
target users do not necessarily have any training in using
database systems, and they typically do not have access to
expert DBAs. Second, it is clear that one of the main imped-
iments to data sharing and integration was lack of incentive.
Hence, we offer several mechanisms that provide incentives
for data sharing. Third, we focus on exploring and support-
ing features that enable users to collaborate effectively on
data management in the cloud. In particular, when data is
shared among multiple collaborators, querying is only one
part of the activity, and the system needs to support the
process of agreeing on the meaning of data, including dis-
cussions on the possible errors it may contain.

This paper describes the inner workings of Fusion Tables.
We describe the user-facing features and the motivations
underlying them in more detail in [3].

Section 2 describes the overall system architecture and
how data is stored. Section 3 covers the processing of queries,
and Section 4 briefly describes the handling of transactions.
Section 5 describes visualizations, and Section 6 describes
the support for geographical features. We conclude with a
discussion of related work and future outlook.

2. SYSTEM ARCHITECTURE AND DATA
STORAGE

We begin with a brief coverage of the overall system ar-
chitecture of Fusion Tables. We then consider in more detail
the storage of data in the system. We briefly describe the
elements of the storage stack on which Fusion Tables is built
(Bigtable and Megastore), and then describe how we store
all data rows of all user tables in one Bigtable table and all
user table schema information in another Bigtable table.

2.1 Architecture
Figure 1 shows the main components of the Fusion Tables

Service. Requests originate from multiple sources: the Fu-
sion Tables web site, stand alone applications that use the



API, and visualizations that are embedded in other Web
pages (e.g., charts). We generate layers for maps based on

Figure 1: Architecture of Fusion Tables.

spatial/structured queries posed against tables in our sys-
tem. The front end dispatcher converts requests into a com-
mon representation and passes them to the query processing
module, which creates a query plan. The plan is executed
by our structured data backend, which uses a set of syn-
chronously replicated Bigtable servers for storage. The main
challenge for the storage layer is the handling of hundreds of
thousands of tables, with diverse schemas, sizes, and query
load characteristics.

2.2 Storage Stack
Fusion Tables is built on two layers of the Google storage

stack.

Bigtable: The tuples stored by Bigtable are (key, value)-
pairs that are sorted on the key and sharded among multiple
servers based on key ranges. As we shall see, the value
part of a Bigtable tuple is allowed to be a complex non-first
normal form value.

Bigtable provides a write operation that inserts a new
tuple atomically. Next, BigTable provides three read op-
erations: lookup by key, which retrieves a single pair with
the given key; lookup by key prefix, which retrieves all pairs
with the given key prefix; and lookup by key range, which
retrieves all rows between a start and and end key.

In addition, Bigtable records the transaction-time history
for each tuple. That is, internally a tuple is stored as a (key,
value, timestamp)-triple, where the timestamp is the time
at which the tuple was written. In the general case, a single
key value is used in multiple tuple versions.

Megastore: Megastore is a library on top of Bigtable. It
provides higher level primitives such as consistent secondary
indexes, multi-row transactions, and consistent replication.
We use this library for (i) maintaining property indexes (Sec-
tion 3), (ii) providing table level transactions (Section 4),
and (iii) replicating tables across multiple data centers.

2.3 Row Store
All rows in all user tables are stored in a single Bigtable

table, called Rows. Each row in this table represents a row
in a user table. The key of a row is the concatenation of
identifiers for the user’s table and row being represented.
We generate table and row identifiers internally, as users are
not required to provide a primary key.

The decision to store all tables in a single table is driven
by Bigtable’s excellent scalability characteristics. As new
user tables are added to the system, Bigtable splits the

Rows table into small sub-tables that are assigned to sep-
arate servers, thus providing good performance even in the
presence of millions of user tables.

The (complex) value of a row is a set of indexed and non-
indexed properties. A property is a pair of the form (prop-
erty name, property value). Unlike in traditional database
systems, we store each property name repeatedly in the
Bigtable rows. This design allows us to support semi-structured
data [1], where multiple rows in a single table to have dif-
ferent sets of properties. All indexed properties are added
to an index in order to facilitate efficient query processing
(discussed further in Section 3). All properties are indexed
by default, with the exception of properties with long string
values. In this case, only a prefix of the value is indexed and
the full value is stored as a non-indexed property.

Table 1 presents an example subset of the Rows table. The
example contains rows for two tables: 123 and 124. The first

Row Key Indexed Non-indexed
(table,Id,rowId)Properties Properties
(123, 1) model=328i,

color=red,
type=sedan

notes=sells
quickly

(123, 2) model=330i,
color=red

(124, 1) price=20, loca-
tion=warehouse,
UPC=500

(124, 2) price=32, lo-
cation=shelf,
UPC=430

notes=reorder
needed

... ... ...

Table 1: Rows table.

row, in table 123, has a value that contains properties for
model, color, type, and notes. The second row, also in table
123, has a value that contains the same properties except
for type and notes.

Property values are stored as strings by default, but can
also contain a typed value. The typed value is automatically
computed by an annotation service. Recognized types in-
clude date, number, and geo (point, line, or polygon). Types
are not enforced and are only computed on a best effort ba-
sis. Types are used as a hint to the system to decide the
range of available visualizations for a given table or query.
For example, the string value “1600 Amphitheatre Parkway,
Mountain View, CA” will be annotated as a latitude, longi-
tude pair (37.4217760, -122.0846650).

2.4 Schema Store
The schemas of all user tables are stored in a single Bigtable

table that has one row per user table. The key is the table
identifier.

The value (again complex) contains column and permis-
sion information for a user table. For each column, we store
its name and a preferred data type. We use access control
lists (ACLs) for permissions. For each table, we list the set
of users that are viewers (read permission) and collabora-
tors (read/write permissions). Public tables have a special
marker indicating that they are viewable by anyone.

A table’s schema can evolve over time, users can add and
remove columns, and column types (initially identified au-
tomatically) can be changed by the user. Fusion Tables is
especially good at handling sparse tables, as each row stores
only the set of properties that are defined for it. And typed



values are only stored if they are defined for the particular
property value.

Table 2 presents the schema information corresponding to
the data rows shown in Table 1.

Table Schema Permissions
123 name: car,

columns:
(model,string)
(color, string)
(type, string)
...

Viewers: (arl,
jayant) col-
laborators:
(hagonzal,
halevy)

124 name: prod-
uct, columns:
(price, num-
ber) (location,
string) (upc,
number)

public

Table 2: Schema table.

2.5 View Store
One of the main features of Fusion Tables is that it allows

multiple users to merge their tables into one, even if they
do not belong to the same organization or were not aware of
each other when they created the tables. A table constructed
by merging (by means of equi-joins) multiple base tables is a
view. Views are not materialized, and only their definition
and permission information are stored. Views have their
own permissions with the same roles as a table, and with
an additional role: contributor. A contributor is a user that
can modify the definition of the view.

2.6 Comment Store
To enable collaboration, Fusion Tables allows users to

comment on tables, rows, columns, and cells. We store all
the comments for all user tables in a single Bigtable table.
The key of the comments table is the subject of the com-
ment, which is the triple: (table, row, column). It uniquely
identifies the element a comment applies to. The value of
a row is the text of the comment, the author, and the date
the comment was posted.

3. QUERY PROCESSING
Fusion Tables uses the primitives of Bigtable to support

a subset of SQL queries. We currently support selections,
aggregations and joins on primary keys. The general query
execution strategy is to map a high-level query into the three
basic operations offered by Bigtable: key lookup, prefix scan,
and range scan.

We make use of a property index (maintained by Megas-
tore) that speeds up a wide range of queries. The index is a
Bigtable table that contains only keys, no values. The key
of each row is the concatenation of a table identifier, a prop-
erty name, a property value, and a row identifier. Bigtable
uses key prefix compression, which is especially effective in
compressing the index where entries for the same property
value share the complete prefix up to the row identifier.

Table 3 presents a fragment of the property index for the
rows in Table 1. Each row in the example corresponds to a
single Bigtable key where the columns are concatenated.

We proceed to describe a few common query plans in or-
der to convey the flavor of query processing in Fusion Ta-
bles. For more background on database query processing,
the reader is referred to [6].

Prefix scan: Used for queries such as “select * from 123
limit 100.” This is the most common type of query, as it

table prop. name prop. value row id
123 color red 1
123 color red 2
123 model 328i 1
123 model 330i 2
124 location warehouse 1
124 location shelf 2
124 price 20 2
124 price 32 1
... ... ... ...

Table 3: Property index.

corresponds to the default view on a table. The strategy is
to do a prefix scan on the Rows table with prefix = 123.

Index prefix scan: Used for queries such as “select * from
123 where color = ’red’.” The strategy is to perform a pre-
fix scan on the property index with prefix = (123, color,
red) to find the relevant rows and then retrieve them from
the Rows table. In case of multiple conditions we have two
execution strategies. If the indexes (for each property) are
small, we scan all indexes in parallel and the intersect the
results. Otherwise, we scan the indexes (for each property)
sequentially, passing valid row keys from the previous scan
to the next, and thus reducing the number of index entries
scanned in each iteration.

Index range scan: Used for queries such as “select * from
124 where price 10 and price 20.” The strategy is to do
a range scan on the property index with the start key (124,
price, 10) the end key (124, price, 20), and then retrieve the
relevant rows from the Rows table.

Index join: Used for queries such as “select * from A, B
where A.key = B.key.” This is the typical view resulting
from the merging of base tables. We have two basic strate-
gies to answer the query. If one of the tables is small, we
lookup each of its keys in the second table. Otherwise, we
do an index merge join. We do a simultaneous index prefix
scan with prefixes (A, key) and (B, key) and compute the
pairs of rows that match. The pairs are then retrieved from
the Rows table.

4. TRANSACTIONS
Fusion Tables is designed to be a data management plat-

form with emphasis on collaboration and visualization of
structured data. It is not designed to be a high throughput
transaction processing system. Having said this, we pro-
vide transaction support for operations on a single table by
using Megastore [2, 4] transaction primitives. Megastore’s
implementation of transactions uses write-ahead logging and
optimistic concurrency control to guarantee ACID (atomic,
consistent, isolated, and durable) transaction semantics.

4.1 Write-Ahead Logging
In write-ahead logging, a transaction’s updates to a table

are initially written to a log and only applied to the table
after the transaction has committed.

Megastore uses a single Bigtable table to record the write-
ahead logs for all user tables. The Bigtable table typically
contains a single row for each user table. However, there
can be multiple successive Bigtable rows for a user table
with large log values.

The key of a row is the table identifier. The value contains
the following information: the last committed timestamp, a
list of unapplied transactions, and a list of mutations. A
mutation captures an update of the value of a user tuple. It



is thus a tuple of the form (transaction identifier, row key,
row value), where the (row key, row value)-pair identifies the
data row being changed and its value after the mutation.

Table 4 presents an example log. The first entry contains

table timestamp unapplied mutation list
123 3:00 1 (1, k1, v1) (1, k3, v3)
124 3:05 - (4, k4, v4) (4, k1, v2)
... ... ... ...

Table 4: Write-ahead log.

the log for table 123. The last committed transaction hap-
pened at 3:00. And there are two mutations from committed
transactions that have not yet been applied; the new value
of row k1 and row k3 is v1 and v3, respectively.

4.2 Transaction Life Cycle
A transaction that accesses a user table goes through the

following stages:

1. Initialization. Read the log record for the table. Ap-
ply mutations that are committed but not yet applied.
Generate a transaction identifier, and keep track of the
last committed timestamp.

2. Work. The transaction reads and writes rows for the
table. All reads are isolated—we use the Bigtable ver-
sions to ensure that the transaction only reads rows
as they were when the transaction started. Mutations
are written to the log, with the transaction identifier.

3. Commit. The transaction reads and locks the log
table row for the user table. It then checks whether
another transaction has committed since it started—if
so, it aborts (and is restarted). If there are no conflicts,
the transaction is marked as committed.

4. Apply. After commit, the mutations for the transac-
tion are applied to the user table, and the transaction
is marked as having been applied.

5. DATA VISUALIZATION
One of the most powerful features of Fusion Tables is that

users can visualize their data immediately after uploading
it. The set of available visualizations is computed based on
the data types found in the table and the types required
for a particular visualization. For example, a scatter plot
is available only if at least two numeric columns exist, one
for the x axis and one for the y axis. Similarly, a map is
available if we detect a location column, e.g., a column with
street addresses, or a column with latitude and longitude
values.

5.1 Visualization Infrastructure
We provide client-side visualizations through the Google

Visualization API. This is a well established framework for
visualizing data on the client. The visualization is rendered
on the browser using Javascript or Flash, and the data re-
quired by the visualization is obtained from a data source
interface. A large collection of visualizations has already
been created by Google and the community1.

Fusion Tables provides two services within the framework.
First, we expose tables and views as sources of data for
visualizations. We accept queries for data and return an
appropriately encoded result suitable to be used in any vi-
sualization. Second, we help users configure visualizations

1http://code.google.com/apis/visualization/documentation/
gallery.html

automatically based on the data types in their tables. For
example, a table with a location column and a numeric col-
umn will have an intensity map preconfigured to use the
location column as the geographic information and the nu-
meric column as the intensity.

5.2 Embedding
To foster collaboration among users, we enable visualiza-

tions to be published in web pages. That way, the data
can appear in the natural place where other content exists.
Users can copy a small fragment of Javascript code into the
source of their page (e.g., a blog entry) and the visualization
will be displayed there, with a live link to the data. That is,
when the data is updated in Fusion Tables, the visualization
is also updated. At this point we do not have versioned vi-
sualization support, i.e., a user cannot show a visualization
based on data as of a particular date.

Figure 2 shows a fragment of Javascript that can be used
to embed a visualization in a web page. Line 4 defines the

1 : func t i on getData ( ) {
2 : // Construct and send the query
3 : var u r l =’http :// t ab l e s . g oog l e l ab s . com ’ ;
4 : var s q l =’ s e l e c t dept , sum( sa l a r y ) from 123 ’ ;
5 : +’group by dept ’ ;
6 : var query=new goog le . v i s u a l i z a t i o n . Query ( u r l ) ;
7 : query . setQuery ( s q l ) ;
8 : query . send ( handleQueryResponse ) ;
9 : }
10 : func t i on handleQueryResponse ( response ) {
11 : // Draw the v i s u a l i z a t i o n
12 : var data=response . getDataTable ( ) ;
13 : var chart=new goog le . v i s u a l i z a t i o n . PieChart ( div ) ;
14 : chart . draw ( data ) ;
15 : }

Figure 2: Embedded visualization code.
query that is sent to Fusion Tables, in this case a listing of
total salary by department. Line 13 takes the received data
and renders it as a pie chart. For users who do not want to
write Javascript, we also generate a gadget (small fragment
of code) that can be directly embedded into a web page.

6. GEOGRAPHICAL FEATURES
A very popular component of Fusion Tables is the render-

ing of large geographic data sets. We allow users to upload
tables with street addresses, points, lines, or polygons. We
render these tables as map layers. The rendering is done on
the server side, i.e., we send the client a collection of small
images (tiles) that contain the rendered map. Figure 3 shows
an example of rendering the bike trails in the San Francisco
bay area that are shorter than 20 miles.

In order to render a client-side visualization, we send all
the data to the client, and it is the browser that renders
the visualization. That model is hard to apply when a large
dataset needs to be visualized. Two main difficulties exist.
First, the browser may not have enough processing power to
render thousands of features in real time. Second, the trans-
mission of a large dataset to the client may be impractical.

We first provide some necessary background on the Google
Maps infrastructure and then describe how we support our
geographical features.

6.1 Google Maps Infrastructure
To understand how we enable map visualizations of large

data sets, some background on Google Maps is needed. The
information that a user sees on Google Maps at any time is
an overlay of multiple layers. E.g., the street, satellite, and



Figure 3: A visualization of all bike trails in the San
Francisco Bay Area that are shorter than 20 miles.

terrain maps are separate layers. Any query result that is
to be displayed on a map is represented as a layer.

When a user submits a request to view a map, a corre-
sponding request is sent to the backend servers with infor-
mation about the currently visible layers, the geographic co-
ordinates of the window that is visible on the user’s browser,
and the current zoom level. The backend then creates tiles
(small images) by putting together information in the dif-
ferent layers, and it serves the tiles as the response to the
user’s request.

6.2 Spatial Index
We insert the geo features in Fusion Tables into a spatial

index. The index uses a space-filling curve to map points on
the Earth’s surface to one-dimensional values (cells).

The mapping is as follows: There are six top-level ”face
cells”, obtained by projecting the surface of the Earth onto
the six faces of a cube. Each face is then subdivided recur-
sively into four cells in a quadtree-like fashion [8]. Thus each
cell is a rectangle whose edges are aligned with the sides of
the cube. On the Earth’s surface, such a cell corresponds to
a spherical quadrilateral bounded by four geodesics (great
circle segments).

Cells are identified according to their position in the hier-
archy. The total number of levels is chosen according to the
desired size (square meters) of leaf cells. Any space-filling
curve can be used to enumerate cells at each level. We use
the Hilbert curve [7].

The left side of Figure 4 shows an example of a three-level
Hilbert curve. For example, the value ”5.2.3” identifies the

5.0.1

5.0.2
5.0.3
5.0.0

5.1.0
5.1.3

5.1.1 5.1.2

5.2.0

5.2.1 5.2.2

5.2.3

5.3.0
5.3.1

5.3.2

5.3.3 5.0.0.1

5.0.1.1

f 1

f 3

f 2

Figure 4: Examples of Hilbert curves with three and
four levels.

cell that is in the sixth face of the cube (level 1), in the third
cell at second level, and in the fourth cell at the third level
(numbering starts at 0). The right part of the figure shows
the curve when one more level has been added.

The index is a sorted list of cell identifiers. Each cell
identifier points to all the features that overlap that cell.
Table 5 presents and example index with three features: f1

is a polyline, f2 is a small polygon, and f3 is a point. These
features are also shown in the left part of Figure 4.

cell features
5.0.0 f1, f2

5.0.0.1 f3

5.0.2 f1

5.0.3 f1

5.3.0 f1, f2

5.3.1 f1

Table 5: Example spatial index.

Inserting features: Features are inserted into the index
as follows: (i) The feature is mapped to the set of cells that
cover it. The cover of a feature may involve cells at multiple
levels, e.g., a polygon that covers a large portion of a state
may have large cells in the middle and only finer cells along
the boundaries. In the previous example f3 was covered by a
cell at level 4, while the other features were covered by cells
at level 3. (ii) The cells that make up the cover are inserted
into or updated in the index to point to the feature.

Spatial query processing: The most common query for
the spatial index is “what features fall into a bounding rect-
angle?” The rectangle is defined by a pair of latitude, longi-
tude coordinates.

The strategy to answering the query is as follows: (i) Con-
vert the bounding box into a range (or ranges) in the space
filling curve. (ii) For each such range, retrieve all the fea-
tures that are contained in cells between the start and the
end of the range.

Spatial and structured queries: Fusion Tables supports
structured queries over maps. E.g., a user may ask for all
bike trails in the San Francisco Bay Area (spatial query)
that have a rating of 4 stars or more (structured query).

We answer such queries by executing the spatial and struc-
tured parts in parallel and then intersect the results. The
structured part is answered using the techniques described
in Section 3, and the spatial part is answered using the al-
gorithm described above.

6.3 Sampling
In the interest of ensuring fast map visualizations, a limit

is placed on the number of features that can be drawn on any
tile. If the number of features for a tile that satisfy a user
query exceeds this limit, the Fusion Tables servers return
only a sample of the items in its response to the Google
Maps servers.

Sampling is done as follows. (i) We go through each fea-
ture and compute all the tiles in which it appears (at every
zoom level), and we assign the feature to each such tile. (ii)
The hierarchy of tiles is traversed, from low zoom (far away)
to high zoom (close up). At each level, we assign a sample
of features to the tile. As we go into lower zoom levels, we
respect the features already assigned to the tile through par-
ent tiles, and we add new features. This process guarantees
that a tile will not have more than a predefined threshold
of features, and it ensures that the sampling is consistent,
meaning that points never disappear when a user moves the
view port (changes the bounding rectangle) or zooms in. At
the end, each feature contains just one additional attribute,
the smallest zoom level at which the feature appears.



1 : // Create a new l aye r f o r the Fusion Tables map
2 : var l = new GLayer ( ” f t : 6 0 2 ”) ;

3 : // Draw the map as f e a t u r e s ( not as heat )
4 : l . setParameter ( ”h ” , ” f a l s e ”) ;

5 : // Display only f e a t u r e s that match the query
6 : var s q l = ” s e l e c t co l 2 from 602 where l ength < 20”;
7 : l . setParameter ( ” s ” , s q l ) ;

Table 6: Embedded map code.

6.4 Heat Maps
Fusion Tables also supports the rendering of heat maps.

This is useful when a user wants to see a map colored ac-
cording to the density of features in space. It can also be
used to visualize very large data sets where sampling may
not capture subtle differences in feature density.

We build heat maps as follows. (i) Retrieve the set of
features that fall into the viewport using the spatial index.
(ii) Divide the viewport into a fine grid. (iii) Count the
number of features in each grid cell (iv) Color grid cells
using a palette that assigns light colors to low-count cells,
and strong colors to high-count cells. Cells with no features
are not colored.

6.5 Embedding
As with client visualizations, maps can be published on

web pages. Users can copy small fragments of Javascript
code into the sources of their web pages. The corresponding
maps will be displayed with a live link to the data.

Table 6 shows a fragment of Javascript code used to embed
a map into a web page. Line 2 creates the layer, named
ft:tableId—each table has its own layer. It is possible to
add multiple tables to the same map, by just adding their
respective layers. Line 4 tells Fusion Tables to draw the
layer as features, and not as a heat map. Line 7 sets the
SQL query that filters the set of relevant features.

7. FUSION TABLES API
An important aspect of being a platform for data man-

agement and collaboration is to provide developers with a
way of extending the functionality of the platform. We ac-
complish this through an API.

The API allows external developers to write applications
that use Fusion Tables as a database. For example, the site
mtbguru.com has written an application that synchronizes
its collection of bike routes with a table in Fusion Tables.

The API supports querying of data through select state-
ments, modification of the data through insert, delete, and
update statements, and data definition through a create ta-
ble statement. We do not currently support altering table
schemas through the API. All access to data through the
API is authenticated through existing standards.

8. RELATED WORK
Fusion Tables is inspired in part by ManyEyes (many-

eyes.com) that enables users to upload data and visualize
it in several ways. We go further by providing data man-
agement capabilities and a sharing model that does not re-
quire that users always make their data public. There are
several other online database tools such as DabbleDB (dab-
bledb.com), Socrata (socrata.com), and Factual (factual.com),
but Fusion Tables focuses on the collaboration aspects of
data management and handles larger data sets. In addi-
tion, Fusion Tables emphasizes the deep integration into a

maps infrastructure that is proving to be immensely popu-
lar. Wolfram Alpha is a search engine for structured data,
while our focus is on enabling users to manager their own
data, but we will support search for public tables. Sim-
pleDB (aws.amazon.com/simpledb) is a database service in
the cloud but is targeted at developers.

Several projects related to structured data also exist at
Google. Google Public Data is an effort to import public
data and to provide high-quality and carefully-chosen vi-
sualizations of such data in search results. For example, a
query on the Google search engine for “California unemploy-
ment rate” will lead the user to a page where she can explore
the unemployment in California over time and compare it
with other states. The Google Squared Service lets users
specify categories of objects (e.g., US Presidents, espresso
machines) and then explore attributes of entities in these
sets. The data populating the tables is automatically ex-
tracted from various sources on the Web, and it may not
always be accurate.

9. CONCLUSIONS
We described the main aspects of the architecture of Fu-

sion Tables, a cloud-based data management service that
focuses on the collaborative aspects of data management.
Both the challenges we face and the advantages we gain stem
from the fact that we do our best to integrate Fusion Tables
with the existing Google infrastructure. Using Bigtable and
Megastore provides us with a scalable and replicated data
store (albeit not for very high transaction rates). On the
other hand, this makes it trickier to implement certain kinds
of SQL queries. The Google Maps infrastructure enables us
to provide a user experience that integrates seamlessly with
other map features.

Moving forward, our goal is to provide a data management
experience that seamlessly integrates with other experiences
on the Web. We believe that integration with the Web is
a promising approach to making data management applica-
ble to a broad set of users [5]. In addition to integration
with Google Maps, this means integration with search (e.g.,
our public tables are already crawlable) and with enterprise
collaboration tools such as Google Docs.

Acknowledgments
We thank Mike Carey for the many insightful comments on
an earlier draft of the paper.

10. REFERENCES
[1] S. Abiteboul. Querying Semi-Structured Data. In ICDT, 1997.

[2] J. Furman, J. S. Karlsson, J.-M. Leon, A. Lloyd, S. Newman,
and P. Zeyliger. Megastore: A Scalable Data System for User
Facing Applications. In SIGMOD, 2008.

[3] H. Gonzalez, A. Halevy, C. Jensen, A. Langen, J. Madhavan,
R. Shapley, W. Shen, and J. Goldberg-Kidon. Google Fusion
Tables: Web-Centered Data Management and Collaboration. In
SIGMOD, 2010.

[4] J. Hamilton. Perspectices - Google Megastore.
perspectives.mvdirona.com/2008/07/10/GoogleMegastore.aspx.

[5] H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li,
A. Nandi, and C. Yu. Making database systems usable. In
SIGMOD Conference, 2007.

[6] R. Ramakrishnan and J. Gehrke. Database Management
Systems. McGraw Hill, 2002.

[7] H. Sagan. Space-Filling curves. Springer-Verlag,
Berlin/Heidelberg/New York, 1994.

[8] H. Samet. The Quadtree and Related Hierarchical Data
Structures. ACM Comput. Surv., 16(2):187–260, 1984.


