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Abstract

A major challenge in ecology is forecasting the effects of species’ extinctions, a pressing problem given current human
impacts on the planet. Consequences of species losses such as secondary extinctions are difficult to forecast because
species are not isolated, but interact instead in a complex network of ecological relationships. Because of their mutual
dependence, the loss of a single species can cascade in multiple coextinctions. Here we show that an algorithm adapted
from the one Google uses to rank web-pages can order species according to their importance for coextinctions, providing
the sequence of losses that results in the fastest collapse of the network. Moreover, we use the algorithm to bridge the gap
between qualitative (who eats whom) and quantitative (at what rate) descriptions of food webs. We show that our simple
algorithm finds the best possible solution for the problem of assigning importance from the perspective of secondary
extinctions in all analyzed networks. Our approach relies on network structure, but applies regardless of the specific
dynamical model of species’ interactions, because it identifies the subset of coextinctions common to all possible models,
those that will happen with certainty given the complete loss of prey of a given predator. Results show that previous
measures of importance based on the concept of ‘‘hubs’’ or number of connections, as well as centrality measures, do not
identify the most effective extinction sequence. The proposed algorithm provides a basis for further developments in the
analysis of extinction risk in ecosystems.
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Introduction

The robustness of ecosystems to species losses is a central

question in ecology given the current pace of extinctions and the

many species threatened by human impacts [1–3]. The loss of

species in complex ecological networks can cascade into further

extinctions because of the mutual dependence of species. Of all the

possible causes leading to these ‘‘cascading’’ extinctions, the

simplest case to analyze is that of species left with no exploitable

resources [4–8]. These extinctions due to lack of nutrient flows

represent the most predictable subset of secondary losses and also

the best case scenario, since the addition of other effects [9,10],

related to the loss of dynamical regulation, will result in additional

losses. The former scenario is the simplest to analyze because the

extinction of consumers that are left with no resources will happen

with certainty, unless the consumers can switch to a different set of

resources. Because modern data sets are obtained by sampling

extensively a system over time, it is unlikely that potential

resources resulting from switching prey go unregistered. If these

potential interactions have been included in the prey of a given

predator, then the dynamics of extinction for this flow-based case

are completely described by the network structure. This simple

analysis also represents the best case scenario, since other causes of

extinction such as low population abundance can increase the loss

of species in response to the original disturbance, but cannot

prevent flow-based extinctions from happening. From the flow-

based perspective, the effects of a single species loss can be easily

analyzed [7], but those of multiple losses and sequences of

extinctions rapidly become an intractable problem.

Species’ importance in this context has been traditionally

measured using local network properties, such as the number of

species’ connections [4,5]. In particular, species with a large

number of links are considered keystones (or hubs [11]) for the

robustness of ecological networks [5,6,8,12]. A different take on

species’ importance in networks makes use of centrality measures:

species that are central mediate the interaction among those that

are more peripheral and therefore should be considered the most

important species [13–15].

Here we propose a new algorithm for assessing the importance of

species for food web robustness that takes into account the full

topology of the network. When species importance from the

perspective of robustness is correctly measured, the ordered removal

of species according to this ranking should lead to the fastest collapse

of the network. Our approach inspired by PageRankTM, the

algorithm at the heart of GoogleTM [16], uses a recursive definition:

a species is important if important species rely on it for their survival.

Results show that the algorithm outperforms all other measures of

species importance from the perspective of fastest route to collapse.
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Moreover, it performs as well as a genetic algorithm [17,18], an

evolutionary intensive search that can evaluate millions of solutions,

even if the eigenvector implementation is much simpler and faster. A

biological interpretation of species importance follows naturally as the

amount of matter flowing through a given species, for both qualitative

networks constructed from the presence and absence of links, and

quantitative networks for which interaction strengths are explicitly

specified [19–21]. The proposed approach provides the basis for a

more comprehensive treatment of extinction risk in food webs.

Materials and Methods

The World Wide Web is a directed network in which web pages

(nodes) are connected with each other by hyper-links. We can

write a matrix A in which the presence and absence of a link from

the row-page i to the column-page j are represented as entries

aij~1 and 0, respectively. PageRankTM rates pages as important if

they receive links from pages that are in turn also rated as

important. The PageRankTM algorithm solves this recursive

definition using a clever application of linear algebra [16]. Each

page i is assigned an importance, and each link aij (exiting page i
to enter page j) carries an equal fraction of the importance value.

The importance of a page is the sum of the importance assigned to

the incoming connections. The recursive problem can be solved by

building a matrix S in which each element represents the fraction

of importance assigned to a linkand given by sij~aij=
X

j
aij .

When matrix S satisfies two conditions (it is both irreducible and

primitive [16]), then the problem of assigning importance is solved

by computing a fundamental and well-known quantity in linear

algebra, the eigenvector v associated with the dominant eigenvalue

l�~1 of S. If the two conditions are met, the Perron-Frobenius

Theorem guarantees the existence of this dominant eigenvector

(Text S1).

One main problem, besides the numerical challenge of

computing the eigenvectors of a matrix with several billions rows

and columns, is that the World Wide Web is not irreducible [16].

For irreducible matrices, the associated network must be strongly

connected, with any two nodes connected by a directed pathway.

Because he WWW clearly does not meet this condition, the matrix

is modified by applying a ‘‘damping factor’’, d. A new matrix H is

constructed with entries hij~d:sijz(1{d)=N, where N is the

number of nodes in the network. The damping factor effectively

mimics the probability (1{d) that a user browsing the web can

decide to move directly to another (random) page [16]. The

eigenvector is then computed for H.

Here we propose an algorithm to rank the importance of species

for food web robustness that uses a similar principle. Nutrients

move from one species to another in a food web through feeding

links. For their survival, species must be able to receive energy and

matter from primary producers through some pathway in the

network [7,22]. Thus, we define a species as important if it

supports (directly or indirectly) other species that are in turn

important. The problem is similar to that of ranking web pages,

with the difference that now importance moves in the opposite

direction than that of the links (i.e. a web page is important if

important pages point to it; species are important if they point to

important species). Also food webs are neither irreducible nor

primitive, but we can find a biologically sound solution to this

problem. A damping factor would be completely unrealistic since

nutrients cannot randomly ‘‘jump’’ among links in the food web.

We make instead two observations: first, all matter in the food web

must originate from primary producers who receive it from the

external environment and channel it through the food web to all

other species through feeding pathways [21,23]. We therefore

attach to the network a special node (a ‘‘root’’) that points to all the

primary producers [7,22]. Second, every species has an intrinsic

loss of matter which can be represented by adding a link from

every node to the root. This process represents the buildup of

detritus that in turn is partly recycled into the food web [21,23].

With these two modifications any food web becomes irreducible

and primitive (Fig. 1, Text S1) and we can now solve the problem

of assigning importance by computing the eigenvector v associated

with the dominant eigenvalue l�~1. For simplicity, we consider

the normalized eigenvector so that
X

i
vi~1.

Recent research on food web robustness has emphasized the

role of connectivity: species with a high number of connections are

likely to be essential for the survival of other species [4–8]. In-silico

extinction experiments also showed that random removal

sequences rarely cascade in the secondary loss of species, whereas

the removal of highly connected species is likely to generate many

secondary extinctions. Another line of research borrowed

measures of centrality from sociology. Central species mediate

the spread of disturbances through the network. In this sense,

species with high centrality would be considered ‘‘keystone’’ to the

maintenance of connectivity in networks [13–15].

To test our algorithm, we performed in-silico extinction

experiments in which a single species is removed at each step

and the number of secondary extinctions is recorded. We

compared several simple algorithms: a) the removal of the most

connected species at each step (D, where we measured the number

of connections coming out of each node); b) the removal of species

according to closeness centrality (CLOS): nodes are highly central

from this point of view if they have short distance to many nodes in

the network; c) the removal according to betweeness centrality

(BETW ): a node has high betweeness if it lies on the shortest path

between many couples of nodes; d) removal according to

dominators (DOM ): a x node dominates another y if all the

paths from ‘‘root’’ to y contain x - the removal of x will therefore

drive y extinct [7]; finally, e) we removed according to the

eigenvector-based algorithm outlined above (EIG).

All the algorithms are ‘‘greedy’’: at each step, we compute the

‘‘importance’’ of each node according to a particular algorithm,

and we remove the one with the highest importance. The

procedure is repeated until all the species have gone extinct or

have been removed. The algorithms are explained in detail in the

Text S1. For each extinction sequence, we measured the

Author Summary

Predicting the consequences of species’ extinction is a
crucial problem in ecology. Species are not isolated, but
connected to each others in tangled networks of
relationships known as food webs. In this work we want
to determine which species are critical as they support
many other species. The fact that species are not
independent, however, makes the problem difficult to
solve. Moreover, the number of possible ‘‘importance’’’
rankings for species is too high to allow a solution by
enumeration. Here we take a ‘‘reverse engineering’’
approach: we study how we can make biodiversity
collapse in the most efficient way in order to investigate
which species cause the most damage if removed. We
show that adapting the algorithm Google uses for ranking
web pages always solves this seemingly intractable
problem, finding the most efficient route to collapse. The
algorithm works in this sense better than all the others
previously proposed and lays the foundation for a
complete analysis of extinction risk in ecosystems.

Googling Food Webs
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‘‘extinction area’’, a quantity that equals 1 when all species go

extinct after the first removal and tends to 1/2 when no secondary

extinction is observed (Fig. 2). In this way, we can assess the

performance of each algorithm with a single number. If important

species are removed early on, then the area will be larger.

The algorithms could yield ties - nodes with the same

importance. Whenever we encountered ties, we considered all

the possible sequences of extintions that may result exploring all

the ties. Therefore, algorithms with low ranking power (i.e.

yielding many ties) could produce very many extinction sequences.

We followed all extinction sequences generated by ties whenever

they were less than half a million. If there were more possible

solutions, we analyzed the first half million.

We applied all the algorithms to 12 published food webs

(Table 1). For each algorithm and network, we tracked the total

number of solutions produced by the algorithm, the minimum,

maximum and mean ‘‘extinction area’’ and the number of

solutions yielding the maximum area (Text S1).

We then evaluated the value of the maximal extinction area.

Because the number of possible removal sequences is N! where N
is the number of species in the network, the enumeration of all

possible cases is clearly unfeasible. We therefore programmed a

Genetic Algorithm [17] (GA) that seeks to find the best possible

sequence using an evolutionary search. This type of algorithm has

been shown to be effective for similar problems in food web theory

[18], even when computationally expensive and when its

performance declines with food web size. Here, the GA search

performs at least as well as the best among the other algorithms, as

expected for an effective search (Fig. 3).

Results

In all cases, the best solution for the degree-based algorithm (D)

and the closeness centrality (CLOS) did not match the genetic

algorithm (GA): these measures do not correctly identify the fastest

route to collapse (Fig. 3). Betweeness centrality yields an area as large

as that of the GA in only 1 case (benguela). The dominators-based

procedure finds the best solution in 2/3 of the cases. The eigenvector-

based algorithm finds the best solution in 11 cases out of 12. To

improve the EIG algorithm, we build upon a previous approach of

ours [22], based on the observation that not all the links in a food web

contribute to robustness. The idea that more complex networks

would contain a multiplicity of pathways that would in turn render

the networks more robust was put forward by MacArthur more than

fifty years ago [24]. We recently showed that, while this is generally

true, some links do not contribute to robustness, while others dampen

the effects of species removal and increase robustness (Fig. 1) [22].

Thus links can be classified as ‘‘redundant’’ or ‘‘functional’’ from the

perspective of their effects on secondary extinctions. From this

classification, one can obtain a simplified food web by removing all

Figure 1. Modification of food webs from ecological considerations to satisfy the two constraints required for application of the EIG
algorithm. Left) A special node is added to the food web by connecting this ‘‘root’’ to the primary producers. Every species in turn connects to the
root to represent the buildup of detritus (dashed line). Right) The analysis can be improved by removing the ‘‘redundant’’ connections that do not
contribute to robustness (dashed, in red).
doi:10.1371/journal.pcbi.1000494.g001

Figure 2. The extinction area is the area described by the area

below the curves. The area can take values from 1
2

(no secondary

extinctions in response to the removal of species) to 1 (all species go

extinct after the first removal). The x axis represents the fraction of

species removed in the numerical experiment, while the y axis is the
fraction of species that are extinct as the result of these removals. The
example uses the St. Mark’s food web [29] and the D (red) and EIG
(blue) algorithm.
doi:10.1371/journal.pcbi.1000494.g002

Googling Food Webs
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redundant connections, that has exactly the same robustness

properties than the original network in terms of the secondary

extinctions. For the algorithm EIG2, then, we repeated the removal

sequence experiment but we computed v for the simplified food web

obtained by first removing redundant connections. The results

indicate that the algorithm is capable of finding the best solution

provided by the GA in all cases (Fig. 3, Text S1).

Discussion

We have developed two algorithms to rank species in food webs

according to their role in extinction cascades. We considered a flow-

based perspective in which species go extinct if they lack a

connection through some pathways to primary producers. Although

it is evident that many other types of extinctions can increase total

species loss, the subset considered here provides a baseline and

corresponds to the best case scenario in which the minimum impact

to the network is taken into account. Species left with no resources

will go extinct, unless they can switch their choice of prey sufficiently

fast. It is known that species can exhibit this type of adaptive

behavior in response to the relative abundance of prey, with

consequences for the stability of predator-prey systems [25].

Because the food webs we have analyzed are sampled in the field

over time and space, it is most likely that the links included in the

networks already reflect prey switching. An important source of

additional secondary extinctions will be related to the population

dynamics of species. The complete consideration of dynamics with a

system of nonlinear differential equations that simulates the

outcome of species losses, will only increase the number of species

predicted to go extinct by the simplest scenario. The analysis of

removal effects remains very challenging if not prohibitive for large

ecological networks (but see [9,10,26]), requiring information most

often unavailable on the functional form of a large number of

interactions and their associated parameters, the exploration of

different assumptions and a huge parameter space. The simple and

elegant solution for the flow-based case provides a baseline from

which additional impacts can be considered.

The results obtained here with a simple algorithm emphasize

that the position of a species in the food web, rather than its sheer

number of connections, is the main determinant of its impact on

extinction cascades. This contrasts with the emphasis given so far

to the number of connections and to the concept of ‘‘hubs’’ in

networks. We have shown that the performance of the D
algorithm, which considers only the neighbors of a given species,

is considerably worse than that of the eigenvector based algorithms

at finding the fastest route to collapse. The latter algorithms solve

the problem of importance by considering the full topology of the

network and the particular position that each species occupies. We

further showed that an algorithm that first removes ‘‘redundant’’

connections provides a valuable improvement, because it relies on

the functional role of connections in maintaining the flow of

nutrients through the food web. Interestingly, a parallel problem

has been analyzed in computer science (Text S1).

Srinivasan et al. [27] have shown that many realistic removal

sequences are not likely to cascade in massive species’ losses, with

the loss of threatened species not necessarily resulting in further

extinctions. It is therefore difficult to discriminate importance

among species whose removal has little direct effect on network

structure. The eigenvector approach provides a simple and

effective way of comparing species importance even when their

removal does not result in extinction cascades. This should help

assessing the relative importance of threatened species for network

robustness and from the perspective of network structure. Coll et al.

analyzed the effect of actual human-induced extinction in the

Mediterranean sea and found that removing commercially

valuable species had typically a higher impact than random

removals, but lower than maximum degree driven removals [28].

The dominant eigenvector has also a simple biological interpre-

tation. To show this, we assume for the moment that we can

fully describe the interacting community by means of differential

equations representing the dynamics of species’ abundance,

dXi=dt~f (X1,X2, . . . ,XS). We further consider that the system is

at a feasible equilibrium point (dXi=dt~0 for all species, Xiw0). For

this case, we can measure the flow of biomass entering and exiting

each species (for example, in kilograms of biomass per year per

hectare) and the amount entering and exiting each node must be

equal given the equilibrium condition [19–21]. These quantities are

proportional to the eigenvector used here: specifically, v provides an

estimate of the flow through each species (Text S1, Fig. S1). In the

absence of available information on diet preferences, v measures the

flow that each species would receive if each of its prey provided equal

amounts of nutrients. When quantitative information on these inputs

is available, v and the flow-based description become exactly

equivalent (Text S1, Fig. S2).

Table 1. Extinction Area.

Food Web Num. Species Max. D Max. CLOS Max. BETW Max. DOM Max. EIG1 Max. EIG2 GA Reference

benguela 29 0.7943 0.7539 0.9025 0.9798 0.9798 0.9798 0.9798 [31]

bridge 25 0.6160 0.7888 0.8384 0.5904 0.8384 0.8384 0.8384 [32]

chesapeake 31 0.8949 0.8273 0.8241 0.8720 0.9251 0.9251 0.9251 [33]

coachella 29 0.8288 0.7979 0.8811 0.9394 0.9394 0.9394 0.9394 [34]

grass 61 0.8995 0.8866 0.8804 0.9481 0.9481 0.9481 0.9481 [35]

reef 50 0.7632 0.7180 0.7700 0.9640 0.9640 0.9640 0.9640 [36]

shelf 79 0.6380 0.6561 0.8103 0.9885 0.9885 0.9885 0.9885 [37]

skipwith 25 0.6560 0.6448 0.6448 1.0000 1.0000 1.0000 1.0000 [30]

stmarks 48 0.8550 0.6263 0.6680 0.9180 0.9197 0.9210 0.9210 [29]

stmartin 42 0.8067 0.8050 0.8571 0.9036 0.9178 0.9178 0.9178 [38]

ythan91 83 0.9505 0.9205 0.9554 0.9772 0.9772 0.9772 0.9772 [39]

ythan96 124 0.9349 0.9448 0.9685 0.9781 0.9807 0.9807 0.9807 [40]

For each food web, we report the number of nodes, and the maximum ‘‘extinction area’’ (Fig. 2) obtained using the algorithms presented in the text (Fig. 3).
doi:10.1371/journal.pcbi.1000494.t001

Googling Food Webs
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The proposed algorithm further provides a measure of

eigenvector centrality in directed, rooted networks. Other centrality

measures have been proposed to evaluate species importance [13–

15], but they typically consider undirected networks and have not

been adapted to food webs. This is reflected in the poor

performance achieved by the centrality algorithms. Here we have

shown that consideration of ecological knowledge on food web

processes can improve algorithms that have been developed in other

branches of science. It should be possible to adapt the methods

presented here to other types of biological networks, especially

metabolic ones. For food webs, the next challenge is to add other

dynamical effects to this framework, to obtain a more complete

description of extinction risk in complex ecological networks.

Supporting Information

Text S1 Supporting Information

Found at: doi:10.1371/journal.pcbi.1000494.s001 (0.03 MB TEX)

Figure S1 The Lovinkhoeve Experimental Farm food web

modified as described in the text. The flows are expressed in kg of

Figure 3. Extinction areas for 12 published food webs (Table 1) according to the 7 algorithms presented in the text. The area is 1 (as in
the ‘‘skipwith’’ [30] food webs) only when there is a single primary producer. Because each algorithm can give raise to several solutions, we report the
minimum (red), mean (blue) and maximum (black) registered extinction area. We indicate with an asterisk ‘‘*’’ the algorithms that are able to match
the performance of the genetic algorithm (GA).
doi:10.1371/journal.pcbi.1000494.g003

Googling Food Webs
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biomass per year per hectare. Red links represent biomass losses

experienced by the species.

Found at: doi:10.1371/journal.pcbi.1000494.s002 (1.50 MB EPS)

Figure S2 Relationship between the size of flows in the food web

(Fig. S1) and the values of the eigenvalue vi. The y axis is the sum

of all flows entering (or exiting) a species. The x axis is the

corresponding value in the eigenvector v. The logarithms of both

values are shown in the graph to better discriminate the points.

Found at: doi:10.1371/journal.pcbi.1000494.s003 (0.50 MB EPS)
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