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Goosegrass Detection in 
Strawberry and Tomato Using a 
Convolutional Neural Network
Shaun M. Sharpe  1, Arnold W. Schumann2 & Nathan S. Boyd1 ✉

Goosegrass is a problematic weed species in Florida vegetable plasticulture production. To reduce 

costs associated with goosegrass control, a post-emergence precision applicator is under development 

for use atop the planting beds. To facilitate in situ goosegrass detection and spraying, tiny- You Only 

Look Once 3 (YOLOv3-tiny) was evaluated as a potential detector. Two annotation techniques were 
evaluated: (1) annotation of the entire plant (EP) and (2) annotation of partial sections of the leaf blade 
(LB). For goosegrass detection in strawberry, the F-score was 0.75 and 0.85 for the EP and LB derived 
networks, respectively. For goosegrass detection in tomato, the F-score was 0.56 and 0.65 for the EP 
and LB derived networks, respectively. The LB derived networks increased recall at the cost of precision, 

compared to the EP derived networks. The LB annotation method demonstrated superior results within 

the context of production and precision spraying, ensuring more targets were sprayed with some 

over-spraying on false targets. The developed network provides online, real-time, and in situ detection 

capability for weed management field applications such as precision spraying and autonomous scouts.

Goosegrass [Eleusine indica (L.) Gaertn.] is an invasive and problematic weed with nearly worldwide distribution 
including North and South America, Africa, Europe, Australia, and Southeast Asia1. Goosegrass infests many 
agroecosystems including turfgrass2,3, rice4, and fruiting vegetable crops5. In Florida, goosegrass is a problem-
atic weed in many major horticultural crops including strawberry [(Fragaria × ananassa (Weston) Duchesne 
ex Rozier (pro sp.) [chiloenis × virginiana]], bell pepper (Capsicum annuum L.), tomato (Solanum lycopersi-
cum L.), and cucurbit (Cucurbitaceae) production. While goosegrass interference has not been extensively stud-
ied in horticultural crops, it has shown to interfere with cotton (Gossypium hirsutum L.) yield in the �eld6 and 
greenhouse-grown corn (Zea mays L.)7.

In Florida, many broadleaf horticultural crops are produced using a plasticulture system. �is system included 
raised beds covered in plastic mulch with drip irrigation installed to provide nutrients and moisture. Weeds 
within this system primarily occur within the planting holes or between the rows, except for purple nutsedge 
(Cyperus rotundus L.) and yellow nutsedge (Cyperus esculentus L.) which penetrate and emerge through the plas-
tic mulch.

Within vegetable horticulture, the prevalent post-emergence weed management options for goosegrass con-
trol include hand weeding and herbicides. For pre-plant burn down and within row middles, broad-spectrum 
herbicides such as paraquat and glyphosate are widely employed. Consequently, both goosegrass and American 
black nightshade (Solanum americanum Mill.) have developed paraquat resistance8,9 and ragweed parthenium 
(Parthenium hysterophorous L.) developed glyphosate resistance10. For weed control atop the bed during the crop-
ping cycle, WSSA Group 1 herbicides are the most common post-emergence chemical control option. Group 1 
herbicides are becoming increasingly utilized within herbicide mixtures for grass control in row middles depend-
ing on weed pressures and resistance issues faced.

Implementing precision technology into spraying equipment is a viable option to reduce production costs 
associated with weed management. Goosegrass and other grass species are excellent targets for precision tech-
nology to apply Group 1 herbicides to a variety of broadleaf crops. A prototype precision sprayer was developed 
to simultaneously detect and spray weeds in plasticulture production within Florida. Brie�y, the system was a 
modi�ed plot sprayer with a digital camera sensor, a controller linked with arti�cial intelligence for detection, and 
nozzles controlled by solenoids. �e desirable detector for this system is a convolutional neural network.
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Machine vision-based weed detection is typically conducted using either multispectral/hyperspectral or RGB 
imagery, the latter being more desirable for economic costs and practical adoption for producers11. Recent tech-
nological advances in graphical processing units permit training and employing deep learning convolutional neu-
ral networks as detectors12. Deep convolutional neural network frameworks have been reviewed elsewhere12,13. 
Brie�y, neural networks take inspiration from the visual cortex, containing layers for feature extraction, convolu-
tion, pooling, activation functions, and class labeling14. �e system relies on pattern recognition via �lters within 
the convolutional layers for detection and classi�cation15. Convolutional neural networks for weed detection 
have been employed in several crops including turfgrass16,17, wheat18, and strawberry19. For horticultural plas-
ticulture row middles, a convolutional neural network has been developed to detect grasses among broadleaves 
and sedges20. Within broader agriculture, deep neural network applications include strawberry yield prediction21, 
sweet pepper (Capsicum annum L.), and cantaloupe (Cucumis melo var. cantalupo Ser.) fruit detection22, and 
detection of tomato pests and diseases23.

With the widespread registration of Group 1 herbicides in broadleaf crops and the widespread distribution of 
goosegrass, the successful development of a detection network would have far-reaching implications for conven-
tional horticulture. Development of a multi-crop, within-crop grass detection network has challenges including 
training image availability, ease of image collection due to the patchy nature of weeds, and the diverse background 
of several crops as the negative space. Additionally, the goosegrass within-crop growth habit, as well as the general 
habit of grassy weeds causes issues for bounding box-based network training. Goosegrass has a tu�ed plant habit 
with stems that are erect to spreading and up to 8.5 m tall, and leaves which are 5 cm to 35 cm long and 3 mm 
to 5 mm wide24. For strawberry production, goosegrass leaves have been observed to either penetrate through 
the crop canopy, growing prostrate along with the plastic, or grow in planting holes where strawberry plants 
have died. For tomato production, goosegrass plants typically grow at the base of the tomato plants, which are 
vertically staked for fresh-market production. �e study objectives were to (1) develop a network with utilities 
in multiple broadleaf crops, starting with strawberry and tomato plasticulture, (2) evaluate the use of small label 
annotation boxes along the leaf-blade length for goosegrass detection compared to boxes encompassing the entire 
plant habit, and (3) evaluate a piecemeal oversampling technique.

Results
For strawberry production, the entire plant annotation method (EP) (precision = 0.93; recall = 0.88; F-score = 0.90; 
accuracy = 0.82) resulted in an overall increased YOLOv3-tiny training �t compared to the leaf-blade annotation 
method (LB) (precision = 0.39; recall = 0.55; F-score = 0.46; accuracy = 0.30) (Table 1). Convergence time, in iter-
ations, declined rapidly for EP compared to LB (data not shown). �is was expected since EP resulted in fewer 
bounding boxes and provided larger bounding boxes with a static location. Labeling of goosegrass leaf blades with 
narrow squares resulted in “ground truth �uidity” with resultant increased training time and reduced �t.

While the EP network appeared more successful in training, the network provided inadequate testing 
results. For goosegrass detection within strawberries, the LB (precision = 0.87; recall = 0.84; F-score = 0.85; accu-
racy = 0.74) outperformed the EP (precision = 0.93; recall = 0.62; F-score = 0.75; accuracy = 0.60) in terms of over-
all F-score and accuracy (Table 2). �e EP method demonstrated high precision but tended to miss targets (Fig. 1). 
�ere was no impact of the annotation method on iteration time (Table 3). Compared to the EP, the LB network 
increased recall substantially at the expense of precision but resulted in the highest F-score.

For goosegrass detection in tomato, the EP (precision = 0.77; recall = 0.43; F-score = 0.56; accuracy = 0.38) 
had higher precision but struggled at detecting plants (Table 2, Fig. 2). Comparatively, the LB (precision = 0.59; 
recall = 0.74; F-score = 0.65; accuracy = 0.49) had reduced precision but had an increased recall. �e LB derived 
network resulted in the highest overall F-score and accuracy for goosegrass detection in tomato.

Discussion
Detection in strawberry production demonstrated suitable identi�cation of goosegrass. For images taken within 
tomato production, success was limited (Table 2). �is was most likely a consequence of available goosegrass 
training images within strawberry production but not for tomatoes. While attempts were made to match image 
acquisition angles and growth stages for both goosegrass and tomato growing in isolation, not having additional 
training images of the desired target and background together was likely detrimental. �is could be due to the 
degree of actual overlap between the crop and weed in competition, altered growth habit by the weed in compe-
tition, or natural variability in the tomato growth habit inducing a stoichiometric e�ect that requires additional 
training images to overcome.

Measure

Network accuracy

Leaf-blade 
annotation

Entire plant 
annotation

True positives 1495 77

False positives 2367 6

False negatives 1202 11

average IoU (%) 25.10 76.12

Table 1. Training accuracy for network assessment of two convolutional neural networks trained to detect 
goosegrass developed in Balm, FL, USA in 2018a. a�reshold for detection was 0.25 or 25% intersection of union 
between the predicted and ground truth bounding box.
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For detection in both tomato and strawberry, the LB outperformed the EP in terms of recall, F-score, and accu-
racy. �e EP networks had consistently higher precision but lower recall. �is was likely a consequence of selecting 
the entire plant habit, increasing the variability between targets, and reducing the number of potential targets for 
training. Such precision and recall neural network trade-o�s have been noted elsewhere, including polyp detec-
tion25. For precision spraying, the EP network would miss many plants but would typically spray goosegrass only. 
Comparatively, the LB network would spray goosegrass more regularly with some degree of over-spraying upon 
undesirable targets. For weed detection in occluded winter wheat using a convolutional neural network based on 
DetectNet achieved 87% precision and 46% recall18. Comparatively, using an object detection convolutional neu-
ral network based on You Only Look Once to detect weeds in winter wheat images resulted in 76% precision and 
60% recall26. Detection of Carolina geranium in strawberry using DetectNet and leaf-level annotation resulted 

Measure

Network accuracy

Strawberry Tomato

EPb LBc EP LB

True positives 43 58 10 17

False positives 3 9 3 12

False negatives 26 11 13 6

Table 2. Pooled relevant binary classi�cation categories and neural network accuracy measures for goosegrass 
(Eleusine indica) detection in tomato (Solanum lycopersicum) and strawberry (Fragaria × ananassa) using two 
annotation methods on digital photography acquired in Central Florida, USA, in 2018 and 2019a. a�e neural 
network was the tiny version of the state-of-the-art object detection convolutional neural network You Only 
Look Once Version 3 (Redmon and Farhadi 2018). bEP = Entire plant annotation method. �is refers to using a 
single, large square box to identify goosegrass within digital images. cLB = Leaf-blade annotation method. �is 
refers to using multiple, small square boxes placed along leaf blades and in�orescence to identify goosegrass 
within digital images.

Figure 1. Examples of YOLOv3-tiny network detection of goosegrass (Eleusine indica) growing in competition 
with strawberry (Fragaria × ananassa) using either entire plant (le�) or leaf blade (right) annotation techniques 
in Central FL, USA in 2018.

https://doi.org/10.1038/s41598-020-66505-9


4SCIENTIFIC REPORTS |         (2020) 10:9548  | https://doi.org/10.1038/s41598-020-66505-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

in 99% precision and 78% recall19. Current results for goosegrass detection in strawberry obtained a relatively 
similar overall accuracy compared to similar studies using convolutional neural networks alone, but detection in 
tomatoes may require further sampling.

Results indicate the potential for a uni�ed network for use across multiple crops. Additional options for 
precision spraying multi-crop networks include Group 2 herbicides in vegetable plasticulture, group 4 within 
cereals, and groups 9 and 10 within associated genetically modi�ed crops. While the piecewise image method-
ology results for tomatoes were limited, network desensitization for additional crops does provide some bene�t. 
Existing networks for goosegrass can be expanded to additional crops and the number of necessary training 
images should be reduced.

Several kinds of grass infest vegetable �elds. Since the network did not classify tropical signalgrass [Urochloa 
distachya (L.) T.Q. Nguyen] as goosegrass (data not shown), additional classes are likely necessary or grouping 

Annotation 
style Crop

Mean iteration 
time (s image−1) Sample size Standard error Con�dence intervalb

LBb Strawberry 0.008067 62 0.000263 0.007542, 0.008593

EPc Strawberry 0.008125 62 0.000250 0.007625, 0.008624

LB Tomato 0.011399 47 0.003664 0.004027, 0.018771

EP Tomato 0.007601 47 0.000328 0.006941, 0.008261

Table 3. Impact of annotation style on testing iteration time for goosegrass (Eleusine indica) detection in 
strawberry (Fragaria × ananassa) and tomato (Solanum lycopersicum) production using a convolutional neural 
network developed at Balm, FL, USA in 2018a. a�e neural network was the tiny version of the state-of-the-art 
object detection convolutional neural network You Only Look Once Version 3 (Redmon and Farhadi 2018). bLB 
= Leaf-blade annotation method. �is refers to using multiple, small square boxes placed along leaf blades and 
in�orescence to identify goosegrass within digital images. cEntire plant refers to the annotation method where a 
single, large square box to was used to identify goosegrass within digital images.

Figure 2. Examples of YOLOv3-tiny network detection of goosegrass (Eleusine indica) growing in competition 
with tomatoes (Solanum lycopersicum) using either entire plant (le�) or leaf blade (right) annotation techniques 
in Balm, FL, USA in 2019.
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multiple grass species into a single category20. A similar network (YOLOv3) was trained to detect broadleaf 
species that were not previously part of the training dataset20, so this option may be feasible but requires fur-
ther study. If such is desirable, care should be taken to avoid class imbalances, which negatively impact network 
performance27,28.

Network performance enhancement within limited datasets may be improved using convolutional neural net-
works with traditional machine learning systems (support vector machines), as demonstrated with black night-
shade (Solanum lycopersicum L.) and velvetleaf (Abutilon theophrasti Medik) in tomato and cotton (Gossypium 
hirsutum L.)29. �e integration of segmentation techniques with neural networks has previously been successful 
and may help improve precision and recall30,31. For example, a weed detection system using blob segmentation and 
a convolutional neural network achieved 89% weed detection accuracy32. For some weed management scenarios, 
a resource such as CropDeep and DeepWeeds could be used for pre-training or supplementing datasets33,34. Using 
k-means pre-training may improve detection, which improved detection of an image classi�cation convolutional 
neural network resulted from 2%, up to 93% accuracy35.

�e developed networks demonstrated detection across two broadleaf vegetable crops within vegetable plasti-
culture production. �e LB annotation technique provided superior results for goosegrass detection in strawberry 
production (F-score = 0.85) compared to the EP annotation technique (F-score = 0.75). Supplementing the model 
with a majority of isolated tomato and goosegrass images produced moderate results. �e LB annotation tech-
nique provided better detection (F-score = 0.65) compared to the EP technique (F-score = 0.56). Results demon-
strate that the use of the piecemeal technique alone does not provide adequate detection for �eld-level evaluation 
but may represent a suitable oversampling strategy to supplement datasets. �e developed network provides an 
online, real-time, and in situ detection capability for weed management �eld applications such as precision spray-
ing and autonomous scouts.

Methods
Images were acquired with either a Sony (DSC-HX1, Sony Cyber-shot Digital Still Camera, Sony, Minato, 
Tonky, Japan) or Nikon digital camera (D3400 with AF-P DX NIKKOR 18-55 mm f3.5-5.6 G VR lenses, Nikon 
Inc., Melville NY). Training images were taken at the Gulf Coast Research and Education Center (GCREC) in 
Balm, FL (27.76°N, 82.22°W) and the Strawberry Growers Association (SGA) �eld site in Dover, FL (28.02°N, 
82.23°W). Images were acquired from the perspective of the modi�ed plot sprayer camera (T-30G-6, Bellspray, 
Inc., Opelousas, LA).

Training data (Training 1, Table 4) were acquired during the strawberry growing season at GCREC and SGA. 
Images were taken in tandem with a previous study19. Strawberry plants were transplanted on October 10, 2017, 
and October 16, 2017, at the GCREC and SGA, respectively. Several datasets were acquired due to limited gooseg-
rass emergence at GCREC, so a piecemeal solution was undertaken. Training images of tomatoes and goosegrass 
were acquired separately within a plasticulture setting. A training dataset was developed for goosegrass compet-
ing with tomatoes (Training 2, Table 4). Goosegrass was grown in isolation (Training 3, Table 4), with seedlings 
transplanted on March 12, 2018, and May 15, 2018. Images of only tomato plants were collected for network 
desensitization (Training 4, Table 4). A�er preliminary testing, additional images were collected for network 
desensitization for purple nutsedge (Desensitization, Table 4), which was at the 3-leaf stage, before blooming.

Five datasets were acquired for network testing to meet each crop objective and provide su�cient samples. 
Images were collected at two commercial strawberry farms (27.93°N, 82.10°W, and 27.98°N, 82.10°W) (Testing 
1, Table 4) and supplemented with images from GCREC (Testing 3, Table 4). Images were collected approxi-
mately 134 and 136 days a�er strawberry transplanting from commercial farms and 60 days a�er transplanting 
at GCREC. For testing images in tomato production (Testing 3, Table 4), goosegrass seedlings (approximately 

Dataset Type Species Image No. Date Location

Training 1 Strawberry, goosegrass 954
11 Dec 2017 
to 23 Feb 
2018

GCREC, SGA

Training 2 Tomato, goosegrass 28
1 May 2018 
to 8 May 
2018

GCREC

Training 3 Goosegrass 516
18 Mar 2018 
to 29 May 
2018

GCREC

Training 4 Tomato 94 4 Oct 2018 GCREC

Desensitization Purple nutsedge 138 11 Mar 2019 GCREC

Testing 1 Strawberry, goosegrass 43 23 Feb 2018 Commercial farms

Testing 2 Strawberry, goosegrass 7 17 Dec 2018 GCREC

Testing 3 Tomato, goosegrass 60 10 Apr 2019 GCREC

Testing 4 Tomato, goosegrass 27 4 Oct 2018 GCREC

Testing 5 Goosegrass 12 14 Mar 2019 GCREC

Table 4. Training, desensitization, and testing dataset speci�cations for developing a convolutional neural 
network to detect goosegrass (Eleusine indica) in Florida strawberry (Fragaria × ananassa) and tomato 
(Solanum lycopersicum) production. Abbreviations: GCREC = Gulf Coast Research and Education Center at 
Balm, FL; SGA = Strawberry Growers Association �eld site in Dover, FL.
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5-leaf stage) were transplanted into planting holes containing tomato plants transplanted on March 4, 2019. �e 
tomato data was supplemented with additional tomato images (Testing 4, Table 4) to evaluate the network’s ability 
to discriminate goosegrass from another grass species. A ��h dataset included goosegrass growing in isolation 
(Testing 5, Table 4).

�e image resolution of the Nikon digital camera was 4000 × 3000 pixels. Nikon images were resized to 
1280 × 853 pixels and cropped to 1280 × 720 pixels (720p) using IrfanView (Version 4.50, Irfan Skiijan, Jajce, 
Bosnia). �e Sony digital camera image resolution was 1920 × 1080 pixels and images were resized to 720p. 
Training images were annotated using custom so�ware compiled with Lazarus (https://www.lazarus-ide.org/) 
in two ways. �e EP annotation method used a single bounding box to encompass the entire plant habit. �e LB 
annotation method used smaller bounding boxes along the leaf blade to reduce the overall variability of the target. 
�is approach had been utilized previously to improve detection by focusing annotation to individual Carolina 
geranium (Geranium carolinianum L.) leaves19. Due to the leaf shape and potential goosegrass leaf angles, square 
bounding boxes were not an ideal solution to minimize background noise by annotating entire leaves. Instead, 
multiple small square bounding boxes, approximately the width of the leaves, were used to label goosegrass along 
the length of the leaves. Examples of each method are matched by corresponding bounding box output found in 
Figs. 1 and 2. Bounding box annotation was the preferable technique compared to pixel-wise annotation due to 
increased accuracy and reduced time consideration22.

The convolutional neural network utilized was tiny- You Only Look Once Version 3 (YOLOv3-tiny)36. 
YOLOv3-tiny was selected for the implementation into a developed prototype precision sprayer for in situ spray-
ing of grasses in horticultural crops including strawberry and tomato plasticulture. �e sprayer has a 50 cm dis-
tance between the camera and the solenoid-controlled nozzles. As such, image processing speed was considered a 
priority. �e state-of-the-art object detection neural network for iteration speed and capacity for implementation 
into the controller was selected.

YOLOv3-tiny feature extraction is achieved with the convolutional-based Darknet-1936,37. Darknet-19 
was derived for YOLOv2, using 3 × 3 �lters within its 19 convolutional layers and 1 × 1 �lters within its 5 
max-pooling layers38. Localization is achieved by dividing the image into a grid, predicting multiple bounding 
boxes within each, and using regression to resolve spatially separated predictions39. Bounding box classi�cation 
permits multiple classi�cation categories and multi-labeling of predictions37,39, which is particularly useful for 
mixed weed communities.

YOLOv3-tiny was trained and tested using the Darknet infrastructure40 and pre-trained with the COCO data-
set41. YOLOv3-tiny contained augmentation parameters to reduce the opportunity for overtraining on irrelevant 
features through altering input images. �ese parameters included color alteration (exposure, hue, and satura-
tion), �ipping, cropping, and resizing. Network training continued until either the average loss error stopped 
decreasing or the validation accuracy (recall or precision) stopped increasing. For training, 10% of the available 
images were randomly selected as the validation dataset used during training.

To assess network e�ectiveness, classi�cation output was pooled and categorized by binary classi�cation for 
networks derived from both annotation methods. �ese categories included true positives (tp), false positives (fp), 
and false negatives (fn). A tp was when the network correctly identi�ed the target. An fp was when the network 
falsely predicted the target. An fn was when the network failed to predict the true target. Precision, recall, F-score, 
and accuracy were used to evaluate the network e�ectiveness to predict targets12. Precision measures the e�ective-
ness of the network in properly identifying its target and was calculated as39,40:

=
+

Precision
tp

tp fp (1)

Recall evaluates the e�ectiveness of the network in target detection and was calculated as42,43:

=
+

Recall
tp

tp fn (2)

�e F-score is the precision and recall harmonic mean and gives an overall performance measure with consid-
erations to both fp and fn, and is calculated as42:

− =
∗ ∗

+
F score

Precision Recall

Precision Recall

2

(3)

For comparison purposes, the testing network accuracy was calculated as:

=
+ +

Accuracy
tp

tp fp fn (4)

To validate the network training �t, the “map” command was speci�ed. �is method used an intersection of 
union (IoU) with a threshold of 0.25 to evaluate predicted estimates compared to ground-truth annotation. �is 
measure was included to evaluate the e�ectiveness of the annotation method on overall training. For network 
detection accuracy assessment of testing datasets, a separate approach was taken for precision sprayer consid-
erations. For both annotation methods, should any of the plant falls within the predicted bounding box, it was 
considered a hit (IoU > 0). Additional predicted bounding boxes on the same plant were ignored. �is method 
prioritized the detection of some part of the goosegrass plant and is reliant on the ability of the controller so�ware 
to compensate and increase the area sprayed if necessary.
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