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ABSTRACT
The Deep Web, i.e., content hidden behind HTML forms,
has long been acknowledged as a significant gap in search
engine coverage. Since it represents a large portion of the
structured data on the Web, accessing Deep-Web content
has been a long-standing challenge for the database commu-
nity. This paper describes a system for surfacing Deep-Web
content, i.e., pre-computing submissions for each HTML
form and adding the resulting HTML pages into a search
engine index. The results of our surfacing have been incor-
porated into the Google search engine and today drive more
than a thousand queries per second to Deep-Web content.

Surfacing the Deep Web poses several challenges. First,
our goal is to index the content behind many millions of
HTML forms that span many languages and hundreds of
domains. This necessitates an approach that is completely
automatic, highly scalable, and very efficient. Second, a
large number of forms have text inputs and require valid
inputs values to be submitted. We present an algorithm
for selecting input values for text search inputs that accept
keywords and an algorithm for identifying inputs which ac-
cept only values of a specific type. Third, HTML forms
often have more than one input and hence a naive strategy
of enumerating the entire Cartesian product of all possible
inputs can result in a very large number of URLs being gen-
erated. We present an algorithm that efficiently navigates
the search space of possible input combinations to identify
only those that generate URLs suitable for inclusion into
our web search index. We present an extensive experimen-
tal evaluation validating the effectiveness of our algorithms.

1. INTRODUCTION
The Deep Web refers to content hidden behind HTML

forms. In order to get to such content, a user has to perform
a form submission with valid input values. The Deep Web
has been acknowledged as a significant gap in the coverage
of search engines because web crawlers employed by search
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engines rely on hyperlinks to discover new web pages and
typically lack the ability to perform such form submissions.
Various accounts have hypothesized that the Deep Web has
an order of magnitude more data than the currently search-
able World Wide Web [2, 9, 12]. Furthermore, the Deep
Web has been a long-standing challenge for the database
community [1, 9, 10, 13, 14, 18, 19] because it represents a
large fraction of the structured data on the Web.

There are two common approaches to offering access to
Deep-Web content. The first approach (essentially a data
integration solution) is to create vertical search engines for
specific domains (e.g. cars, books, or real estate). In this
approach we could create a mediator form for each domain
and semantic mappings between individual data sources and
the mediator form. For a search engine, this approach suf-
fers from several drawbacks. First, the cost of building and
maintaining the mediator forms and the mappings is high.
Second, identifying which queries are relevant to each do-
main is extremely challenging. Finally, and more fundamen-
tally, data on the web is about everything and boundaries
of domains are not clearly definable. Hence, creating a me-
diated schema for the web would be an epic challenge, and
would need to be done in over 100 languages.

The second approach is surfacing, which pre-computes the
most relevant form submissions for all interesting HTML
forms. The URLs resulting from these submissions are gen-
erated off-line and indexed like any other HTML page. This
approach enables leveraging the existing search engine in-
frastructure and hence the seamless inclusion of Deep-Web
pages. User traffic is directed to Deep-Web content when
a user clicks on such a search result, which he presumably
already believes to be relevant based on its snippet. On
clicking, the user is directed to the underlying web site and
hence will see fresh content.

Our goal is to increase the accessibility of Deep-Web con-
tent for search engine users. We began our surfacing effort
with a semi-automatic tool that employed state-of-the-art
schema-matching techniques [6, 11]. The tool enabled a hu-
man annotator to quickly identify the most relevant inputs
and input combinations for any form. The tool enabled the
annotator to process a peak of around 100 forms a day but
its efficacy was limited to that of the annotator, who soon
grew tired or bored of annotating pages.

Our analysis [12] indicated that there are on the order of
10 million high-quality HTML forms. Hence, any approach
that involved human effort was doomed to not scale. In-
stead, we needed an approach that was efficient and fully
automatic, requiring absolutely no site-specific scripting or
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analysis. This places restrictions on the techniques that we
can employ and also sets us apart from prior work such as [1,
13, 18] that have proposed techniques with the objective of
maximizing coverage on specific sites. In fact, we discov-
ered that the potential impact of Deep-Web surfacing on
Google.com queries was more dependent on the number of
sites we surfaced, i.e., our coverage of the Deep Web at large,
rather than our coverage on specific sites. We found that
the top 10, 000 forms (ordered by their measured impact on
search engine queries) accounted for only 50% of Deep-Web
results on Google.com, while even the top 100, 000 forms
only accounted for 85%. This observation justifies our focus
on surfacing as many sites as possible.

This paper describes the algorithms we developed to sur-
face the Deep Web at scale. The techniques we describe
have surfaced several million forms that span 45 languages
and hundreds of domains. Currently, the surfaced content
appears in the first 10 results on Google.com for over 1000
queries per second. Our impact on search traffic provides
a concrete validation of the potential of the Deep Web and
crystallizes some future directions in this field.

The surfacing problem consists of two main challenges: to
decide which form inputs to fill when submitting queries to
a form and to find appropriate values to fill in these inputs.
HTML forms typically have more than one input and hence
a naive strategy of enumerating the entire Cartesian prod-
uct of all possible inputs can result in a very large number
of URLs being generated. Crawling too many URLs will
drain the resources of a web crawler preventing the good
URLs from getting crawled, and posing an unreasonable
load on web servers hosting the HTML forms. Furthermore,
when the Cartesian product is very large, it is likely that
a large number of the result pages are empty and hence
useless from an indexing standpoint. As an example, a par-
ticular search form on cars.com has 5 inputs and a Cartesian
product yields over 240 million URLs, though there are only
650,000 cars on sale [5].

Our first contribution is the informativeness test that we
use to evaluate query templates, i.e., combinations of form
inputs. For any template, we probe the form with differ-
ent sets of values for the inputs in the template, and check
whether the HTML pages we obtain are sufficiently distinct
from each other. Templates that generate distinct pages are
deemed good candidates for surfacing.

Our second contribution is an algorithm that efficiently
traverses the space of query templates to identify those suit-
able for surfacing. The algorithm balances the trade-off be-
tween trying to generate fewer URLs and trying to achieve
high coverage of the site’s content. To the best of our knowl-
edge, ours is the first work that addresses the specific prob-
lem of identifying input combinations for forms with mul-
tiple inputs. Most prior work has focused on single input
forms or assumed naive strategies. We experimentally show
that on average we surface only a few hundred URLs per
form, while achieving good coverage.

Our third contribution is an algorithm for predicting ap-
propriate input values for text boxes. First, we show how we
can extend previous algorithms [1, 13] for selecting keywords
for text inputs. Second, we observe that there are a small
number of data types (e.g., zip codes, prices, dates) that
are extremely common in web forms across many domains.
Hence, investing special efforts to automatically recognize
inputs of those types yields significant benefit. Here too,

<form action="http://jobs.com/find" method="get">
<input type="hidden" name="src" value="hp">
Keywords: <input type="text" name="kw">
State: <select name="st"> <option value="Any"/>

<option value="AK"/> ... </select>
Sort By: <select name="sort"> <option value="salary"/>

<option value="startdate"/> ... </select>
<input type="submit" name="s" value="go">

</form>

Figure 1: HTML form to search for jobs by key-
words and state code. The results can be sorted in
different ways.

we show that we can leverage the informativeness test to
recognize such typed boxes effectively. Our textbox-filling
algorithm tries to identify one of these specific types and
applies a generic keyword extraction algorithm if the type
cannot be determined.

The rest of the paper is organized as follows: Section 2
describes the basics of HTML form processing, and Section 3
formally describes the problem of Deep-Web surfacing. In
Section 4, we describe the informativeness test and how we
identify the informative query templates within any form.
In Section 5, we describe algorithms that predict values to
fill into text inputs. We describe related work in Section 6
and conclude in Section 7.

2. HTML FORM PROCESSING
An HTML form is defined within a form tag (example in

Figure 1). The action identifies the server that will perform
the query processing in response to the form submission.
Forms can have several input controls, each defined by an
input tag. Input controls can be of a number of types, the
prominent ones being text boxes, select menus (defined in a
separate select tag), check boxes, radio buttons, and sub-
mit buttons. Each input has a name which is typically not
the name that the user sees on the HTML page. Users se-
lect input values either by entering arbitrary keywords into
text boxes or by selecting from pre-defined options in select
menus, check boxes and radio buttons. In addition, there
are hidden inputs whose values are fixed and are not visi-
ble to users interacting with the form. These are used to
provide the server additional context about the form sub-
mission (e.g., the specific site from which it came). In this
paper we focus on the select menus and text boxes in a form.
Check boxes and radio buttons can be treated in the same
way as select menus.

When a form is submitted, the web browser sends an
HTTP request with the inputs and their values to the server
using one of two methods: get or post. With get, the pa-
rameters are appended to the action and included as part of
the URL in the HTTP request (e.g., http://jobs.com/find?
src=hp&kw=chef&st=Any&sort=salary&s=go in Figure 1). With
post, the parameters are sent in the body of the HTTP re-
quest and the URL is simply the action (e.g., http://jobs.
com/find in Figure 1). Hence, the URLs obtained from
forms that use get are unique (and dependent on submitted
values), while the ones obtained with post are not.

Since search engines identify web pages based on their
URLs, the result pages from a post are indistinguishable
and hence not directly indexable. Further, as per the HTML
specification, post forms are to be used whenever submission
of the form results in state changes or side-effects (e.g. for
shopping carts, travel reservations, and logins). For these
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reasons, we restrict our attention in this paper to get forms
that tend to produce content suitable for indexing.

We ignore forms that require any kind of personal infor-
mation by filtering away forms with password inputs and
any keywords typically associated with personal informa-
tion, e.g., username, login, etc. We ignore textarea inputs
that are typically used with feedback inputs, e.g., comment
submission forms on forums.

Finally, we note that handling Javascript events is be-
yond the scope of this paper. Forms and inputs can have
onselect, onclick, and onsubmit attributes where arbi-
trary Javascript code can be included. Handling these events
involves simulating Javascript execution on all possible events.
However, given an efficient Javascript simulator, our algo-
rithms will be able to handle such forms as well.

Apart from the above restrictions, our work considers all
forms found in the Google index. We note that the Deep
Web spans all conceivable domains from product listing and
review sites, non-profit, public-sector and government sites,
community and social forums, to very eclectic hobby sites.

3. THE SURFACING PROBLEM
We define the problem of Deep-Web surfacing in terms of

choosing a set of queries to submit to the form. We then
discuss possible objective functions for the selecting the best
surfacing strategy.

3.1 Surfacing as Query Evaluations
Form inputs: Formally, we model the content behind a
web form as a database D with a single table of m attributes.
We model the web form fD that is used to query D as having
n inputs, X1, . . . , Xn. A form submission takes values for
each of the inputs and returns a subset of the records in
D. As we explain below, some of the challenges in surfacing
arise because some of the properties of the inputs are not
known to the system a priori.

There are two kinds of inputs. First, there are selection
inputs that impose selection conditions on the attributes in
D, e.g., kw, st in Figure 1. The values for selection inputs
can either be drawn from a pre-defined list (through a select
menu) or entered into a text input. Text inputs may only
accept values of a particular type, but in general that type
is unknown to us. Selection inputs can often be assigned a
wild card value that matches all the records in the database.
For select menus, the wild card has to be one of the menu’s
options, e.g., the input state has the value Any. For text
inputs, the wild card is the empty string.

Second, there are presentation inputs that only control
presentation aspects of the results, such as the sort order or
HTML layout, e.g. sort in Figure 1. Distinguishing between
selection and presentation inputs is one of the challenges
that we face.

Some inputs in the form may be required. Here too,
we cannot assume a priori knowledge of the required inputs,
because the web site might always return some HTML page.

Formally, the query posed by filling values for the inputs is
select * from D where P, where P are the selection pred-
icates expressed by the selection inputs.

Query templates and form submissions: The problem
of surfacing is fundamentally a problem of selecting a good
set of form submissions. In order to reason about collec-
tions of submissions, we define the notion of query templates,
which are similar in spirit to binding patterns [15]. A query

template designates a subset of the inputs of fD as binding
inputs and the rest as free inputs. Multiple form submis-
sions can be generated by assigning different values to the
binding inputs. Thinking in terms of SQL queries, the query
template concisely represents all queries of the form select

* from D where PB , where PB includes only the selection
predicates imposed by the binding inputs in the form. The
number of binding inputs is the dimension of a template.

Note that, in practice, values have to be assigned to the
free inputs in a template in order to generate valid form
submissions. Ideally, we would like these values not to add
any additional selection condition to SQL queries for the
template. For text inputs, we can assign the empty string,
while for select menus, we assign the default value of the
menu in the hope that it is a wild card value. We note that,
in the interest of easing the interaction burden on their users,
forms typically support wild card values for most, if not all,
of their inputs.

We can now divide the problem of surfacing a Deep-Web
site into two sub-problems:

1. Selecting an appropriate set of query templates, and

2. Selecting appropriate input values for the binding in-
puts, i.e. instantiating the query template with actual
values. For a select menu, we use all values in the
menu, but for a text input, the values have to be pre-
dicted and we cannot assume a priori knowledge of the
domains of the values to be considered.

We assume that the set of values with which an input
is instantiated is the same for all templates in which the
input is binding. However, in practice some inputs may
be correlated. For example, the values for one input (e.g.,
cityName) may be dependent on the value chosen for another
input (e.g., state), or multiple inputs (e.g., salaryMax and
salaryMin) might restrict the same underlying attribute.
Identifying and leveraging such correlations is a subject of
ongoing work and is beyond the scope of this paper.

3.2 Objective
The goal in most prior work has been to extract content

from specific sites and hence the objective is to maximize
the coverage of the underlying database, i.e. the total num-
ber of records retrieved, while bounding the total number
of form submissions. Our goal is to drive traffic from a gen-
eral purpose search engine to as much of the Deep Web as
possible while limiting the load on both the target sites and
our web crawler. We therefore share the goals of achieving
good coverage on individual sites while limiting the num-
ber of submissions. However, we must address several other
considerations as well.

We would like to cover as many distinct Deep-Web sites as
possible. Specially, this means that we are willing to trade-
off coverage of individual sites in the interest of coverage of
the entire Deep Web. There are several practical reasons for
doing so.

First, while the size of the main index of a search engine is
quite large, it is still not nearly enough to store all the pages
that can be possibly be extracted from the Deep Web. Of
course, the Deep Web is only one of several feeds into the
index; this further constrains the number of Deep-Web pages
we can store. Since the over-arching goal of a search engine
is to direct users to relevant web sites in response to their
queries, we would much rather have diverse and important
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content coming from many sites as opposed to optimizing
the coverage of few individual ones.

Second, it is actually unnecessary for our surfacing of a
web site to strive for complete coverage. It suffices to seed
the web index with enough diverse content from the site.
The regular web crawler will eventually crawl outgoing links
from the seeds, such as links to more results for the same
query or to results of related queries, thereby organically
increasing the coverage for the site.

The web pages we surface include listings of results and
these pages are inserted into our web index. While from a
coverage standpoint we might prefer pages that have large
numbers of results, such pages might not be good candidates
for serving as search results to users; we will explain why this
is so in the next section. We would also not like to index
pages that are duplicative in their listings, since they might
only add marginal benefits to the search engine index.

Finally, achieving maximum coverage of every individual
site may actually decrease the diversity of Deep-Web cover-
age. In order to achieve maximum coverage for a site, pre-
vious works had to rely on customized scripts for each site
that extracted and interpreted individual results on the sur-
faced pages to compute a running estimate of their achieved
coverage. This is only realistically possible when dealing
with a small number of hand-selected sites and cannot scale
to the millions of sites we would like to index.

In summary, our objective is to select queries for millions
of diverse forms such that we are able to achieve good (but
perhaps incomplete) coverage through a small number of
submissions per site and the surfaced pages are good candi-
dates for selection into a search engine’s index.

4. SELECTING QUERY TEMPLATES
There are two main challenges in selecting templates. First,

we would like to select templates that do not contain any
binding presentation inputs because these templates retrieve
the same underlying records as the corresponding template
without the presentation input. However, we do not know
in advance whether an input is a presentation input or not.

Second, we have to select templates of the correct dimen-
sion. One strategy would be to choose templates with the
largest possible dimension (i.e. with as many binding in-
puts as possible). Such a template would ensure maximum
coverage by generating all possible queries. However, this
method will increase crawling traffic and will likely produce
many results with empty result sets.

Only choosing templates of smaller dimension has the ad-
vantage of generating a smaller number of form submissions.
Further, if wild card values can be chosen for all free selec-
tion inputs, we might even achieve high coverage. However,
such form submissions will each have a very large number of
records. In practice, web sites limit the number of records
retrieved per query - they might have next links for more
results or simply truncate the result set. Further, we cannot
assume that we can uniquely identify the next link for every
form. Thus, we are less likely to get complete coverage.

In fact, we can also orthogonally explain the trade-off in
template dimension in terms of form submissions being can-
didates for insertion into a search engine index. Specifically,
we would like the surfaced web pages to better satisfy users’
needs. Intuitively, if a user’s query is a match to a record
r in D, we want our index to retrieve for the user the web

page with the set of records from D that are “related” to r
and, by extension, likely to be relevant to their query.

Recall that D is a table of m attributes and therefore we
can model records in D as points in m-dimensional space.
Each form submission can be thought of as a rectangle, or
more generally a hyperplane of dimension m, that contains
a subset of the records from D. Hence, our goal is to create
rectangles large enough to include a reasonable number of
relevant records but small enough to contain only truly rel-
evant records, i.e. records truly close to r in m-dimensional
space. Thus, there is a trade-off in the size of result sets and
hence in the choice of template dimension.

The precise choice of template dimensions is highly depen-
dent on the specific database. Among other factors, very
large databases are likely to have optimal templates with
more binding inputs while smaller databases are likely to do
better with templates with fewer binding inputs.

Section 4.1 introduces the informativeness test that en-
ables us to select templates that satisfy our desiderata. Sec-
tion 4.2 describes how to efficiently traverse the potentially
large space of possible templates to select all desirable tem-
plates. Section 4.3 describes several practical refinements
to our basic algorithm. Section 4.4 describes an extensive
experimental evaluation of our algorithm.

4.1 Informative Query Templates
We evaluate a query template based on the distinctness

of the web pages resulting from the form submissions it gen-
erates. We estimate the number of distinct web pages the
template generates by clustering them based on the similar-
ity of their content.

If the number of distinct web pages is small in compari-
son with the number of form submissions, it is very likely
that either (1) the template includes a presentation input
and hence multiple sets of pages essentially have the same
records, (2) the template dimension is too high for the un-
derlying database and hence there are a number of pages
with no records, all of which resemble one another, or (3)
there is a problem in the template (or the form) that leads
to error pages that again resemble one another. If the tem-
plate does not fall into one of the above categories but still
generates pages with indistinct content, then it is only likely
to be of marginal value to the search engine index and hence
is unlikely to have any impact on search engine queries.

Since we cannot employ site-specific parsers to extract
and compare the individual records retrieved by each form
submission, our test approximates the distinctness by com-
paring the contents of the corresponding web pages.

We call a template informative if the generated pages are
sufficiently distinct, and uninformative otherwise. Specifi-
cally, we compute a signature for the contents of the web
page resulting from each form submission and deem tem-
plates to be uninformative if they compute much fewer sig-
natures than the number of possible submissions. We define
informativeness w.r.t. a threshold τ that we determine ex-
perimentally later.

Definition 1. (Informative query template): Let T
be a query template and Sig be a function that computes
signatures for HTML pages. Let G be the set of all possible
form submissions generated by the template T and let S be
the set {Sig(p) | p ∈ G}.

We say that T is an informative template if |S|/|G| ≥ τ .
Otherwise we say that T is uninformative. The ratio |S|/G|
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is called the distinctness fraction.

We do not compute signatures for form submissions that
return HTTP errors. Hence, if all form submissions result
in errors, the distinctness fraction will be 0.

While the exact details of Sig are less important, we enu-
merate the important properties we want from such a func-
tion. First, the signature should be agnostic to HTML for-
matting, since presentation inputs often simply change the
layout of the web page. Second, the signature must be ag-
nostic of term ordering, since result re-ordering is a common
presentation operation. Third, the signature must be toler-
ant to minor differences in page content. A common source
of differences are advertisements, especially on commercial
sites. These advertisements are typically displayed on page
margins. They contribute to the text on the page but do not
reflect the content of the retrieved records and hence have
to be filtered away. Lastly, the signature should not include
the input values themselves. A used car search site that
has no red Honda Civic cars for sale in the zip code 94107,
is likely to have an error message “No search results for

Red Honda Civic in 94107!” Likewise, the result page for
a large fraction of the Color Make Model Zip queries will be
“No search results for Color Make Model in Zip”. The
only difference between these pages are the search terms
themselves and a signature that does not exclude the search
terms is likely to deem them different and hence deem the
corresponding template informative.

4.2 Searching for Informative Templates
To avoid testing each of the 2n − 1 possible templates,

we develop a strategy that explores the space of candidate
templates and tests only those likely to be informative.

Our strategy is to search through the space of templates in
a bottom-up fashion, beginning from templates with single
binding input. The main intuition leading to this strategy
is that the informativeness of a template is very likely to
be dependent on templates that it extends, i.e., has one ad-
ditional binding input. If template T has dimension k and
none of the k templates that it extends is informative, then
T is unlikely to be informative as well.

The ISIT algorithm is shown in Figure 2. We start with
candidate templates of dimension 1. The GetCandidateInputs
method chooses the inputs that are to be considered, i.e.,
the select menus and the text boxes (if input values are
known). The other inputs are set to default values. The
CheckInformative method tests each of the candidate tem-
plates for informativeness as per Definition 1. If any tem-
plate of dimension 1 is deemed informative, the Augment

method constructs candidates of dimension 2 that have a
super-set of it’s binding inputs. Thus, the candidate tem-
plates are such that at least one of the templates they extend
is known to be informative (but not necessarily both). Each
of the new candidate templates is then tested to determine
if it is informative. From the informative ones of dimen-
sion 2, we continue in a similar fashion to build candidate
templates of dimension 3, and so on. We terminate when
there are no informative templates of a given dimension.

We note that all candidates inputs are considered while
augmenting a template. We could choose a more aggres-
sive strategy where we only consider informative inputs, i.e.
their corresponding template of dimension 1 was deemed in-
formative. However, we believe that in practice such a strat-
egy will (erroneously) omit some informative templates. It

GetInformativeQueryTemplates (W: WebForm)
I: Set of Input = GetCandidateInputs(W)
candidates: Set of Template =

{ T: Template | T.binding = {I}, I∈ I}
informative: Set of Template = φ
while (candidates 6= φ)

newcands: Set of Template = φ
foreach (T: Template in candidates)

if ( CheckInformative(T, W) )
informative = informative ∪ { T }
newcands = newcands ∪ Augment(T, I)

candidates = newcands
return informative

Augment (T: Template, I: Set of Input)
return { T’ | T’.binding = T.binding ∪ {I},

I∈ P, I 6∈ T.binding }

Figure 2: Algorithm: Incremental Search for Infor-
mative Query Templates (ISIT)

is not uncommon to have forms with one primary input that
is required to retrieve any results and other inputs that are
essentially refinements. For example, a form with make and
color can be such that the default value for make ensures
that no records are returned by simply selecting a color.
Hence, the template with binding input color is uninfor-
mative, while the one with make and color is informative.

We note that there can be cases where our bottom-up
search might falter. For example, a form may require both
make and zip, and neither of these inputs in isolation is
informative. In practice, we can address this problem by
testing templates of dimension 2 when none of dimension 1
are deemed informative.
ISIT enables us to incrementally explore the space of tem-

plates by testing relatively few. For example, as we show in
Section 4.4, for forms with 6 inputs, a naive strategy tests 63
templates per form, while our algorithm, on average, tests
only 17.43 templates (a 72% reduction) and finds 7.17 to be
informative. Further, we generate only a small subset of the
Cartesian product. For example, even for forms with 5 in-
puts, while the Cartesian product averages close to a trillion
URLs per form, we generate only 10,000 per form.

Once our search terminates, we can add the URLs gener-
ated by all the informative templates to the search engine
index. Note that, to avoid duplicated content, we only need
to add those with distinct signatures.

4.3 Refinements to the basic algorithm
Fielding our algorithm on a large scale required that we

refine it in several ways.

Limiting the search space: As already noted, templates
that generate a very large number of URLs are unlikely to
be informative. Hence, as a practical refinement, we set a
threshold for the maximum number of URLs that can be
generated from a template and do not consider those that
generate more than the threshold. For our experiment, we
set the threshold as 10,000. Likewise, we found that tem-
plates with dimension of more than 3 are almost never infor-
mative. Hence, in practice, we restrict the dimension of our
candidate templates to 3. Note that the above restrictions
are consistent with our desiderata for templates. In Sec-
tion 4.4, we found that simply applying these restrictions
(without the informativeness test) does reduce the number
of URLs generated, but the informativeness test results in a
further order of magnitude reduction.
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Table 1: Distribution of HTML Forms by the num-
ber of inputs.

Num. Inputs Num. Forms Num. Inputs Num. Forms
1 429271 6 1684
2 43776 7 1071
3 12987 8 418
4 7378 9 185
5 3101 10 129

Monotonic inputs: The informativeness test as described
often fails on a particular class of presentation inputs. Specif-
ically, forms can have inputs that restrict the number of re-
sults per page (e.g., 10, 20, or 30 job lists per page). The
web pages for different input values can be very distinct from
each other, but we would do not want to generate URLs for
each of them (and select only one instead). Observe that
increasing the number of results per page leads to monoton-
ically increasing page length. To identify such inputs, we
include the length of the generated web page in its signa-
ture. In addition to distinctness, we perform a monotonicity
test for page lengths. Once we detect monotonicity, we se-
lect a single value for the input. Note that the smallest value
might return too few records, while the largest value might
return too many.

Sampling for informativeness: For the informativeness
test, when the number of URLs that can be generated from
a template is very large, we instead generate and analyze
only a sample. We currently set the sample size at a fixed
number, 200, based on our experiments.

Form-wide distinctness: While a template T1 might re-
sult in web pages with distinct content, it is possible that
the content is identical to those generated by a different
template T2. Such templates are of no additional value to
the search index. To prune them, we consider form-wide
distinctness in the informativeness test. Specifically, when
counting the number of distinct signatures for a template,
we do not include signatures generated by previously tested
templates. We observed a significant effect when consid-
ering templates with more than one binding input – with
τ = 0.2, 36% of templates of dimension 2 that are deemed
informative by simple distinctness are deemed uninforma-
tive by form-wide distinctness.

4.4 Experimental Results
In this section we describe a set of experiments that val-

idate the claim that our algorithm is effective at predicting
the desirable templates for an HTML form. To focus just on
templates (and not value selection for text inputs), for now
we only consider forms that have select menus. By manually
inspecting a number of forms, we observed that select menus
with fewer than 5 options are to a large extent presentation
inputs. Hence, we do not consider select menus with less
than 5 values as potential binding inputs.

We now compare our algorithm (ISIT) against other strate-
gies. First, we show that we do not generate too many URLs.
Second, we show that we efficiently traverse the search space
of query templates. Third, we show that we do not generate
too few URLs, i.e., we generate more than a simple conserva-
tive strategy, but the additional URLs generated are useful
to the search engine. Fourth, we show that, in practice, we
achieve good coverage of the underlying database. Finally,
we try to understand the conditions when we are unable to
find any informative templates.

Figure 3: Cumulative Distribution of Distinctness
Fraction. The line plots for each value of distinctness
fraction d, the fraction of inputs with a distinctness
fraction less than d.

Dataset: In the rest of this section, we consider a sample
of 500,000 HTML forms for which our algorithm was able to
successfully generate URLs, i.e., find at least one informative
template. Table 1 summarizes the distribution of forms by
their number of select menus. To the best of our knowledge,
this is the first analysis of HTML forms on such a large scale.

Distinctness threshold τ : Definition 1 depends on the
value of threshold τ . In order to determine an appropri-
ate value, we considered the cumulative distribution of the
distinctness fraction of all templates of dimension 1 (see Fig-
ure 3). We found that about 10% have a distinctness fraction
of 0, i.e., all the URLs we generate result in HTTP errors.
About 15% have a distinctness fraction of 1, i.e., each gener-
ated URL has potentially distinct content. There appear to
be two distinct linear ranges in the rest of the distribution.
For distinctness fraction below 0.2 there is a steep drop-off
in the percentage of inputs (slope = 2), but above 0.2, there
is a gentler increase (slope = 0.5). We believe that tem-
plates in the range below 0.2 are clearly uninformative – a
large number of them generate only one distinct signature.
Since we only consider inputs with 5 or more values, their
distinctness fraction is less than 0.2. The threshold τ can
be chosen to be any value above 0.2 with the specific choice
determining the aggressiveness of our URL generation algo-
rithm. In our experiments, we used a distinctness threshold
of 0.25 and a form-wide distinctness threshold of 0.2 (both
of which must be satisfied).

Scalable URL Generation: We compare the number of
URLs generated per form by ISIT against three other al-
gorithms. The first is the CP algorithm, which generates a
URL for each entry in the Cartesian product of all input
values. This will clearly create a huge number of URLs and
will be impractical for larger forms. To perform a more re-
alistic comparison for larger forms, we consider two other
alternatives:

• the TP (Triple Product) algorithm: for forms with more
than 3 inputs, TP generates URLs from all possible
templates of dimension 3, i.e., for a form with n inputs,
it with generate URLs from all

`
n
3

´
templates.

• the TPL (Limited Triple Product) algorithm: TPL is a
restriction of TP that only considers URLs from tem-
plates that generate fewer than 100,000 URLs.

Observe that TP and TPL correspond to the two restrictions
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Figure 4: Comparison of the average number of
URLs generated per form by the ISIT, CP, TP, and
TPL algorithms. ISIT generates an order of magni-
tude fewer URLs per form than TPL, the best strat-
egy that does not test for informativeness.

to the search space of templates described in Section 4.3, but
applied to the CP algorithm. Hence, by comparing ISIT to
TP and TPL, we are trying to quantify the effects of the infor-
mativeness test against simply choosing arbitrary templates
of a given size. Note that ISIT and TPL only restrict the
number of URLs per template to 100,000 – the total number
generated from a form can be much larger.

Figure 4 compares the performance of the four algorithms
for different numbers of form inputs. Each algorithm consid-
ers the same set of candidate binding inputs for each form,
i.e., the filters that are used to restrict the binding inputs
chosen by ISIT are also applied to the other two. All the
algorithms are identical for forms with only one input, while
CP, TP and TPL by definition generate the same number of
URLs for forms with three or fewer inputs. TPL generates
fewer URLs per form for n = 4 that n = 3 since for larger
forms, it does not consider all templates of dimension 3 for
n ≥ 4 (but does so for n = 3).

We can draw the following conclusions. CP is impractical
since it generates more than a billion URLs per form with 4
inputs and more than a million per form with only 3 inputs.
TP and TPL generate fewer URLs by only considering triples,
but even TPL generates more than 100,000 URLs per form
with 5 inputs. ISIT is able to consistently generate an order
of magnitude fewer URLs than TPL and even for forms with
10 inputs, the number of URLs generated is only 100,000.

Observe that the real benefit of ISIT is greater than that
demonstrated in Figure 4, since our dataset does not include
the forms for which ISIT found no template to be informa-
tive. The CP, TP, and TPL algorithms would naively (and
most often in error) generate URLs for those forms too.

Figure 4 groups forms based on their number of inputs.
However, the number of URLs generated by forms with the
same number of inputs can vary greatly if the number of val-
ues that can be fed into the inputs differs significantly. To
compensate for this variability, Table 2 groups forms based
on the number of URLs generated by algorithm TPL. It can
be clearly seen from Table 2 that ISIT generates far fewer
URLs. Even for very large forms where TPL generates be-
tween 100,000 to 1 million URLs, ISIT only generates 18,799
URLs on average. In fact, the fraction of URLs generated
halves with every subsequent bucket. Note that TPL fails

Table 2: Comparison of the average number of URLs
generated per form by ISIT against TPL. Forms are
grouped by the number of URLs generated by TPL.

TPL Gen. Num. Avg. Gen. Avg. Gen Fraction
Bucket Forms ISIT TPL ISIT/TPL
1 - 9 95637 7.5 7.5 1.00

10 - 99 337613 26.4 28.9 0.91
100 - 999 36368 165 278 0.59

1000 - 9999 12706 930 3674 0.25
10000 - 99999 11332 4824 37605 0.12

100000 - 999999 5546 18799 280625 0.06
0 211 17858 fails −

Table 3: Average number of templates tested and
URLs analyzed per form. As the number of inputs
increase, the number of possible templates increases
exponentially, but the number tested only increases
linearly, as does the number found to be informative.

Num. Max Average Average Average
Inputs Templates Templates Templates URLs

[dimension ≤ 3] Tested Informative Analyzed
1 1 [1] 1 1 23
2 3 [3] 2.82 1.76 136
3 7 [7] 5.38 3.04 446
4 15 [14] 8.80 3.75 891
5 31 [25] 12.66 5.93 1323
6 63 [41] 17.43 7.17 1925
7 127 [63] 24.81 10.62 3256
8 255 [92] 29.46 13.45 3919
9 511 [129] 35.98 15.80 4239
10 1023 [175] 41.46 17.71 5083

to generate any URLs for forms that have select menus so
large that all templates of dimension 3 generate more than
100,000 URLs. ISIT is able to generate on average 17,858
URLs in these cases.

Efficient traversal of search space: Table 3 shows the
average number of templates we test per HTML form and
the number of templates that are found to be informative. If
an algorithm were to naively consider all possible templates,
then for a form with n inputs, we would have to test 2n − 1
templates. If we restrict the templates to be only those with
dimension less than equal to 3, we would still have to test`

n
1

´
+

`
n
2

´
+

`
n
3

´
templates. However as Table 3 shows, ISIT

exhibits an almost a linear rate of increase. Thus, we are in
a position to test arbitrarily large forms.

Table 3 also shows the average number of URLs analyzed
per HTML form. Recall that, to determine informativeness,
a sample of the URLs that can be generated by template are
downloaded and their contents analyzed. On average only
84 URLs are fetched per form site, and even for forms with
10 inputs the number is only 5083. Further, the web pages
are fetched typically over a week thus not placing an undue
burden on the form site.

Adequate URL generation: We compared ISIT with 1T

that only generates URLs from templates of dimension 1.
Clearly, such a strategy generates far fewer URLs. However,
we found that there is a corresponding loss in accessibility to
content. In what follows, we analyze the impact of the gen-
erated URLs on the Google.com query stream to compare
the utility of URLs generated by templates of dimension 2
and 3 against those generated by 1T. We measure the impact
by counting the number of times one of the URLs appears
in the first 10 results for some query on the search engine.
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To perform a fair comparison, we only considered forms
for which URLs were generated from at least one informa-
tive template each of dimension 1, 2, and 3 (there were 3856
such forms in our sample dataset). Of the search results
contributed by URLs generated from these forms, we found
that templates of dimension 1 accounted for only 0.06 of
the results, while those of dimensions 2 and 3 accounted
for 0.37 and 0.57 respectively. Likewise, if we instead con-
sidered forms with informative templates of dimensions 1
and 2, but none of dimension 3 (22, 872 forms in our sam-
ple), we found that the former accounted for 0.30 of the
search results as compared to the latter which accounted for
the remaining 0.70. Thus the URLs generated from larger
templates do contribute significantly to web search results
and these URLs should not be ignored.

Database Coverage: To get a rough idea for the coverage
we obtain on web sites, we considered a set of sites for which
we are able to determine the number of records they store
(either by a specific query or where the number is published
by the site). Table 4 shows how well ISIT performs on these
sites. In all examples, we generate far fewer URLs than
the Cartesian product, and in most of them we are able to
retrieve close to all the records. In some cases (1 and 7), the
manual inspection found the unrestricted queries to retrieve
all records with a single query. However, in order to perform
a fair comparison the corresponding URL was excluded from
the ones ISIT generated.

It is easy to see from the table that the Cartesian product
of the inputs is not correlated with the size of the underlying
database. On the contrary, the number of URLs generated
by ISIT is correlated with the database size. We are able to
retrieve more than 50% of the records in all but one example
(example 10 has far too big a database). Observe that in
example 5, we retrieve more records than those published on
the home page of the website (which is likely to be outdated).

In some examples, we generate more URLs than retrieved
records. While this might seem excessive, observe that we
can prune the generated URLs by eliminating those with
duplicate page signatures. In fact in example 10, the largest
template has a distinctness fraction of only 0.27. Hence, the
number of URLs eventually selected into the search engine
index is dramatically lesser.

Applicability of Informativeness: As a final question,
we measure the applicability of the informativeness test across
all forms. Hence, we applied our algorithm on all forms on
the Google index that had at least one select menu with at
least 5 values and no text inputs. We were able to find at
least one informative template in 48% of the forms.

In order to determine the reasons for not finding any in-
formative templates, we took a closer look at forms with
only one select menu, i.e. only one template. We found that
for 18% of the failing forms, the generated URLs all result
in HTTP errors, and for a further 54%, the generated URLs
all result in web pages that not only have equivalent signa-
tures, but are also byte-wise equivalent. An inspection of the
forms in these two categories indicates Javascript to be the
predominant reason for failure. For these forms, the form
processing is entirely performed by Javascript and hence the
get URL (as described in Section 2) is ignored. For 1.8%,
the generated URLs could not be crawled due to robots.txt
entries that blocked our crawler. For 8.3%, there is only one
distinct signature generated, which implies that the input is
likely to be a presentation input. For 1.7%, the input was

found to be monotonic (and hence a presentation input).
Finally, for the remaining 15%, there is more than one sig-
nature, but not enough for the template to be informative.

The current inability to handle Javascript is not a fun-
damental limitation of our algorithm and the forms can be
processed using a Javascript simulator. If we were to exclude
the Javascript affected forms and the uncrawlable forms, we
are in fact able to generate URLs for 80% of all forms with
one select menu.

5. GENERATING INPUT VALUES
A large number of HTML forms have text boxes. In

addition, some forms with select menus require valid values
in their text boxes before any results can be retrieved.

Text boxes are used in two different ways. In the first, the
words entered in the text box are used to retrieve all docu-
ments in a backend text database that contain those words.
Common examples of this case are searching for books by
title or author. In the second, the text box serves as a selec-
tion predicate on a specific attribute in the where clause of
a SQL query over the backend database. The values either
belong to a well-defined finite set, e.g., zip codes or state
names in the US, or can be an instance of a continuous data
type, e.g., positive numbers for prices or integer triples for
dates. For our purposes, this underlying distinction induces
a division of text boxes into two types: generic and typed.
Invalid entries in typed text boxes generally lead to error
pages and hence it is important to identify the correct data
type. Badly chosen keywords in generic text boxes can still
return some results and hence the challenge lies in identify-
ing a finite set of words that extracts a diverse set of result
pages.

Section 5.1 describes an algorithm to generate a keywords
for a generic text box, and we evaluate it in Section 5.2. We
discuss typed text boxes in Section 5.3.

5.1 Generic text boxes
We first consider the problem of identifying good candi-

date keywords for generic text boxes. Conceivably, we could
have designed word lists in various domains to enter into text
boxes. However, we quickly realized that there are far too
many concepts and far too many domains. Furthermore, for
generic text boxes, even if we identified inputs in two sepa-
rate forms to be the same concept in the same domain, it is
not necessarily the case that the same set of keywords will
work on both sites. The best keywords often turn out to be
very site specific. Since our goal was to scale to millions of
forms and multiple languages, we required a simple, efficient
and fully automatic technique.

We adopt an iterative probing approach to identify the
candidate keywords for a text box. At a high level, we as-
sign an initial seed set of words as values for the text box
and construct a query template with the text box as the
single binding input. We generate the corresponding form
submissions and extract additional keywords from the re-
sulting documents. The extracted keywords are then used
to update the candidate values for the text box. We repeat
the process until either we are unable to extract further key-
words or have reached an alternate stopping condition. On
termination, a subset of the candidate keywords is chosen
as the set of values for the text box.

Iterative probing has been proposed in the past as a means
to retrieving documents from a text database [1, 13]. How-
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Table 4: Examples of HTML forms comparing the URLs generated and the number of records retrieved
against the Cartesian product and the actual size of the database.

No. URL with HTML form Cartesian URLs Estimated Records
product Generated Database Retrieved

1 http://www2.imm.dtu.dk/pubdb/public/index public.php 53550 1349 4518 4518
2 http://dermatology.jwatch.org/cgi/archive 32400 179 3122 1740
3 http://www.kies.com.au/listings.php 129654 81 62 61
4 http://aarpmagazine.org/food/recipeguide 150822 365 314 273
5 http://www.shadetrees.org/search.php 313170 181 1699 1756
6 http://www.dasregistry.org/listServices.jsp 2 million 627 295 267
7 http://www.nch.org.uk/ourservices/index.php?i=402 2.5 million 34 27 27
8 http://www.lodgerealestate.co.nz/?nav=rentsearch 4.7 million 26 87 74
9 http://www.pipa.gov.ps/search db.asp 68 million 1274 409 409
10 http://www.biztransact.com/ 257 million 13,209 100,000+ 10,937
11 http://projects.bebif.be/enbi/albertinerift/common/search 948 billion 2406 2287 1257
12 http://oraweb.aucc.ca/showcupid.html 3.2 trillion 34 27 27

ever, these approaches had the goal of achieving maximum
coverage of specific sites. As a consequence, they employ
site-aware techniques. For example, in [1] the expression for
the number of results returned for a query is used to se-
lect keywords, while in [13] individual result documents are
retrieved from the result pages to maintain correlations be-
tween candidate keywords. We now discuss the techniques
we employ to adapt iterative probing to our context.

Seeds and candidate keywords selection: We start by
applying the informativeness test on the template for the
text box assuming a seed set of input values. Our exper-
iments indicate that if the template fails the informative-
ness test, then text box is unlikely to be a generic text box.
Since we want to cover all possible languages, we cannot
start with from a dictionary of terms. Hence, we select the
seeds from the words on the form page. Likewise, since we
do not extract individual result records or documents, we
select additional keywords from the words of the web pages
generated by the form submissions.

We select words from a page by identifying the words most
relevant to its contents. For this we use the popular Infor-
mation Retrieval measure TF-IDF [16]. Briefly, the term
frequency (TF) measures the importance of the word on that
particular web page. Suppose a word w occurs nw,p times a
web page p and there are a total of Np terms (including re-
peated words) on the web page, then tf(w, p) =

nw,p

Np
. The

inverse document frequency (IDF) measures the importance
of the word among all possible web pages. Suppose w oc-
curs on dw web pages and there are a total of D web pages
in the search engine index, then idf(w) = log D

dw
. TF-IDF

balances the word’s importance on the page with its overall
importance and is given by tfidf(w, p) = tf(w, p)× idf(w).

For the seeds, we select the top Ninitial words on the
form page sorted by their TF-IDF scores. For the candidate
keywords for iteration i + 1, suppose that Wi is the set of
all web pages generated and analyzed until iteration i. Let
Ci be the set of words that occur in the top Nprobe words
on any page in Wi. From Ci, we eliminate words

• if they have so far occurred in too many of the pages
in Wi (say 80%), since they are likely to correspond
to boiler plate HTML that occurs on all pages on the
form site (e.g., menus, advertisements), or

• if they occur only on one page in Wi, since they can
be nonsensical or idiosyncratic words that are not rep-
resentative of the contents of the form site.

The remaining keywords in Ci are the new candidate key-

words for iteration i + 1. The choice of Ninitial and Nprobe

determines the aggressiveness of the algorithm. By choosing
lower values, we might not be able to extract sufficient key-
words, but very high values can result in less representative
candidate keywords. Our experiments indicate Ninitial = 50
and Nprobe = 25 to be good values.

Text box value selection: To limit the number of URLs
generated from the form, we place restrictions on the max-
imum number of keywords for a text box. While we would
like to choose the subset that provides us with the most
Deep-Web coverage of the form site, we cannot maintain
accurate models of estimated coverage (unlike [13, 18]). In-
stead we use a strategy that is simpler, and tries to ensure
the diversity among selected keywords.

Let P (w) be the top Nprobe words on the web page corre-
sponding to the candidate keyword w. We first cluster the
candidate keywords based on their P (w)’s and randomly se-
lect one candidate keyword from each cluster. The rest of
the keywords within each cluster are believed to have similar
content and are hence omitted. We sort the chosen candi-
date keywords based on the page length of the correspond-
ing form submission and proceed down the list of candidate
values in decreasing order of page length. If S is the set of
values already selected, then we select the candidate wi into
S only if P (wi)∩ (∪w∈SP (w)) ≥ k, where k is a small num-
ber. We start with k = 5 and re-iterate through the sorted
list of candidate keywords with decreasing values of k until
we have selected the desired number of keywords for the text
box.

We note that placing a single maximum limit on the num-
ber of keywords per text box is unreasonable because the
contents of form sites might vary widely from a few to tens
to millions of results. We use a back-off scheme to address
this problem. We start with a small maximum limit per
form. Over time, we measure the amount of search engine
traffic that is affected by the generated URLs. If the num-
ber of queries affected is high, then we increase the limit for
that form and restart the probing process.

5.2 Experimental Results
HTML forms can have multiple text boxes. In our study,

we only consider one text box per form. Based on a manual
analysis, we believe that in a large fraction of forms, the
most likely generic text box is the first text box. Hence, we
apply the iterative probing approach to the first text box.

In the experiments below, we consider a different dataset
of 500,000 HTML forms for which were able to generate key-
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Figure 5: Distribution of HTML forms by the num-
ber of keywords selected.

words. For each form, we try to select 500 keywords. We
stop extracting candidate keywords either after 15 iterations
or once we have extracted 1500 candidates for keyword se-
lection, whichever occurs first. We extract more than 500
keywords, so that we have a larger and potentially more
diverse set of candidate keywords from which to select the
final set of values for the text box.

We first consider the distribution of candidate keywords
our algorithm generates. We then demonstrate that we are
able to achieve good coverage of the underlying database.
We then consider the interaction between the text boxes
and the select menus that might be present in the same
form. Finally, we show how the URLs we surface can serve
as seeds for a web crawler that will then organically increase
the database coverage over time.

Keyword Generation: In the experiments, the distribu-
tion of reasons for which iterative probing terminated is: for
70% of the forms no new keywords can be extracted after a
few iterations, for 9% of the forms the maximum number of
iterations is reached, and for the remaining 21% termination
occurs once sufficient keywords have been extracted.

Figure 5 shows the distribution of HTML forms by the
number of keywords selected for the form. The histogram
is constructed by bucketing forms based on the number of
keywords selected. We make two observations. First, there
are no forms with 0-20 keywords because we consider text
boxes with fewer that 20 extracted keywords to be uninfor-
mative. These text boxes are unlikely to be generic search
boxes. Second, the number of forms in the last bucket is
significantly more because it groups all forms with 500 or
more candidate keywords into a single bucket. A more com-
plete analysis of the distribution of keywords extracted and
its implications will be considered in future work.

Database Coverage: Table 5 lists examples of real form
sites whose size was possible to determine either by inspec-
tion of by submitting a carefully designed query. The table
shows the performance of our algorithm in extracting key-
words for the sites. In each of these examples, a maximum
of 500 keywords were selected for the first text box in the
form. We consider the URLs generated using the selected
keywords for the text box and default values for all other
inputs. To estimate our coverage, we counted the number
of database records retrieved by manually inspecting the
site to determine patterns that identify unique records on
the result web pages.

First, we consider only the contents on the first results
page (column first in Table 5), since these correspond di-
rectly to our generated URLs. We observe that in exam-
ples 1 and 2, when the databases are small (less than 500
records), we are able to reach almost all database records.
Further, our algorithm terminates with fewer keywords than
the estimated database size. As the estimated database sizes
increase (examples 3 to 8), we stop at 500 selected keywords
and we are only able to get to a fraction of the total records.
In general, while the absolute number of records retrieved
increases, the fraction retrieved decreased. Not surprisingly,
we get to more records when there are more results per page.
As already highlighted, our algorithm is language indepen-
dent – example 9 is a Polish site, while 10 is a French one.
In all, the results in Figure 5 include forms in 54 languages.

Text boxes and select menus: The second column in Ta-
ble 5 shows the number of results we obtained from consid-
ering only select menus in the forms. The table shows that
the coverage of the select menus is much smaller, therefore it
is important to consider both select menus and text boxes.
It is important to note that the records extracted from text
boxes did not necessarily subsume the ones extracted from
select menus.

Once we have the values for a text input, we can treat
them similar to select menus as described in Section 4. We
now compare the relative contribution of URLs generated
from text boxes and those generated from select menus to
the resulting query traffic. As in Section 4.4, we count the
number of times the URLs appear in the first 10 results for
some query on the search engine. We consider the 1 million
forms in the datasets in this section and in Section 4.4. The
URLs we generate fall into three categories: those generated
using templates having (1) only one text box as a binding
input, (2) one or more select menus, and (3) one text box
and one or more select menus. Overall, we find that URLs
in these categories contribute to search results in the ratio
〈0.57, 0.37, 0.06〉. The ratio is 〈0.30, 0.16, 0.54〉 when we re-
strict our attention to forms that generated URLs from both
text boxes and select menus. Clearly, we need to consider
text boxes, select menus and their combinations.

Seeding the web crawler: Given our surfaced URLs the
search engine’s web crawler will automatically over time pur-
sue some of the outgoing hyperlinks on the corresponding
web pages, e.g., follow the Next links. Hence, in order to get
an estimate of the database coverage assuming such a crawl-
ing pattern, we also included the web pages that are outlinks
from the first result page (column first++ in Table 5). As
can be seen, our coverage is much greater. Observe that
while in example 7, the coverage only doubles, but in exam-
ple 9 it is significantly more. This is because in the former,
there is only a single Next link, while in the latter, there are
links to multiple subsequent result pages.

5.3 Typed text boxes
One of the main observations from our work is that there

are relatively few types that, if recognized, can be used to
index many domains, and therefore appear in many forms.
For example, the type zip code is used as an input in many
domains including cars, public records and real-estate, and
the type date is used often as an index of many domains,
such as events and articles archives. We describe an experi-
ment that validates this observation.

The two ideas we build on are the following. First, a
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Table 5: Examples of HTML forms with text boxes comparing the the actual size of the database (number
of records) against the number of URLs generated and the number of records retrieved: (first) on the first
results page when using only the text box, (select) on the first page using only select menus, and (first++)
on the first page and the pages that have links from it when using only the text box,
No. Form URL Estimated Keywords Results Records Retrieved

Database Selected Per Page first select first++
1 http://kbase.gofrugaltech.com/ 382 169 20 348 n.a. 381
2 http://nsidc.org/data/index.html 506 355 20 475 102 478
3 http://www.hhmi.org/news/search.html 1700 500 25 1485 320 1585
4 http://ww.azom.com/ 4700 500 10 2136 n.a. 3124
5 https://secure.financeweek.co.uk/cgi-bin/iadmin.cgi?page=68 5000 500 50 4118 1316 4118
6 http://www.angis.org.au/Databases/BIRX/ 18200 500 100 5315 n.a. n.a.
7 http://english.ibd.com.cn/databank.asp 21200 500 10 2661 306 4697
8 http://federalgovernmentjobs.us/ 60300 500 10 3096 n.a. 12127
9 http://praca.gratka.pl/ 15800 500 20 4012 290 11043
10 http://www.rhdsc.gc.ca/fr/ministeriel/recherche/index.shtml 21800 500 200 13324 724 19332

Table 6: Detecting Input Type: Each entry records
the results of applying a particular type recognizer
(rows, e.g., city-us, date) on inputs whose names
match different patterns (columns, e.g., *city*,
*date*). * includes inputs that do not match any
of the patterns. Likewise, the row not recognized
includes inputs that are not recognized by any of
the identifiers.

*city* *date* *price* *zip* *

city-us 60 6 4 14 113
date 3 46 12 8 7
price-small 3 6 40 4 18
price-large 2 8 34 0 12
zip-us 4 2 13 136 3
generic 8 0 2 3 392
not recognized 92 295 369 111 300
total 172 363 475 276 845

typed text box will produce reasonable result pages only
with type-appropriate values. We use this to set up infor-
mativeness tests using known values for popular types. We
consider finite and continuous types. For finite types, e.g.,
zip codes and state abbreviations in the US, we can test
for informativeness using a sampling of the known values.
For continuous types, we can test using sets of uniformly
distributed values corresponding to different orders of mag-
nitude. Second, popular types in forms can be associated
with distinctive input names. We can use such a list of in-
put names, either manually provided or learned over time
(e.g., as in [6]), to select candidate inputs to apply our in-
formativeness tests on. We conducted the following exper-
iment with four types: US zip codes, US city names, prices
and dates. For price, we consider two sub-types, price-small
(0 - 5,000) and price-large (50,000 - 500,000), with the for-
mer targeting product sites and the latter real-estate sites.
We consider a dataset of about 1400 forms chosen randomly
such that there are at least 200 forms each with a text box
whose name matches the pattern *city*, *date*, *price*,
and *zip*. For each of these forms we consider the first
text box and other text boxes whose name match any of
the mentioned patterns. On each of the selected inputs, we
perform the informativeness tests for all fives types as well
as the informativeness test for a generic text box (using the
seed keywords picked from the form page).

Table 6 shows our results. The type recognized for an
input is the one that has the highest distinctness fraction.

However, none of the types are deemed recognized if the best
distinctness fraction is lesser than 0.3. The row not recog-
nized indicates that the text boxes that were not recognized
with any of the types.

The table shows that when we exclude not recognized, we
find that the vast majority of type recognitions are correct.
We make the following observations. First, some *price*

inputs get recognized by zip-us. This is not surprising, since
zip code values being integers are valid entries for price. Sec-
ond, some *zip* inputs get recognized by city-us and some
*city* inputs get recognized by zip-us. On closer inspec-
tion, these inputs turn out to be ones that accept either city
names or zip codes for location information. Third, a num-
ber of * inputs get recognized by city-us. This turns out
to be the case because these inputs are generic search boxes
and city names turn out are after all English words that
seem work well for those sites. Fourth, *date* inputs are
particularly hard to recognize, since there are multiple pos-
sible date formats, and since we used only one date format
(mm/dd/yy) we do not recognize as many inputs. Experi-
menting with multiple candidate formats is likely to improve
performance. Lastly, we found that the informativeness test
can be used to identify input names associated with specific
types, e.g., the 3 * inputs recognized by zip-us have the
name postalcode.

Our results indicate that text box types can be recognized
with high precision. We also found that, of all the English
forms in our web index that are believed to be hosted in the
US, as many as 6.7% have inputs that match the patterns
we mention. This leads us to believe that a degree of type-
specific modeling can play an important role in expanding
Deep-Web coverage. Recent work on understanding forms,
e.g., [8, 19, 17], can potentially be leveraged to identify can-
didate inputs for domain specific types that can then be
verified using the informativeness test.

6. RELATED WORK
As noted earlier, in specific domains we can use data in-

tegration techniques to create vertical search engines. We
implement such an engine by constructing semantic map-
pings from a mediated form to collections of forms with a
specific domain. Structured queries are routed from the me-
diated form to the relevant sources forms. Recent work has
focused on easing the process of building and maintaining
vertical search engines by automatically identifying similar
form inputs and selecting the best mediated form, e.g., [8,
19, 17]. The difficulty in pre-defining all possible domains
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for forms on the Internet makes it hard to create mappings
as well as routing queries, thereby making it infeasible for
web search. However, in cases where the domains involve
complex modeling of multiple inter-related attributes, e.g.,
airline reservations, or when forms use the post methods
(see Section 2), virtual integration remains an attractive and
also only possible solution.

Research on text databases has focused on two problems:
(1) computing keyword distributions that summarize the
database contents to facilitate the selection the correct database
for any user query, and (2) extracting the text documents
that are in the database using the restricted keyword in-
terface. In order to create keyword summaries, a probing
approach was proposed in [4] where, starting from an initial
set of keywords, more are extracted by repeatedly querying
the text database with a known set of keywords. In [7], the
number of documents retrieved from a text databases for
well chosen probes were used to classify and organize text
databases into a topic hierarchy, while in [10] keyword sum-
maries for text databases are from the documents retrieved
from well chosen probes.

Our iterative probing and keyword selection approach is
similar in spirit to those proposed in [1] and [13]. As al-
ready mentioned in Section 5.1, these works have the goal
of achieving coverage on specifically chosen sites and hence
employ site-specific techniques to varying degrees. We have
shown that the iterative probing approach can in fact be
used on a large scale with absolutely no site-specific pro-
cessing to select keywords for generic text inputs.

Multi-input forms are considered in [18] and [14]. How-
ever, in [18], ultimately only single-attribute value queries
are chosen, albeit the attributes chosen in different queries
can be different. Here again, the authors assume that they
can extract records and their different attributes from the
result pages and thus maintain reasonable models of cover-
age. In [14], to evaluate the each input, the authors use a
simple measure of the fraction of non-error pages. Further,
they assume the multiple-inputs to be independent and try
to select specific URLs from the Cartesian product of in-
puts. In essence, they assume the Cartesian product to be
informative and focus on selecting a sample from it.

In [3], the authors propose a specific approach for forms
with zip code inputs and use a coverage metric that relies
on prior knowledge of zip code distributions. We have shown
that our informativeness measure can be re-used to identify
the types of zip codes as well as other inputs.

In [17], the authors use occurrences of input keywords on
result pages to map text boxes to concepts within a domain.
However, their focus is disambiguating inputs when the do-
main of the form is already known. Our informativeness test
is very different and we target cross-domain types.

7. CONCLUSION
We described the technical innovations underlying the

first large-scale Deep-Web surfacing system. The results or
our surfacing are currently enjoyed by millions of users per
day world-wide, and cover content in over 700 domains, over
50 languages, and from several million forms. The impact
on our search traffic is a significant validation of the value
of Deep-Web content.

Our work illustrates three principles that can be leveraged
in further investigations. First, the test of informativeness
for a form input can be used as a basic building block for

exploring techniques for indexing the Deep Web. Second, we
believe efforts should be made to crawl well chosen subsets
of Deep-Web sites in order to maximize traffic to these sites,
reduce the burden on the crawler, and alleviate possible con-
cerns of sites about being completely crawled. Third, while
devising domain-specific methods for crawling is unlikely to
scale on the Web, developing heuristics for recognizing cer-
tain common data types of inputs is a fruitful endeavor. We
believe that building on these three principles it is possible
to offer even more Deep-Web content to users.

Two more specific directions for future work are to handle
forms powered by Javascript and to consider more carefully
dependencies between values in different inputs of a form.
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