
Vol.:(0123456789)

Optimization and Engineering (2021) 22:2741–2777

https://doi.org/10.1007/s11081-020-09556-1

1 3

RESEARCH ARTICLE

GOPS: efficient RBF surrogate global optimization
algorithm with high dimensions and many parallel
processors including application to multimodal water
quality PDE model calibration

Wei Xia1 · Christine Shoemaker1,2

Received: 13 December 2019 / Revised: 24 August 2020 / Accepted: 24 August 2020 /

Published online: 17 September 2020

© The Author(s) 2020

Abstract

This paper describes a new parallel global surrogate-based algorithm Global Opti-

mization in Parallel with Surrogate (GOPS) for the minimization of continuous

black-box objective functions that might have multiple local minima, are expensive

to compute, and have no derivative information available. The task of picking P

new evaluation points for P processors in each iteration is addressed by sampling

around multiple center points at which the objective function has been previously

evaluated. The GOPS algorithm improves on earlier algorithms by (a) new center

points are selected based on bivariate non-dominated sorting of previously evalu-

ated points with additional constraints to ensure the objective value is below a target

percentile and (b) as iterations increase, the number of centers decreases, and the

number of evaluation points per center increases. These strategies and the hyper-

parameters controlling them significantly improve GOPS’s parallel performance on

high dimensional problems in comparison to other global optimization algorithms,

especially with a larger number of processors. GOPS is tested with up to 128 pro-

cessors in parallel on 14 synthetic black-box optimization benchmarking test prob-

lems (in 10, 21, and 40 dimensions) and one 21-dimensional parameter estimation

problem for an expensive real-world nonlinear lake water quality model with par-

tial differential equations that takes 22 min for each objective function evaluation.

GOPS numerically significantly outperforms (especially on high dimensional prob-

lems and with larger numbers of processors) the earlier algorithms SOP and PSD-

MADS-VNS (and these two algorithms have outperformed other algorithms in prior

publications).

Keywords PDE-constrained optimization · Surrogate models · Parallel computing ·

Water quality models · Global optimization · Multi-modal and black-box objective

Electronic supplementary material The online version of this article (https ://doi.org/10.1007/s1108

1-020-09556 -1) contains supplementary material, which is available to authorized users.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-020-09556-1&domain=pdf
https://doi.org/10.1007/s11081-020-09556-1
https://doi.org/10.1007/s11081-020-09556-1

2742 W. Xia, C. Shoemaker

1 3

1 Introduction

Optimization of numerical simulation models is important because they are

widely used in numerous real-world applications in many fields, including sci-

ence and engineering. One essential category of computer simulation models is

those that are computing solutions to a system of partial differential equations

(PDE) on, for instance, surface water and groundwater problems (Culver and

Shoemaker 1992; Gorelick et al. 1993; Hinkelmann 2006; Pinder and Gray 1977;

Yeh 2015), and aerodynamics problems (Bons et al. 2019; Sóbester and Forrester

2014). The computational time of these models tends to be significant (many

minutes to hours per simulation).

For optimization of simulation models that are expensive, the optimization algo-

rithm needs to be able to find a good solution with relatively few objective function

evaluations. There are many efficient algorithms for linear, convex PDE optimiza-

tion problems (e.g., Culver and Shoemaker 1992), which only have one local solu-

tion. However, when the simulation models contain multiple interacting nonlinear

relationships, the objective function based on simulation results can have many local

minima (Gorelick and Zheng 2015), so a global optimization method is necessary to

find the global optimum. Optimizing multi-modal objectives is much harder because

these non-global methods (e.g., linear, convex, or unimodal nonconvex algorithms)

are not designed to find the best among multiple separated local minima. In addi-

tion, we assume no derivative information is available, and hence gradient-based

methods or methods using an adjoint approach are not applicable.

Our goal is to present an algorithm that is effective for global optimization

of expensive objective functions, including but not limited to objective functions

subject to simulation models with partial differential equations. We propose a

new parallel algorithm Global Optimization in Parallel with Surrogate (GOPS)

that uses a surrogate model of the original expensive function to help guide the

optimization search and reduce the number of evaluations on the expensive objec-

tive function. The surrogate model is cheap-to-compute, built with previously

evaluated points, and is dynamically updated during the optimization process.

The new algorithm enables evaluating multiple simulations simultaneously in one

iteration. These multiple evaluation points are sampled around multiple centers

selected from previously evaluated points. The parallel processing can help fur-

ther to speed up the optimization processes and to reduce the wall-clock time that

the user needs to spend on waiting for results.

GOPS uses some features of the earlier SOP algorithm (Krityakierne et al.

2016) but improves on earlier algorithms by (a) new centers are selected based

on bivariate non-dominated sorting of previously evaluated points with additional

constraints to ensure the objective value is below a target percentile and (b) as

iterations increase, the number of centers decreases and the number of evalua-

tion points per center increases. These features in GOPS are not present in earlier

algorithms, which makes GOPS more robust and faster to converge.

We tested the GOPS algorithm on 14 analytical test functions (with 10, 21, 40

dimensions) and one real-word PDE-constrained parameter estimation problem

2743

1 3

GOPS: efficient RBF surrogate global optimization algorithm…

(with 21 dimensions). The real-world test problem involves a highly nonlinear

multi-modal model (solving partial differential equations) for fate and transport of

many water quality constituents in a lake. This, hence, is an important example of

the use of the GOPS algorithm on a PDE-based objective function. GOPS showed

improved performance over SOP algorithms and other optimization methods.

The structure of this paper is as follows. In Sect. 2, the literature review is given.

Section 3 describes the GOPS algorithm. In Sect. 4, we explain in detail the water

quality model parameter estimation problem. In Sect. 5, we discuss the numerical

results of algorithm performance on test functions and the real-world test prob-

lem. The Online Resource contains an extensive list of supplementary information,

including definitions of symbols and parameters.

2 Literature review

Our focus is on global optimization of expensive, black-box, multi-modal objective

functions for which no derivatives of the objective function available. Optimization

algorithms that do not require derivative information are also referred to as deriva-

tive-free algorithms. A comprehensive literature review of different kinds of deriv-

ative-free algorithms, including both local and global optimization methods, can be

found in Audet and Hare (2017) and Rios and Sahinidis (2013).

The global optimization algorithms can be classified into non-surrogate methods

and surrogate methods based on whether the surrogate model is used to direct the

algorithm search. A popular class of global non-surrogate methods for engineer-

ing problems are heuristic methods (e.g., Genetic Algorithm, Evolutionary Strat-

egies, and Particle Swarm Optimization). These methods are straightforward to

implement, and they can escape from local optima. However, such methods usually

require many thousands of function evaluations (Jakobsson et al. 2010). Hence they

are not suitable for problems that are computationally expensive to evaluate, such as

an objective function that requires the solution of an expensive nonlinear PDE, and

they are not considered in this paper.

There is another set of global non-surrogate methods that are combinations of a

local optimization method and a global heuristic method that has global exploration

features. Audet et al. (2008a) explored the combination of Mesh Adaptive Direct

Search (MADS) with the metaheuristic Variable Neighborhood Search (VNS) algo-

rithm. The MADS algorithm is an extension of the Generalized Pattern Search algo-

rithm (Torczon 1997) and converges to a local minimum under appropriate assump-

tions. VNS is a metaheuristic method proposed by Mladenović and Hansen (1997).

It uses a random perturbation method, which makes it able to move away from a

local optimum solution and has been proven efficient on a broad range of problems.

The study by Audet et al. (2008a) indicates that MADS with VNS allows the algo-

rithm to move away from local solutions. MADS with VNS is available in NOMAD

software (Le Digabel 2011), and it has three parallel versions: p-MADS, COOP-

MADS, and PSD-MADS (Le Digabel et al. 2010). PSD-MADS performs better

than other parallel MADS versions when the decision vector dimension is equal to

or greater than 20 (Le Digabel 2011).

2744 W. Xia, C. Shoemaker

1 3

Global surrogate-based methods are suitable for expensive objective functions.

These methods use an inexpensive surrogate model that approximates the black-box

function to guide the search. Hence surrogate-based optimization models usually

require a fewer number of evaluations on expensive black-box objective function

than required by algorithms without surrogates.

There are two types of popular global surrogate-based optimization methods: (1)

Gaussian Process (GP) based and (2) Radial Basis Functions (RBF) based. There

are also other types of surrogates used in optimization, e.g., polynomial model and

support vector regression. Detailed information of these surrogates could be found

in Díaz-Manríquez et al. (2011), Forrester et al. (2008), and Müller and Shoemaker

(2014). The most well-known GP-based method is EGO, which was introduced by

Jones et al. (1998) and has gained popularity for some types of problems. However,

a disadvantage of GP-based methods is that these methods can become computa-

tionally prohibitive in the non-evaluation phase of optimization and require an enor-

mous amount of memory when the problem is high dimensional (Hensman et al.

2013; Regis 2013). Isaacs (2009) also showed that the time for the Gaussian process

model to fit its surrogate (training time) is much longer than that for an RBF model

of the same dimension.

RBF was first introduced in global optimization by Gutmann (2001), and there

are various RBF-based serial methods proposed (Jakobsson et al. 2010; Regis and

Shoemaker 2005, 2007b, 2009, 2013). RBF-based methods are proven to be effec-

tive for solving real-word computationally expensive problems, e.g., designing the

specifics of trains (Björkman and Holmström 2000), groundwater problem (Chris-

telis et al. 2018; Mugunthan et al. 2005), watershed problem (Regis and Shoemaker

2007b, 2013), methane emission problem (Müller et al. 2015), and aerodynamic

regional airliner wing design (Sóbester et al. 2014). Jakobsson et al. (2010) applied

an RBF-based global optimization method to the combustion engine design prob-

lem, which is a noisy function and computationally expensive with one simulation

taking 42 h. There are also efforts made on using RBF-based methods to solve high

dimensional problems. For example, DYCORS (Regis and Shoemaker 2013) has

been successfully applied to 200-dimensional problems. RBF-based methods were

applied to a 124-dimensional automotive problem with 68 black-box inequality con-

straints (Regis 2011, 2014). Díaz-Manríquez et al. (2011) compared RBF with GP

(also known as kriging), polynomial model and support vector regression in term of

accuracy, robustness, scalability and efficiency and suggested that for high dimen-

sional problems (with d > 15) RBF is the best techniques to be combined with opti-

mization algorithms.

There are also advances in the parallelization of surrogate-based algorithms to

tackle expensive optimization problems with the assistance of parallel computing

(Haftka et al. 2016). Sóbester et al. (2004) proposed a parallel version of the GP-

based optimization method. Given P processors, in each iteration, the best P points

with the maximum expected improvement value (based on the GP surrogate) are

selected as evaluation points for the next iteration. Bischl et al. (2014) applied a

multi-objective infill criterion on a parallel GP-based optimization algorithm

to select multiple evaluation points that considered both diversity and expected

improvement.

2745

1 3

GOPS: efficient RBF surrogate global optimization algorithm…

Regis and Shoemaker (2009), in the parallel Stochastic RBF (SRBF) algorithm,

used a weighted metric to select P points sequentially in each iteration from candi-

date points generated around the best solution found so far. The selection of evaluation

points in each iteration is not only dependent on the candidate point’s estimated func-

tion value (based on surrogate model) but also its minimum distance from the evalu-

ated and selected points in that iteration. The value of the weight between the surrogate

estimation and distance criteria is varied to select as many evaluation points as there are

processors.

Krityakierne et al. (2016) proposed the SOP algorithm for parallel computation

and reported that there are a few studies on parallel surrogate global optimization that

scaled up to many processors. The proposed SOP algorithm showed good speed up

with up to 64 processors per iteration. In previous studies before their SOP study (Kri-

tyakierne et al. 2016), the maximum number of processors in parallel with global sur-

rogate optimization was not larger than 10. Given P processors, SOP selects P eval-

uation points for the next iteration from candidate points generated around P center

points. The P center points are selected from all previously evaluated points, based on

bi-objective optimization on (1) the objective function value and (2) the distance from

all other evaluated points. The utilization of multi-objective techniques is to balance the

trade-off between exploration and exploitation during the search. Their study showed

promising results that their optimization algorithm could be scaled up to use many pro-

cessors effectively.

However, in the SOP study, the maximum dimension of the tested problem is 12.

So, it is not clear whether the SOP algorithm is still efficient on higher dimensional

optimization problems. Many real-world optimization problems involving PDE objec-

tive functions are high dimensional (Björkman and Holmström 2000; Shan and Wang

2010).

The new algorithm GOPS, introduced here, is significantly different from previous

algorithms, including SOP. GOPS is designed to do well when the problem is high

dimensional and/or the number of processors is large. The numerical result presented

latter shows that GOPS has a significantly better numerical performance and can work

with a larger number of parallel processors than other algorithms tested, even when the

dimension of the decision vector is high.

3 GOPS

GOPS is a general purpose global optimization algorithm solving optimization prob-

lem in following form:

where f (�) is the objective function to minimize and is assumed to be multi-modal,

black-box (no derivative information available). � is the decision vector that in d

dimensional. � is the d dimensional solution space usually defined by the upper bound

and lower bound of the values of the parameters, so � = {�� ≤ � ≤ ��} ⊂ ℝ
d.

(1)

min
�

f (�)

� ∈ � ⊂ ℝ
d

2746 W. Xia, C. Shoemaker

1 3

GOPS uses some features from the earlier parallel algorithm SOP (Krityakierne

et al. 2016) and adds important new features to improve performance quite signifi-

cantly, especially with many processors and decision vectors of high dimensions.

GOPS has new strategies to dynamically change the diversity of candidate points

generated by multiple sampling centers.

In following subsections, we will first describe the general framework of the

GOPS algorithm and then specifically introduce new, improved strategies used in

the iterative phases of GOPS that are dynamic by changing (1) P
(n)

C
 the number of

centers (around which candidate points are generated) in iteration n, (2) Ncj
 the num-

ber of points around each center (cj, j ∈ {1,… , P
(n)

C
}), and (3) P

(n)

good
 , which is the

percentile of the previously evaluated points (based on only function value) that are

allowed to be selected as centers (which we refer to as “Good center candidate

pool”). As discussed later, these three factors, which are dynamically changing as

the iterations n increase, are helpful both in exploration and exploitation. Note that

Ncj
 is a function of n, but n is suppressed to reduce the complexity of the notation.

3.1 General description of GOPS

GOPS follows the iterative master-worker framework for the RBF surrogate algo-

rithms (Regis and Shoemaker 2007a) and consists of three core steps, namely (1)

Initialization, (2) Iterative loop and (3) Termination. The difference between GOPS

and previous RBF-based algorithms is in the Iterative loop. The Initialization phase

is to compute the objective function f (�) at n
0
 points, so there are multiple points

{

�i, f (�i)
}

 (for i = 1,… , n0) that are used to initialize the surrogate model and start

the iterative loop. These initial points in Step (1) could be obtained via any experi-

mental design method (e.g., Latin hypercube sampling) where the number of points

n
0
 to be evaluated is given. In the Termination step, the only terminal condition for

GOPS is computing budget, i.e., the maximum number of evaluations N
max

 , which is

an input variable. In GOPS we set the number of evaluations in each iteration to be

the number of processors available P. So, the terminal conditions can also be consid-

ered to be the maximum number of iterations, MAXIT (MAXIT = (Nmax − n
0
)
/

P).

Note to make full use of the P processors, the values of N
max

 and n
0
 are set to be

multiples of the number of processors P.

The core of the algorithm and most complicated part is the Iterative loop, the

main tasks of which are (a) to use the surrogate to select P points at which to simul-

taneously evaluate the objective function on the P available processors and then (b)

to update the surrogate with the newly available values of the objective function. It

is increasingly difficult to find P worthwhile points to evaluate on P processors as

P gets large because one wants points that the surrogate indicates are likely to have

low values (for minimization) and that are not too close together (so that there is

some exploration). Our numerical experiments later use up to 128 processors, so we

need to pick as many as 128 evaluation points in each iteration to assign to different

processors.

There are five sub-steps within the iterative loop step of GOPS, including (1) Sur-

rogate fit; (2) Center selection; (3) Candidate point generation and search; (4)

2747

1 3

GOPS: efficient RBF surrogate global optimization algorithm…

Objective function evaluation; (5) Adaptive learning. For sub-steps (1), (4) and (5)

GOPS and SOP are the same. Sub-step (2) and (3) use some of the steps in SOP,

including (a) non-dominated sorting and tabu and radius constraints for center

selection and (b) dynamic coordinate search around the center for candidate search.

GOPS is different from SOP in sub-step (2) and (3) by adding two more sampling

strategies (a) the dynamic number of centers P
(n)

C
 and evaluations of each center Ncj

and (b) P
(n)

good
 , which guarantees that points with poor objective function values do

not become centers. In the following text, we will illustrate these steps that are com-

mon with SOP and then provide a detailed description of the two strategies in detail

in Sects. 3.2 and 3.3.

3.1.1 Surrogate fit

In the surrogate fit step, the surrogate model of the original black-box func-

tion f (�) is denoted as f̂ (�) . The surrogate f̂ (�) is built with the points evaluated

previously before the nth iteration, where n is the index of the iteration number

(1 ≤ n ≤ MAXIT). The reason to use the surrogate model is to help guide the opti-

mization search to reduce the number of evaluations on the expensive objective

function f (�) . The surrogate model is used to do a preliminary screening on the

larger number of trial points such that only these points with a relatively small sur-

rogate value (regard as “promising” points) and not too close to previously evaluated

points will be selected to do the expensive function evaluation. A cubic Radial Basis

Function (RBF) is selected as the surrogate model function.

Let S(n) be the set of evaluated sample points before n algorithm iterations and N
E

the number of evaluation points in S(n) , where N
E
= n

0
+ P × (n − 1) . The surrogate

model is fit on S(n) with a cubic Radial Basis Function (RBF), which takes the inter-

polant of the form:

where ||•|| is the Euclidean norm, p(�) is a linear polynomial in d variables with

d + 1 coefficients b
i
∈ ℝ for i = 1,… d + 1 , and ϕ has a cubic form: �(r) = r

3 , the

coefficients �
i
∈ ℝ for i = 1,… , N

E
 [in Eq. (2)], are determined by solving the fol-

lowing linear system of equations:

where � ∈ ℝ
N

E
×N

E and �x,y = �(||�x − �y||), x, y = 1,… , NE , � ∈ ℝ
(d+1)×(d+1) is a

matrix of zeros, � =
[

f (�
1
) … f (�NE

)
]T

 , � ∈ ℝ
N

E
×(d+1) and the ith row of the

matrix � is
[

�
T

i
1
]

 , � =

[

�
1
… �

N
E

]T

 , � =

[

b
1
… b

d+1

]T
 . The matrix

[

� �

�T �

]

 in

Eq. (3) is nonsingular and the linear system Eq. (3) has a unique solution if and only

(2)f̂ (�) =

n∑

i=1

�i�(||� − �i||) + p(�),� ∈ ℝ
d

(3)

[

� �

�T �

][

�

�

]

=

[

�

�

]

2748 W. Xia, C. Shoemaker

1 3

if rank(�) = d + 1 (Powell 1992). This condition is satisfied when there is a subset

of d + 1 affinely independent points in S(n).

After the surrogate model f̂ (�) is built, given any � ∈ ℝ
d , there will be a surro-

gate function value f̂ (�) as an estimation of the black-box function f (�) . The value

f̂ (�) is used to help guide the optimization search because it is much cheaper to

evaluate than f (�).

3.1.2 Center selection

During each iteration of the algorithm, a number of evaluated points are selected

as center points, which will be used for generating candidate points, some of which

will become evaluation points where the expensive f (�) is evaluated. We will gener-

ate candidate points considered for expensive evaluation by many random perturba-

tions around each center point. P
(n)

C
 is the number of center points in the nth iteration,

which can change as the number of iterations increases. In the earlier RBF algorithm

SOP, the value of P
(n)

C
 is equal to the number of processors P and does not change

with iteration number n. The P
(n)

C
 center points are selected from previously evalu-

ated points (denoted as S(n)). In GOPS, the number of centers P
(n)

C
 is being reduced

as the number iterations n increase. A detailed description of the computation of P
(n)

C

is discussed in Sect. 3.2.

Centers in each iteration are selected based on the non-dominated sorting tech-

niques (Krityakierne et al. 2016). In each iteration, all the evaluated points in S(n)

are ranked based on two objectives, (1) the objective function value f (�
i
) and (2)

the negative of minimum distance from �
i
 to all other evaluated points S(n)�

{

�
i

}

(denoted as �(n)(�
i
)). In non-dominated sorting, the evaluation point �

a
 dominates �

b

if both f (�
a
) < f (�

b
) and �(n)(�

a
) < �(n)(�

b
).

Note that as the iteration number n increases, there are new points added to S(n) .

Hence the value of the negative distance �(n)(�
i
) for the same evaluated point �

i
 is

different at different iterations. We want to sample around points with a small value

of f (�
i
) for exploitation and with small �(n)(�

i
) for exploration (note �(n)(�

i
) is the

negative of distance).

The non-dominated sorting ranks all previous evaluation points into different

fronts, where the points in the jth front dominate all the points on the j + 1th front.

On any front m, all the points on the jth front are ranked in order of the value of f (�)

from smaller value to larger value. The detailed implementation of non-dominated

sorting refers to Line 4 Step 1–3 in Algorithm 3 in Online Resource. The selection

of center points begins from points in the first front to the last front and starts from

points with the smallest value of f (�) within each front. Note that the best solution

found so far (denoted as � ∗) is always selected as the first center c
1
 (Line 6 in Algo-

rithm 3 in Online Resource).

In GOPS, we add a constraint on the evaluated points for non-dominated sorting.

Essentially, only evaluated points that are in the “Good center candidate pool”

(which contains points in the best P
(n)

good
 percent of all evaluated points, based on

objective function values) are allowed to become centers and are included for non-

dominated sorting. Non-dominated sorting has a time complexity of O(MN
2) to

2749

1 3

GOPS: efficient RBF surrogate global optimization algorithm…

generate non-dominated fronts for N evaluation points and M objective functions (In

our case, M = 2). Limiting evaluation points to the best P
(n)

good
 percent of the objective

function values cuts down the number of evaluation points N for non-dominated

sorting and hence can significantly reduce the calculation time for non-dominating

sorting compared with SOP. However, the biggest advantage of limiting the selec-

tion of candidate points to the best P
(n)

good
 percent of objective functions is that it is

likely to provide an improved set of candidate points. P
(n)

good
 is updated by the algo-

rithm dynamically in each iteration, which will be discussed in Sect. 3.3.

Besides the non-dominated sorting for center selection, two additional criteria,

(1) Tabu Rule and (2) Radius Rule, are adopted from SOP to balance the exploration

and exploitation further. Tabu rule is that points that were chosen as centers but did

not induce an improvement in Nfail iteration will be forbidden from being selected as

centers for a tenure of N
tenure

 iterations. The Radius constraint is that the points being

selected as centers should be at least rj distance from selected centers cj in that itera-

tion, where rj is the search neighborhood sampling radius of center cj and j is the index

of center in iteration n (j = 1,… , P
(n)

C
). The Tabu and Radius constraints in GOPS

and SOP are the same. Only those points that do not violate the Tabu and Radius con-

straints can be selected as centers (as in Line 10 in Algorithm 3 in Online Resource).

The implementation of center selection refers to Algorithm 3 in Online Resource.

3.1.3 Candidate search

To make full use of the P processors, we must in each iteration select P evaluation

points
{

�
(n)

i
, i = 1,… , P

}

 , at which the expensive black-box objective function

f (�
(n)

i
) will be evaluated. In the original SOP, the P evaluation points are generated

around P centers and the number of points selected for evaluation around each

center is equal to 1. Let Ncj
 be the number of samples around the center cj . Hence in

SOP P
(n)

C
= P (∀n ∈ {1,… , MAXIT}), and Ncj

= 1 (∀j ∈ {1,… , P
(n)

C
}). In GOPS,

the number of centers in the nth iteration P
(n)

C
 is dynamically decreasing. Hence the

number of samples around each center changes as the number of iterations increases.

Note that we keep the total number of expensive evaluations f (�) in each iteration as

constant P (hence
∑P

(n)

C

j=1
Ncj

= P). We will demonstrate how the number of samples

around each center changes as the number of iterations n increases in Sect. 3.2.

The samples around each center are generated by perturbing some selected coor-

dinates of the current center point. We adopt the dynamically coordinated search

from DYCORS (Regis and Shoemaker 2013) whereby the expected number of coor-

dinates being chosen for perturbation is dynamically reduced during the search. This

perturbation strategy is also used in SOP. For each center, a set of N
cand

 candidate

points will be generated by perturbing only dimensions that have been randomly

selected. Each coordinate of the center c
i
 has a probability of pselected = �(n) being

selected to be perturbed, where �(n) is reduced as the iteration number n increases

by �(n) = �
0
× [1 − ln((n − 1)P + 1)∕ln(MAXIT × P)] , where 1 ≤ n ≤ MAXIT .

We set �0 = min(20∕d, 1) , as in DYCORS and SOP. For those coordinates selected

to vary (denoted as Iperturb), the variation of the trial points in each coordinate

2750 W. Xia, C. Shoemaker

1 3

k ∈ Iperturb is sampled from truncated normal distribution N
truncated

(0, �2, a, b) with

the standard deviation � = rj . rj is the sampling radius of center cj and the bound

[a, b] = [lb(k) − cj(k), ub(k) − cj(k)] (see Line 13 Algorithm 5 in Online Resource).

For centers that are for the first time being selected as centers, the initial value of

search radius rj is equal to r
int

 . We adopt the value used in DYCORS and SOP,

r
int

= 0.2 × l(�) , where l(�) is the length of the shortest side of the hypercube � [as

defined in Eq. (1)]. Detailed information about the truncated normal distribution can

be seen in Krityakierne et al. (2016).

For center cj we choose evaluation points by selecting Ncj
 candidate points with the

smallest surrogate value f̂ (�) from the N
cand

 candidate points. Detailed implementa-

tion of the candidate search around centers is described in Algorithm 5 in Online

Resource. These candidate points selected as evaluation points are sent to P proces-

sors to do all the objective function evaluations, with one evaluation per processor.

3.1.4 Adaptive learning

In the adaptive learning step, GOPS evaluates the candidate search around the center

cj , which is labeled success only if there is at least one evaluation point of the newly

generated samples from center cj (denoted as Snew
cj

) providing a significant improve-

ment based on the hypervolume improvement metric (HI , used in Krityakierne et al.

(2016)). The hypervolume of a set of evaluated points S(n) is the area that is domi-

nated by S(n) on the objective space based on two objectives: (1) the objective func-

tion value f (�) and (2) the negative of minimum distance from � to all other evalu-

ated points �(n)(�) . The hypervolume improvement is the difference between

hypervolume of previously evaluated points with and without the newly evaluated

point. If the value of HI exceeds a pre-defined threshold � (usually set to be a small

positive value), the search around center c
i
 is considered a success. Otherwise, the

search around center c
i
 is a failure, in which case the search radius rj (around center

c
i
) is reduced by half, and the failure count of the center point is increased by one

(Line 3–5 in Algorithm 6 in Online Resource). Note that the value of rj affects sam-

pling of candidate points around centers. With a large value of rj , the generated can-

didate points have a higher chance of being far from the center points. If the search

around the center was not successful, it makes sense to search the region farther

from that center. If the failure count exceeds a pre-defined threshold Nfail , the center

point is added to Tabu list (Line 13–14 in Algorithm 6 in Online Resource) and will

be removed from that Tabu list only after N
tenure

 iterations. The implementation of

adaptive learning is explained in more detail in Algorithm 6 in Online Resource.

We can now give the general framework of the GOPS algorithm in Algorithm 1. The

detailed implementation of each step in Algorithm 1 is demonstrated in Algorithm 2–5

in Online Resource. For example, “2.1” in Algorithm 1 refers to “Step 2.1” in Algo-

rithm 2 in Online Resource. Symbols defined in definitions tables in Table B1–B2 in

Online Resource. Note that the main difference between GOPS and SOP is the dynamic

changes in the algorithm controlled by the varying numbers of centers P
(n)

C
 and newly

evaluated points around each center N
cj
 , and P

(n)

good
 that eliminates centers at points with

very poor objective values.

2751

1 3

GOPS: efficient RBF surrogate global optimization algorithm…

A
lg

o
ri

th
m

 1
 G

en
er

al
 G

O
P

S
 F

ra
m

ew
o
rk

1
IN

IT
IA

L
IZ

A
T

IO
N

.
G

en
er

at
e

in

it
ia

l
p
o
in

ts

fr

o
m

so

lu
ti

o
n

d
o
m

ai
n

v
ia

ex
p
er

im
en

ta
l

d
es

ig
n
 m

et
h
o
d
.
S

et
 t

h
e

it
er

at
io

n
 n

u
m

b
er

.

2
IT

E
R

A
T

IV
E

 L
O

O
P

.
W

h
il

e
:

2
.1

S
U

R
R

O
G

A
T

E
 F

IT
:

B
u
il

d
 o

r
u
p
d
at

e
th

e
su

rr
o
g
at

e
m

o
d
el

b
as

ed
 o

n

p
re

v
io

u
sl

y
 e

v
al

u
at

ed
 p

o
in

ts
 b

ef
o
re

 n
th

 i
te

ra
ti

o
n

.

2
.2

C
E

N
T

E
R

 S
E

L
E

C
T

IO
N

:
C

al
cu

la
te

an

d
 S

el
ec

t
ce

n
te

r
p
o
in

ts

b
as

ed
 o

n
 n

o
n
-d

o
m

in
a
te

d
 s

o
rt

in
g
,
T

ab
u
 a

n
d
 R

ad
iu

s
co

n
st

ra
in

ts
 (

se
e

A
lg

o
ri

th
m

 3
 i

n
 O

n
li

n
e

R
es

o
u
rc

e)
.

2
.3

C
A

N
D

ID
A

T
E

 S
E

A
R

C
H

:
C

al
cu

la
te

fo

r
(s

ee

A
lg

o
ri

th
m

 4
 i

n
 A

p
p
en

d
ix

 B
)

G
en

er
at

e
P

 e
v
al

u
at

io
n
 p

o
in

ts
 f

o
r

b
la

ck
-b

o
x

ev
al

u
at

io
n
 (

se
e

A
lg

o
ri

th
m

 5
 i

n
 O

n
li

n
e

R
es

o
u
rc

e)
.

2
.4

F
U

N
C

T
IO

N
 E

V
A

L
U

T
IO

N
:

E
v
al

u
at

e
th

e
P

 e
v
al

u
at

io
n
 p

o
in

ts
 f

o
r

b
la

ck
-

b
o
x
 e

v
al

u
at

io
n
.

2
.5

A
D

A
P

T
IV

E
 L

E
A

R
N

IN
G

.
P

ar
am

et
er

 u
p
d
at

e
(s

ee
 A

lg
o
ri

th
m

 6
 i

n
 O

n
li

n
e

R
es

o
u
rc

e)

3
T

E
R

M
IN

A
T

IO
N

:
W

h
il

e

te
rm

in
at

e
an

d
 r

et
u
rn

,
w

h
ic

h
 i

s
th

e

b
es

t
so

lu
ti

o
n
 f

o
u
n
d
 s

o
 f

ar
.

0n

1
n

n
M

A
X

IT

ˆ (
)

f
μ

(
)

n
S

(
)

n

C
P

(
)

n

C
P

j
c

N
(

)
{1

,
,

}
n

C
j

P

n
M

A
X

IT
*
μ

2752 W. Xia, C. Shoemaker

1 3

Before explaining the calculation of P
(n)

C
 , N

cj
 and P

(n)

good
 in the following subsec-

tions, we first introduce a diversity factor �
(n)

diversity
 which is used to control the value

of P
(n)

C
 , N

cj
 and P

(n)

good
 . The diversity factor �

(n)

diversity
 is decreasing linearly as the num-

ber of iterations n increases. The value of �
(n)

diversity
 at the nth iteration is calculated as:

hence �
(n)

diversity
= 1 when n = 1 to �

(n)

diversity
= 0 when n = MAXIT .

3.2 Dynamic number of centers P
(n)

C
 and evaluations per center Ncj

In GOPS, to increase the exploitation ability of the algorithm during the optimiza-

tion search, we dynamically reduce the number of centers in each iteration to focus

on centers that seem to be especially promising as we obtain more information. We

add a hard constraint on the number of centers in each iteration so that P
(n)

C
≤ P

(n)max

C

for the nth iteration. The value of P
(n)max

C
 is being dynamically reduced during the

operation search process and controlled by the diversity factor �
(n)

diversity
 . Since we

want at least one center to be selected in each iteration, the value of P
(n)max

C
 should be

at least one (Line 5 in Algorithm 3 in Online Resource). Hence the maximum num-

ber of centers in the nth iteration is

Note the ceiling function ⌈ℝ⌉ is used to make sure P
(n)max

C
 is an integer in Eq. (5).

The formula in Eq. (5) allows a larger number of centers to be selected in the initial

search stage and allows only a smaller number of centers being selected in the final

search stage. With a smaller number of centers, there is more focus put on exploita-

tion in the later part of the search. Initially (i.e., when n is small), the number of

centers is much larger, so the focus is more on exploration. As the number of itera-

tions increases, GOPS eventually has more samples around one center to allow suf-

ficient exploitation of each dimension of a good solution that is at the center point.

This is very important for high dimensional problems. The original version of SOP

only evaluates one sample around each of the centers, which limits exploitation,

especially in high dimensional problems.

To further enhance the exploitation ability of the algorithm, we add one more

constraint for the number of samples around the best solution found so far. Note that

the best solution found so far will always be selected as the first center point c
1
 . We

set the minimum number of samples around the center that is the best solution found

so far to be N
min

c
1

 , which is dynamically increasing as the number of iteration

increases:

(4)�
(n)

diversity
= 1 − (n − 1)∕(MAXIT − 1)

(5)P
(n)max

C
= max

(⌈

P × �
(n)

diversity

⌉

, 1

)

(6)N(n)min
c1

= max

(⌈

P × (1 − �
(n)

diversity
)

⌉

, 1

)

2753

1 3

GOPS: efficient RBF surrogate global optimization algorithm…

In GOPS, we treat the best solution found so far differently from other centers,

which is different from the SOP (Krityakierne et al. 2016) algorithm. We want to

sample more around the best solution found so far, especially in the final search

stage. We dynamically increase the value of N
min

c
1

 as the optimization iteration

increases. This helps exploitation in each dimension of a good solution in the final

optimization search stage.

To actually implement GOPS, we first decide the number of evaluations points

around the best center c
1
 (Line 2–6 Algorithm 4 in Online Resource):

hence the number of evaluation points that could be assigned to the remaining

P
(n)

C
− 1 centers is P − N

c
1

 . We try to treat the reminding P
(n)

C
− 1 centers

{

c2,… , c
P
(n)

C

}

 equally. Hence the remaining P − N
c

1

 evaluation points are distributed

to the P
(n)

C
− 1 centers by cycling though the reminding centers set

{

c2,… , c
P
(n)

C

}

until all the P
(n)

C
− 1 evaluation points are assigned. The detailed implementation of

the calculation of Ncj
 for j = 1,… , P

(n)

C
 refers to Line 2–15 Algorithm 4 in Online

Resource.

3.3 P
(n)

good
 for a “Good Center Candidate Pool”

In GOPS, we introduce P
(n)

good
 , which is a variable, to ensure a good center candidate

pool. We rank all the evaluation points found so far based on their objective function

value f (�) (where lowest is best). Then in iteration n, the best P
(n)

good
 percent of the

previously evaluated points are put in the “good center candidate pool.” The per-

centage of the “good center candidate pool” in the nth iteration P
(n)

good
 declines as

iteration n increases so (Line 1–3 Algorithm 3 in Online Resource):

where pini
good

 and pend
good

 are parameters (values are given in Table B1 in Online

Resource) to control the percentage of solutions that can be selected as center points

in the initial and final iterations.

The introduction of the “good” center candidate pool is to prevent the selection

of the “poor” solutions during the center selection. In the original SOP, the centers

in the nth iteration are selected from all the evaluation points found so far before

iteration n based on the non-dominated sorting on two objectives (1) objective func-

tion value f (�) and (2) the negative minimum distance �(n)(�) to all other evaluated

points. Recall that the distance function is used to encourage exploration into unex-

plored areas.

The center selection process in the SOP algorithm will iteratively select solutions

from the first front and then from the remaining fronts (going in order front 2, front

3, etc.) until enough centers are selected. A drawback of the center selection method

(7)N
c

1
=

{
⌈

P

/

P
(n)

C

⌉

if

⌈

P

/

P
(n)

C

⌉

> N
min
c

1

N
min
c

1

else

(8)P
(n)

good
= Pini

good
× �

(n)

diversity
+ Pend

good
× (1 − �

(n)

diversity
)

2754 W. Xia, C. Shoemaker

1 3

in SOP is that an evaluation point z with a very large objective function value f(z)

(a bad feature) has a reasonable chance of being selected in SOP as a center just

because z is far from other previously evaluated points. Moreover, this will con-

tinue from the beginning of the optimization to the end of the optimization in each

iteration. In the early iterations, search around these solutions might be useful for

exploration, but as we get closer to the maximum number of iteration, we want to

focus on the search around evaluation points with low objective function values. By

contrast, SOP’s approach will cause a waste of computing resources by searching

around those centers that have evaluated points with high objective function value in

the later phases of the search.

In Fig. 1, there is a simple example of the GOPS algorithm on center selec-

tion for three successive iterations on a two-dimensional optimization problem.

The f (�) test problem used in Fig. 1 is the F15 function from the 14 BBOB syn-

thetical test problem (Hansen et al. 2009) that will be used to test GOPS’s per-

formance later but with 10, 21, and 40 dimensions. In Fig. 1, the range of the

Fig. 1 Example of center selection in GOPS using the P
(n)max

C
 , Nmin

c
1

 , and P
(n)

good
 strategies on optimization

of f (�) that is the two-dimensional Rastrigin Function problem. Three successive optimization iterations

are shown (i.e., n = 1, 2, 3 , where n is iteration number). Previously evaluated points are plotted (pane a)

in terms of decision variable values (black dots) and (pane b) in terms of objective function values f (�)

and negative of distance �(n)(�) . (Colored lines for different fronts). In a, the surface of the Rastrigin

function is shown in contour plot. The circles in pane a denote the search radius of the selected centers.

In b the evaluated points on different levels of non-dominated fronts are shown. In b the shaded region

denotes the “Good Center Candidate Pool”. Evaluated points being selected as centers are noted with C1 ,

C2 , C3 , C4 in both a and b

2755

1 3

GOPS: efficient RBF surrogate global optimization algorithm…

two decision variables �
1
 and �

2
 is [− 5, 5]. For the example in Fig. 1, we used

the result from a real optimization trial where we set the number of initial points

n
0
= 12 , the maximum number of iterations MAXIT = 3 , and the number of sam-

ples in each iteration P = 4 . The value of Pini
good

 and Pend
good

 are set to be 100% and

1%, respectively. We show three successive iterations (i.e., n = 1, 2, 3). Accord-

ing to Eq. (8), the percentage of all evaluated points that are classified into

“Good center candidate pool” at iterations 1, 2, and 3 are P
(1)

good
= 100% ,

P
(2)

good
= 50.5% , P

(3)

good
= 1% , respectively. The number of centers in each iteration

P
(n)

C
 is dynamically decreasing from four in iteration 1 to one in iteration 4. The

“good center candidate pool” controlled by P
(n)

good
 effectively prevents those

points with a very large objective function value being selected as center points.

Note that in the original SOP, these points with a large value of f (�) in the first

front in iteration 1 (i.e., the center points C3 and C4 in Fig. 1b) are most likely

to be selected as center points again by SOP in iteration 2 and 3 just because

they are far from other evaluated points. Exploring the region around these

points, which are far from the global optima, is less likely to improve the best

solution found so far. Hence selecting center points with poor objective dimin-

ishes somewhat the effectiveness of SOP, and this problem of selecting center

points with poor objective values is eliminated in GOPS.

3.4 Convergence of GOPS

Theorem 1 Suppose that x∗ = minx∈D
f (x) > −∞ is the unique global minimizer of

f in D such that minx∈D,‖x−x∗‖≥� f (x) > f (x∗) for all � > 0. If the number of evalua-

tions per iteration P > 1, GOPS converges almost surely to the global minimum.

The proof of Theorem 1 is given in Online Resource. The convergence analysis of

GOPS is similar to that of SOP. Note that the changes between GOPS and SOP

are (a) SOP has the number of centers always equal to the number of processors,

and the number of samples per center is constant, whereas in GOPS the number

of centers P
(n)

C
 and number of samples around each center Ncj

 can change in each

iteration (in Sect. 3.2) and (b) GOPS adds constraints to ensure the objective

value of the selected centers are below a target percentile to prevent poor evalua-

tion points being selected as centers (in Sect. 3.3). From the original SOP paper,

the convergence analysis of SOP is preserved when the following three conditions

are met: (1) in each dimension of the vectors that are the P centers, there is a

bounded-away-from-zero probability of being perturbed, (2) the range of sam-

pling for a variable is a truncated normal distribution covering the entire compact

hyperrectangle domain, (3) the variance of the normal distribution (perturbation

distribution) is bounded above zero because it can only be reduced in half at most

Nfail times. These conditions of SOP’s convergence proof are independent of the

number of centers and the number of samples around each center and is also inde-

pendent of the location of centers. GOPS does not violate the three conditions

above, and these features are used in the proof of convergence for GOPS.

2756 W. Xia, C. Shoemaker

1 3

4 A multi-modal optimization with objective function based
on nonlinear PDE model

We consider the PDE model based parameter estimation problem [a particular

case of the optimization problem in the form of Eq. (1)], which can be general-

ized in the following form:

where �(�) is a parameterized PDE model that involves a system of partial differen-

tial equations. �(�) is the solution from the PDE model �(�) given input parameter

vector � = (�1,�2,…�
d
) , where d is the number of parameters included in the cali-

bration. � is the d dimensional solution space usually defined by the upper bound

and lower bound of the values of the parameters, � = {�� ≤ � ≤ ��} ⊂ ℝ
d . The

objective function of the optimization f (�) equals an error function g that evaluates

the difference between the simulated solution �(�) to the desired state �̂ . These and

other variables are defined in Table B3 in Online Resource.

Note that we consider an optimization problem where more than one state vari-

able is simulated in the PDE model �(�) . For example, the PDE model analyzed

latter in Sect. 4.1 simulates different kinds of water quality substances in the water

body simultaneously. Hence, the vector � = {u1, u2,… u
Ns
} contains a set of simula-

tion outputs for N
s
 state variables (i.e., different substances). � = {u1, u2,… u

Ns
} is

the desired state of these N
s
 variables. In our application, the desired state is a vector

of observation data points used for model parameter calibration. Note that N
s
 is the

number of state variables considered in the objective function, which can be smaller

than the total number of state variables included in the PDE model. This situation

could happen when there are state variables that do not appear in the objective func-

tion (because there is no observation data available) but that are necessary for the

simulation of other essential state variables. For example perhaps no observation

data is available on the organic matter in fast decomposing status (and hence no

“desired state”).

For the above PDE-constrained parameter optimization problem, it is the execu-

tion of the model simulation, i.e., the evaluation of �(�) in Eq. (9) that takes the

majority of the computational time in optimization. In the following subsection, we

provide the details of a real word PDE model for the water quality simulation of

a tropical reservoir, which is referred to as WAQ in the following text. The GOPS

algorithm is applicable to expensive, multi-modal functions without derivative

information available in general, including objective functions that require the solu-

tion of a PDE model. In Sect. 4.1 and later, we discuss our real-world PDE model

used as an application in this paper.

(9)

min
�

f (�) = g((�(�),�)

s.t.�(�) is solved

� ∈ � ⊂ ℝ
d

2757

1 3

GOPS: efficient RBF surrogate global optimization algorithm…

4.1 Partial differential equation models of water quality

One application of PDE equations is to simulate or predict the spatial and tempo-

ral behavior of water quality substances in lakes or reservoirs (Matta et al. 2016;

Smits and van Beek 2013), groundwater aquifers (Gorelick et al. 1993; Mugunthan

et al. 2005; Pinder and Celia 2006) and other water bodies. The water flow carries

with it many substances, including some that are not beneficial, like algae or pollut-

ants. These models are essential in water management so that water managers can

have them as tools (1) to estimate the water quality in area or time (not measured)

based on the model plus data measured at other points in time or space and (2) to

estimate future events. For example, if there is going to be a significant change, e.g.,

nutrient emissions to the lake or reservoir or a change in water level (Matta et al.

2016), managers can evaluate what is the response of the water by feeding the cur-

rent situation into the model and running it into the future.

In response to the demand for models to simulate the surface water systems, engi-

neering firms have developed commercial and open-source software [e.g., Delft3D-

WAQ (Hydraulics 2003), ELCOM (Hodges and Dallimore 2006), MIKE ECO lab

(Butts et al. 2012), and WASP (Wool et al. 2006)]. This software is widely used

around the world for water management.

These PDE models involve a large number of model parameters, which need to

be calibrated to the measured data (known as solving an inverse problem) in order

to simulate the studied system correctly. The PDE model used in this study dynami-

cally simulates the water quality dynamics in an irregularly shaped tropical reservoir

in Singapore that has over 250 ha of water surface and uneven depth. The water

quality model describes the nonlinear dynamic process by which nutrients enter-

ing the lake are converted to different chemical forms and some nutrient species are

taken up by algae. Hence the model has multiple nonlinear interactions, leading to

an objective function (goodness of fit between model simulation output and meas-

urement) that has multiple local minima. The multi-modal nature of the objective

function will be discussed in Sect. 4.3. We will call the numerical PDE model based

on Singapore data “WAQ.”

The Delft3D-WAQ software suite (Hydraulics 2005) is employed in WAQ to sim-

ulate the transport of substances (e.g., nutrients) by solving the three-dimensional

advection–diffusion equation as below:

where C
i
 is the concentration of the ith substance included in the PDE simulation

model. There are a total of 64 substances included in the PDE model simulation.

� = (�1,�2,… ,�
d
)T is the model calibration parameters vector (� ∈ ℝ

d),
⃖⃖⃗∇Ci =

(

�Ci

�x
,

�Ci

�y
,

�Ci

�z

)

 is concentration gradient, where x, y, z represent coordinates

in three spatial dimensions; � ⊆ ℝ
3 represents the three-dimensional space domain.

T is the simulation period length; �⃗v is the velocity vector.D⃗ = (Dx, Dy, Dz) represents

the diffusion coefficient in different spatial directions. S(C
i
) = sources or sinks of

(10)

�Ci(�)

�t
= −⃖⃗v ⋅ ⃖⃖⃗∇Ci(�) +

⃖⃖⃗∇ ⋅ (⃖⃖⃗D ⋅
⃖⃖⃗∇Ci(�)) + S(Ci) + fR(Ci(�), t) in � × [0, T]

2758 W. Xia, C. Shoemaker

1 3

substance C
i
 , which could be time and spatial variant. fR(Ci(�), t) is the reaction

term involving the physical, chemical and biological processes. For physical pro-

cesses, e.g., settling, evaporation or volatilization, fR(Ci(�), t) describes the loss or

increase rate of substance C
i
 at a specific location. For chemical or biological pro-

cesses, fR(Ci(�), t) generally characterizes the relation between substance C
i
 and all

other substance Cj,j≠i at precisely the same location at that time. For example, ammo-

nia and oxygen can form nitrite through chemical reactions. Dissolved nutrients are

transformed into organic nutrients during the growth of algae. The decay of the sub-

stance organic nutrients to dissolved nutrients. In the aquatic environment, the rela-

tion between different substances is complicated, and in many forms, we are not

going to list them all here (Hydraulics 2003).

The above Eq. (10) is only the simulation of one substance. Since there are, in

total, 64 substances simulated in the WAQ model, for each substance, there is an

advection–diffusion equation [i.e., Eq. (10)] to solve. The reaction term fR(Ci(�), t)

links the advection–diffusion equation [in Eq. (10)] of different substances C
i

together, which makes the solving of the PDE simulation �(�) complicated.

The WAQ model is discretized in space by finite volume method leading to

1141 segments for our lake example. Figure 2 plots the horizontal grid layout of

WAQ. The simulation period of the PDE model �(�) is 1 year. We set the time

interval Δt to be 5 min, resulting in 105, 120 time steps. One run of the WAQ for

a one-year simulation takes around 22 min to run on a Linux platform with CPU

E5-2690 @2.60GHZ.

Fig. 2 Horizontal grid layout of the lake (has over 250 ha of water surface and uneven depth) for which

the water quality model (WAQ) is computed

2759

1 3

GOPS: efficient RBF surrogate global optimization algorithm…

4.2 The objective function

In the parameter estimation problem for WAQ, the desired state of a substance s

at specific locations l ∈ � and time t ∈ [0, T] is the real-world observation data

in the tropical reservoir, denoted as C
s,l,t

 . We want to find the value of the param-

eter vector � with which the simulated concentration of a substance s at the same

location l at the same time t, C
s,l,t

(�) , from the WAQ model, is as close to C
s,l,t

 as

possible when considering all substances, times, and locations. To assign a scalar

measure of closeness between the simulated C
s,l,t

(�) and C
s,l,t

 , we use the good-

ness-of-fit metric adopted from previous studies in this field (Gibson et al. 2006):

where m is the index of the month, m ∈ [1, M], M = 12 . C̄
l,s,m

(�) is the monthly

mean value of the simulated substance s at the location l in the month m. ̄̂C
l,s,m

 is

the monthly mean value of the observed concentration in real-word of substance s

at the location l in the month m.�
l,s

 is the standard deviation of ̄̂C
l,s,m

 with degree of

freedom 11 (= 12–1).

Hence our goal is to calibrate the model parameters to the observed data by opti-

mizing the objective function of the optimization in Eq. (9), which is the sum of the

goodness of fit gfl,s at different locations and for different substances, as below:

For the studied case, there are bi-monthly observation data of 5 different sub-

stances, including Chlorophyll-A, Total Nitrogen, Total Phosphorus, Ammonia, and

Nitrate at two locations in the tropical reservoir for 1 year. The biological connec-

tion between them is Chlorophyll-A that is an indicator of algal concentrations and

algal growth is strongly affected by the availability of Nitrogen and Phosphorous,

which are contained in the remaining four substances.

In total, 21 model parameters (d = 21) are selected for the model calibration.

These parameters are from the reaction term fR(Ci(�), t) in Eq. (10). They were

introduced in the model to characterize the water quality physical (e.g., sedimenta-

tion), chemical (e.g., nitrification and denitrification), and biological processes (e.g.,

the phytoplankton growth) processes. The value of these 21 parameters affects the

simulated concentration of all the five substances.

This problem is a good example of why the availability of parallel algorithms is

so crucial because the number of model evaluations required by optimization algo-

rithms to get a good solution is very high with such a high dimensional and com-

putationally expensive problem. For example, assume 1200 evaluations are needed

to get a good solution (for the value of 21 parameters), the time to compute these

1200 evaluations in serial would be about 18 days. Water managers typically over-

see multiple water bodies, so having to wait 18 days for the analysis for each water

(11)
gfl,s =

1

m

M∑

m=1

���
Cl,s,m(�) − Cl,s,m

���

�l,s

(12)f (�) =
∑

l

∑

s

gfl,s

2760 W. Xia, C. Shoemaker

1 3

body is inconvenient. With the 48 processors used in this example, it takes only

0.375 days to compute the 1200 evaluations. Besides, the cost for the computation

time (in serial or parallel) using standard rates (US$0.019/core-hours) for the NSCC

supercomputer was a total of US$8.37, so it is a very modest cost. Hence an efficient

parallel algorithm like GOPS is needed.

Fig. 3 The values of f (�) for various values of two parameters ar_p_w and Fr_Feox_sed in � . a Only the

parameter ar_p_w is varied. b Only the parameter Fr_Feox_sed is varied. c Both the parameter ar_p_w

and Fr_Feox_sed are varied. d The 2-D contour plot of the surface plot in c

2761

1 3

GOPS: efficient RBF surrogate global optimization algorithm…

4.3 Demonstration of the nonlinear, multi-modal features of water quality model

calibration

As mentioned in Sect. 4.2, the WAQ model contains a system of partial differen-

tial equations describing many complicated physical, chemical, and biological pro-

cesses. Hence, the relation between the objective function f (�)) and the value of

these parameters � can be highly nonlinear and multi-modal.

We select two model parameters from the 21 parameters to demonstrate the

nonlinearity and multi-modal feature of the optimization problem. The first

parameter is ar_p_w, the stoichiometric constant for phosphorus in refractory

detritus in water column. It controls the first order mineralization rate of the

organic phosphorus detritus (Smits and van Beek 2013). The second parameter

is Fr_feox_sed, the fraction of the iron (III) oxide over the reactive iron in sedi-

ment, which affects the adsorption of dissolved phosphorus in the sediment. Both

parameters have a direct or indirect influence on the concentration of dissolved

phosphorus in the water column. The concentration of the dissolved phosphorus

will then affect the growth of the algae, which will affect many other water qual-

ity substances, such as dissolved nitrogen and chlorophyll-a. Hence, the response

of the objective function f (�) to the variation of the parameter value is complex

and likely to be multi-modal.

A major focus of this research is to optimize multi-modal functions. To dem-

onstrate the multimodality of the lake water quality objective function [Eq. (12)],

we computed the objective function value of f (�) when the value of the two

parameters were changing independently, and all other parameters were kept at

their original value. By computing the values of the PDE model (Delft3D-WAQ)

and substituting the values into Eq. (12), we got the values of the objective func-

tion f (�) , which are plotted below in Fig. 3.

Figure 3a, b show the response of objective function f (�) to the variation of one

parameter at a time. In other words, the values of all the other 20 parameters are kept

unchanged as the value of the one parameter is varied. It is quite apparent that the

optimization problem in one dimension is nonlinear, nonconvex, and has multiple

local minima. Changing one parameter can lead to improving the fit of some sub-

stances and worsening the fit of other substances with complex interactions, leading

to the multi-modal objective function seen in Fig. 3a, b.

Figure 3c, d show the landscape of f (�) when the values of the two parameters

are changing simultaneously while the values of the other 19 parameters are kept

at their original value. As shown in both Fig. 3c, d, the landscape of the objective

function surface has a large number of local minima. Figure 3c, d indicate that the

impact of one parameter on the model simulation output is affected by the value of

another parameter. For example, when ar_p_w = 0.004, increase of Fr_Fe_ox_sed’s

value leads to an increase in the objective function value f (�) . On the contrary,

when ar_p_w = 0.0028, the objective function value f (�) is generally decreasing

with the increase of Fr_Fe_ox_sed’s value.

We only present in Fig. 3c, d the objective function f (�) landscape over two

parameters out of the 21 parameters, since it is challenging to include the investi-

gation of all the combinations of parameters. For the 21-dimensional optimization

2762 W. Xia, C. Shoemaker

1 3

problem, the relation between the objective function value f (�) and the parameter

value � is expected to be more complicated and to have even more local minima.

5 Numerical experiments

5.1 Alternative parallel optimization algorithms

We compared our algorithm to the original SOP algorithm and the parallel MADS

algorithm Parallel Space Decomposition of MADS (PSD-MADS) (Audet et al.

2008b) with the use of variable neighborhood search (VNS) option (Le Digabel

2011). The NOMAD’s user guide (Le Digabel 2011) indicates that PSD-MADS is

much more efficient than other parallel versions of MADS algorithms on the larger

problems with the number of decision variables above 20. The use of VNS with

MADS enables the algorithm to escape from local minima and to search for the

global minimum (Audet et al. 2008a, 2013; Le Digabel 2011). We refer to PSD-

MADS with VNS as PSD-MADS-VNS. Krityakierne et al. (2016) compared the

SOP algorithm with many alternative methods, including Parallel Stochastic RBF

method (Regis and Shoemaker 2009) and an evolutionary algorithm that uses radial

basis function approximation (ESGRBF) (Regis and Shoemaker 2004; Shoemaker

et al. 2007). Their results show that SOP is more efficient than these algorithms, so

in this paper, we did not consider these algorithms here.

We use Latin hypercube sampling for the generation of the initial evaluation

points in both GOPS and SOP algorithms for all the following experiments. The

number of candidate points around each center N
cand

 is set to be min(500d, 5000) .

The initial sampling radius r
int

 is 0.2 × l(�) , where � is the solution domain, a

hyperrectangle, and l(�) denotes the length of the shortest side of the hyperrectangle

� . The threshold value of failure account Nfail and the tenure length N
tenure

 are set to

be 3, and 5, respectively. The tolerance for local improvement � is 10−5. The values

of the parameters above (applied to both GOPS and SOP) are kept the same as the

value suggested in the original SOP paper. For the GOPS algorithm, there are two

more user-defined parameters pini
good

 and pend
good

 . Good results are obtained by setting

pini
good

= 50% and pend
good

= 1% . Like the other hyperparameters in Table B1 (in Online

Resource), we use these parameter values for all the numerical experiments, includ-

ing synthetical test problem and the WAQ problem, so we do not tune parameters to

specific problems.

The implementation of PSD-MADS-VNS is in NOMAD version 3.9, and we use

MPI for parallel implementation (Snir et al. 1996). We followed MADS instructions

on how to set up the problem, as described below. In PSD-MADS, the black-box

problem is divided into lower dimension subproblems where only a subset of vari-

ables (ns out of d) are variant with the value of the rest of d − ns variables fixed. ns

is a parameter the value of which is chosen by users. The value of these d − ns fixed

variables are taken directly from the best solution found so far. Each subproblem is

assigned to a worker that executes the MADS algorithm on the ns-dimensional sub-

problem. The worker terminates the MADS search on the assigned subproblem after

2763

1 3

GOPS: efficient RBF surrogate global optimization algorithm…

bbe
max

 black-box evolutions and sends the best solution it found back to the master,

where bbe
max

 is another user-defined parameter. The master then collects the return

solutions from all workers and updates the best solution found so far. The above pro-

cesses are repeated until the terminal conditional of PSD-MADS-VNS algorithm is

met (i.e., the maximum number of total black box evaluations).

For PSD-MADS-VNS tests, we set the maximal number of evaluations per-

formed by each worker processor bbe
max

 to be ten, and the number of variables con-

sidered by the worker ns to be two as previous study (Le Digabel et al. 2010) sug-

gests good results were obtained with this setting for problems with dimensions 20

and 50. NOMAD’s VNS option has been used in order for the algorithm to be a

global optimizer that can escape from local optima (by setting VNS to be 1). The

PSD-MADS-VNS algorithm needs to start from a given initial trial point, which we

set to be the best solution in the initial experimental design of GOPS and SOP for

the respective trial.

5.2 Algorithm comparison on test function suit

The performance of the algorithms is investigated on 14 multi-modal benchmark

functions F3, F4, F8, F9, and F15–F24 taken from the BBOB test suite (Hansen

et al. 2009) before it is applied to the WAQ problem. There are in total 24 noiseless

test functions in the BBOB test suite. The rest of the 10 noiseless functions are uni-

modal, which is not the focus of this study. These 14 BBOB problems (F3, F4, F8,

F9, and F15–F24) are all challenging multi-modal noiseless functions.

Fig. 4 Performance profile (upper pane) and data profile (lower pane) for accuracy level tol = 10
−3 for

algorithms SOP, GOPS, PSD-MADS-VNS with 16, 32, 64, 128 processors on 14 10-dimensional BBOB

test problems with 30 trials. High value is best

2764 W. Xia, C. Shoemaker

1 3

Fig. 5 Performance profile (upper pane) and data profile (lower pane) for accuracy level tol = 10
−3 for

algorithms SOP, GOPS, PSD-MADS-VNS with 16, 32, 64, 128 processors on 14 21-dimensional BBOB

test problems with 30 trials. High value is best

Fig. 6 Performance profile (upper pane) and data profile (lower pane) for accuracy level tol = 10
−3 for

algorithms SOP, GOPS, PSD-MADS-VNS with 16, 32, 64, 128 processors on 14 40-dimensional BBOB

test problems with 30 trials. High value is best

2765

1 3

GOPS: efficient RBF surrogate global optimization algorithm…

The BBOB test suite enables varying the dimensions of the problems. We test

the algorithm’s performance on the 14 test functions with three different dimen-

sions (i.e., 10, 21, and 40 dimensions). We set the dimension of test functions

to be 21 dimensional in order to be consistent with the dimension of the WAQ

problem. The search domain for all the ten BBOB test problems is [−5, 5]d , where

d = 10, 21, 40.

All algorithms are tested with the number of processors P = 16, 32, 64, and

128. We use the notation A-16P, A-32P, A-64P, and A-128P in the text and fig-

ures below to distinguish the number of processors used by the algorithm A. For

each problem, we repeated the optimization experiments with 30 trials for each

algorithm. All algorithms use the same initial experiment design (randomly gen-

erated) in each trial in order to facilitate a fair comparison.

Figures 4, 5 and 6 shows data and performance profiles of all the three algo-

rithms when different numbers of processors are used (i.e.,P = 16, 32, 64, 128)

on 14 BBOB test problems in 10, 21, and 40 dimensional, respectively. We use

methods from Moré and Wild (2009) and Müller (2016) to generate these data

and performance profiles that consider the results of all trials on all problems to

compare the overall performance of each algorithm.

The explanation of the calculations in these profiles is given in Online Resource.

The performance profile demonstrates how well an algorithm performs over other

algorithms on a set of problems. Data profile illustrates the percentage of problems

that could be solved with the accuracy level of tol by an algorithm given a number of

function evaluations. For both profile plots, high values indicate the best algorithms.

Both the data profiles and performance profiles (Figs. 4, 5 and 6) indicate that

GOPS outperforms both SOP and PSD-MADS-VNS algorithm for all cases. SOP

performs better than PSD-MADS-VNS for all cases (i.e., number of processors,

P = 16, 32, 64, and 128) and on all the three different dimensions (i.e., 10, 21, and

40 dimensions).

The upper panes of Figs. 4, 5 and 6 show performance profiles with high accu-

racy levels tol = 10
−3 when 16, 32, 64, and 128 processors are used respectively on

all 14 synthetic test problems in their 10, 21, and 40 dimensional versions.

Table 1 Percentage of solutions from SOP and PSD-MADS-VNS that is worse than that of GOPS (with

16, 32, 64, and 128 processors) in terms of mean objective function values over 30 trials after 1920 func-

tion evaluations (excluding 2(d + 1) evaluations in the initial experimental design)

The percentage is averaged over 14 BBOB test functions. Results on BBOB with three different dimen-

sions (10, 21, and 40) are shown

SOP PSD-MADS-

VNS

SOP PSD-MADS-

VNS

SOP PSD-MADS-

VNS

SOP PSD-MADS-

VNS

16P (%) 32P (%) 64P (%) 128P (%)

10D 1.2 25.7 5.6 31.4 1.4 30.3 23.8 69.4

21D 18.2 117.2 43.5 182.7 112.7 1632.5 126.8 2380.2

40D 64.1 1042.6 153.8 3542.2 290.3 7511.6 104.3 3197.5

2766 W. Xia, C. Shoemaker

1 3

From the performance profiles, we can see that the differences between GOPS

and the other two algorithms (SOP and PSD-MADS-VNS) are more significant

when larger numbers of processors are used and in higher dimensional problems.

The percentage of problems for which GOPS is the fastest is increasing when a

larger number of processors are used. The performance profiles also show that PSD-

MASD-VNS is the worst among the three, and PSD-MASD-VNS is the fastest on

only less than 10% of problems for all cases.

The data profiles (Figs. 4, 5 and 6 (lower panel)) show that the performance dif-

ference between GOPS and SOP increases as the number of evaluations (measured

as simplex gradients) increases. This indicates that the adaptive diversity feature of

GOPS (related to changes in P
(n)

C
 , Ncj

 , and P
(n)

good
) helps the exploration in the later

stage of the algorithm. More detailed analysis of the performance and data profiles

is in Online Resource.

Table 1 provides a summary of the performance of SOP and PSD-MADS-VNS

over GOPS based on the mean objective function value (over 30 trials) that each

algorithm achieved on all problems (in 10, 21, and 40 dimensional) after 1920 func-

tion evaluations (excluding 2*(d + 1) evaluations in the initial experimental design)

when the number of processors P = 16, 32, 64, 128. The detailed results of mean

objective function value with the standard error (over 30 trails) for each algorithm

on each BBOB test problems is given in Table A1 to Table A3 of Online Resource.

The percentage in Table 1 is calculated as follows: given the number of processors

to be 16 (as an example), let X be the algorithm compared with GOPS-16P (e.g.,

X = SOP-16P or PSD-MADS-VNS-16P), and let YX

i
 (i = 1,…, 14) be the solution

of algorithm X on each of the 14 BBOB problem in d-dimension, Yi (i = 1,…, 14)

be the solution of GOPS-16P on each of 14 BBOB problem in d-dimensional. The

percentage for algorithm X on d-dimensional problems is 1∕14

∑14

i=1

�
(YX

i
− Y

i
)∕��Yi

�
�
�
 .

Since all the 14 BBOB test problems are minimization problems, the percentage in

Table 1 denotes the percentage of time that algorithm X’s solution is worse (if posi-

tive percentage) or better (if negative percentage) than GOPS’s solution.

The numerical results in Table 1 show that GOPS in general obtained better solu-

tions than SOP and PSD-MADS-VNS on all cases (when P = 16, 32, 64, and 128),

since the percentage in Table 1 are all positive. The positive percentages denote the

percentage of SOP or PSD-MADS-VNS’s solutions that are worse than GOPS’s

solution. The percentage is larger on higher dimensional problems (for X being

either SOP or PSD-MADS-VNS), which means that GOPS’s solution is much better

than SOP or PSD-MADS-VNS on higher dimensional problems. The percentage for

PSD-MADS-VNS is larger than that of SOP, which indicates that PSD-MADS-VNS

is much worse than SOP’s solution. These results are consistent with the conclusion

from the data and performance profiles above. The percentages in Table 1 are the

average value of all the 14 BBOB test problems. The detailed results on each prob-

lem in Table A1 to Table A3 in the Online Resource also show that GOPS obtained

the best solution on most of the problems if not all and GOPS’s solution is generally

much better than SOP or PSD-MADS-VNS on higher dimensional problems.

2767

1 3

GOPS: efficient RBF surrogate global optimization algorithm…

Ta
b

le
 2

 S

p
ee

d
u
p
 o

f
G

O
P

S
,
S

O
P
,
P

S
D

-M
A

D
S

-V
N

S
 o

n
 1

4
 1

0
-d

im
en

si
o
n
al

 B
B

O
B

 t
es

t
p
ro

b
le

m
s

w
h
en

 P
 =

 1
6
,
3
2
,
6
4
,
an

d
 1

2
8
 (

o
v
er

 3
0
 t

ri
al

s)

T
h
e

av
er

ag
e

(a
vg

.)
 s

p
ee

d
u
p
 o

v
er

 t
h
e

te
n
 t

es
t

p
ro

b
le

m
s

is
 s

h
o
w

n
.
T

h
e

al
g
o
ri

th
m

 s
o
lv

er
s

w
it

h
 t

h
e

b
es

t
sp

ee
d
u
p
 a

re
 b

o
ld

P
ro

b
.
ID

G
O

P
S

S
O

P
P

S
D

-

M
A

D
S

-V
N

S

G
O

P
S

S
O

P
P

S
D

-

M
A

D
S

-V
N

S

G
O

P
S

S
O

P
P

S
D

-

M
A

D
S

-V
N

S

G
O

P
S

S
O

P
P

S
D

-M
A

D
S

-V
N

S

P
 =

 1
6

P
 =

 3
2

P
 =

 6
4

P
 =

 1
2
8

F
3

8
.5

4
.2

3
.2

3
0
.1

5
.2

4
.3

5
3
.6

6
.4

5
.1

8
0
.3

8
.8

6
.7

F
4

3
9
.5

4
.4

8
.8

3
1
.6

5
.9

1
3
.0

1
0
5
.2

7
.2

1
5
.5

1
5
7
.8

1
2
.5

2
0
.4

F
8

8
.9

1
0
.9

2
.1

3
2
.5

1
5
.5

2
.6

5
3
.1

2
1
.8

4
.0

6
3
.0

3
2
.0

5
.5

F
9

2
3
.1

7
.0

2
.1

4
8
.3

1
0
.5

3
.2

6
7
.6

1
3
.7

3
.7

6
7
.6

2
1
.1

5
.1

F
1
5

1
6
.0

4
.8

2
.0

2
7
.6

6
.5

2
.9

3
8
.0

8
.8

4
.0

4
0
.5

1
1
.2

5
.8

F
1
6

1
2
.0

6
.9

2
.4

1
6
.6

8
.2

6
.4

2
4
.5

1
0
.5

8
.9

3
2
.1

1
4
.7

1
2
.8

F
1
7

6
0
.9

4
7
.2

1
.7

9
9
.4

6
2
.9

2
.0

1
2
5
.9

8
2
.1

3
.5

1
4
5
.2

1
4
5
.2

5
.8

F
1
8

4
6
.9

2
8
.3

4
.1

6
6
.2

6
0
.0

6
.0

1
2
0
.1

7
6
.8

6
.6

1
4
7
.8

1
4
7
.8

1
2
.4

F
1
9

3
8
.6

2
7
.1

4
.5

7
5
.6

4
9
.7

5
.5

9
9
.5

8
1
.4

1
0
.4

1
7
1
.9

1
2
7
.9

1
8
.8

F
2
0

5
2
.3

1
0
.6

2
.2

8
4
.1

1
6
.1

3
.0

1
3
8
.2

2
4
.1

4
.0

2
1
5
.0

2
7
.1

6
.0

F
2
1

1
0
2
.3

6
4
.1

1
.9

2
5
.6

1
2
3
.6

3
.6

1
5
3
.4

1
9
2
.3

6
.8

1
3
9
.5

2
4
7
.3

9
.3

F
2
2

2
1
1
.7

1
4
6
.5

1
.6

2
7
2
.1

2
7
2
.1

2
.8

3
8
1
.0

3
1
7
.5

4
.0

3
8
1
.0

3
8
1
.0

5
.4

F
2
3

4
2
.4

2
9
.8

1
4
.8

7
0
.6

3
9
.0

4
9
.6

1
2
7
.1

5
4
.3

6
6
.2

2
1
1
.8

1
0
8
.5

1
2
7
.6

F
2
4

5
2
.4

3
9
.4

2
.9

8
0
.8

4
8
.5

6
.7

1
2
1
.2

7
8
.8

8
.0

1
6
1
.6

1
2
6
.0

1
1
.7

A
vg

.
5
1
.1

3
0
.8

3
.9

6
8
.7

5
1
.7

8
.0

1
1
4
.9

6
9
.7

1
0
.8

1
4
3
.9

1
0
0
.8

1
8
.1

2768 W. Xia, C. Shoemaker

1 3

Ta
b

le
 3

 S

p
ee

d
u
p
 o

f
G

O
P

S
,
S

O
P
,
P

S
D

-M
A

D
S

-V
N

S
 o

n
 1

4
 2

1
-d

im
en

si
o
n
al

 B
B

O
B

 t
es

t
p
ro

b
le

m
s

w
h
en

 P
 =

 1
6
,
3
2
,
6
4
,
an

d
 1

2
8
 (

o
v
er

 3
0
 t

ri
al

s)

T
h
e

av
er

ag
e

(a
vg

.)
 s

p
ee

d
u
p
 o

v
er

 t
h
e

te
n
 t

es
t

p
ro

b
le

m
s

is
 s

h
o
w

n
.
T

h
e

al
g
o
ri

th
m

 s
o
lv

er
s

w
it

h
 t

h
e

b
es

t
sp

ee
d
u
p
 a

re
 b

o
ld

P
ro

b
.
ID

G
O

P
S

S
O

P
P

S
D

-M
A

D
S

-

V
N

S

G
O

P
S

S
O

P
P

S
D

-M
A

D
S

-

V
N

S

G
O

P
S

S
O

P
P

S
D

-M
A

D
S

-

V
N

S

G
O

P
S

S
O

P
P

S
D

-

M
A

D
S

-

V
N

S

P
 =

1
6

P
 =

3
2

P
 =

6
4

P
 =

1
2

8

F
3

6
.1

4
.7

3
.5

1
0
.8

7
.8

4
.8

1
7
.2

1
1
.4

5
.5

2
6
.9

1
4
.2

7
.2

F
4

6
.9

6
.2

6
.7

1
3
.3

8
.2

9
.8

2
3
.0

1
2
.1

1
1
.2

3
1
.6

1
6
.9

1
4
.7

F
8

8
.2

5
.3

1
.8

1
3
.2

6
.5

2
.4

1
6
.8

8
.2

3
.2

1
8
.9

1
0
.9

3
.9

F
9

8
.5

8
.6

1
.9

1
2
.4

8
.2

2
.5

1
7
.9

9
.6

3
.4

2
0
.2

1
0
.2

4
.6

F
1
5

7
.8

5
.6

2
.0

1
2
.6

7
.8

3
.0

1
9
.3

1
0
.9

4
.3

2
2
.9

1
5
.7

5
.6

F
1
6

5
.8

4
.3

4
.4

7
.6

5
.5

5
.1

1
3
.2

7
.0

7
.0

1
5
.7

9
.6

1
1
.4

F
1
7

3
5
.8

1
3
.0

2
.2

5
9
.6

2
1
.6

3
.1

8
0
.5

3
4
.3

3
.6

1
0
0
.6

3
6
.4

6
.1

F
1
8

3
6
.5

7
.1

1
.6

6
4
.2

1
2
.3

2
.7

1
0
3
.5

1
6
.9

3
.0

1
1
6
.4

1
6
.9

6
.3

F
1
9

3
7
.2

1
1
.2

1
.5

5
8
.1

1
7
.6

2
.6

8
0
.8

3
6
.9

3
.5

1
5
4
.9

4
6
.1

4
.1

F
2
0

3
9
.3

7
.6

2
.6

6
5
.4

1
0
.1

3
.5

1
0
3
.3

1
3
.3

4
.3

1
5
1
.0

1
3
.3

5
.9

F
2
1

2
7
.5

5
3
.0

3
.1

5
9
.2

6
5
.4

4
.0

7
0
.0

1
5
0
.9

5
.2

5
1
.3

1
6
3
.5

6
.4

F
2
2

9
5
.3

8
5
.8

2
.8

1
5
5
.9

1
2
2
.5

3
.4

1
9
0
.6

1
7
1
.5

4
.3

2
1
4
.4

1
7
1
.5

5
.7

F
2
3

2
7
.5

8
.7

1
6
.7

4
6
.6

1
3
.7

1
3
.4

7
5
.2

2
6
.4

2
4
.5

1
2
2
.2

4
6
.2

5
2
.4

F
2
4

7
.8

5
.3

0
.9

1
3
.3

8
.2

2
.3

1
9
.6

1
6
.0

2
.9

2
5
.7

1
8
.9

4
.1

A
vg

.
2
5
.0

1
6
.2

3
.7

4
2
.3

2
2
.5

4
.5

5
9
.4

3
7
.5

6
.1

7
6
.6

4
2
.2

9
.9

2769

1 3

GOPS: efficient RBF surrogate global optimization algorithm…

Ta
b

le
 4

 S

p
ee

d
u
p
 o

f
G

O
P

S
,
S

O
P
,
P

S
D

-M
A

D
S

-V
N

S
 o

n
 1

4
 4

0
-d

im
en

si
o
n
al

 B
B

O
B

 t
es

t
p
ro

b
le

m
s

w
h
en

 P
 =

 1
6
,
3
2
,
6
4
,
an

d
 1

2
8
 (

o
v
er

 3
0
 t

ri
al

s)

T
h
e

av
er

ag
e

(a
vg

.)
 s

p
ee

d
u
p
 o

v
er

 t
h
e

te
n
 t

es
t

p
ro

b
le

m
s

is
 s

h
o
w

n
.
T

h
e

al
g
o
ri

th
m

 s
o
lv

er
s

w
it

h
 t

h
e

b
es

t
sp

ee
d
u
p
 a

re
 b

o
ld

P
ro

b
.
ID

G
O

P
S

S
O

P
P

S
D

-M
A

D
S

-

V
N

S

G
O

P
S

S
O

P
P

S
D

-M
A

D
S

-

V
N

S

G
O

P
S

S
O

P
P

S
D

-M
A

D
S

-

V
N

S

G
O

P
S

S
O

P
P

S
D

-

M
A

D
S

-

V
N

S

P
 =

 1
6

P
 =

 3
2

P
 =

 6
4

P
 =

 1
2
8

F
3

8
.5

7
.2

2
.8

1
3
.1

1
0
.9

3
.4

2
0
.6

1
2
.8

4
.2

2
4
.5

1
3
.6

5
.6

F
4

9
.5

8
.9

5
.2

1
6
.7

1
2
.6

6
.9

2
7
.0

1
7
.3

8
.1

3
5
.4

2
0
.5

1
1
.1

F
8

1
1
.3

7
.1

2
.6

1
7
.3

8
.8

3
.3

2
0
.5

7
.8

4
.2

2
0
.5

8
.8

5
.5

F
9

1
3
.7

1
0
.5

2
.7

2
1
.9

1
3
.9

3
.7

3
0
.1

1
4
.9

4
.6

3
0
.1

1
3
.1

6
.3

F
1
5

9
.5

7
.0

2
.2

1
5
.7

1
1
.0

3
.3

2
1
.5

1
5
.4

4
.3

2
5
.5

1
9
.3

6
.1

F
1
6

9
.8

6
.2

3
.9

1
4
.7

9
.0

6
.4

1
9
.3

1
1
.1

1
3
.0

3
1
.3

1
5
.2

1
9
.6

F
1
7

7
.8

6
.0

1
.5

1
5
.5

7
.7

3
.2

2
0
.9

1
1
.1

4
.0

3
0
.1

1
2
.4

6
.9

F
1
8

1
3
.6

6
.5

3
.0

2
0
.7

1
0
.4

4
.0

3
4
.7

1
3
.3

5
.8

4
7
.8

1
5
.0

7
.6

F
1
9

3
5
.0

3
1
.7

2
.7

7
7
.0

5
5
.8

3
.7

7
0
.0

7
3
.2

5
.9

9
6
.2

7
3
.2

6
.3

F
2
0

1
1
.8

1
1
.6

3
.3

1
9
.8

1
7
.1

4
.3

2
7
.6

2
1
.6

5
.3

3
1
.0

2
0
.3

7
.0

F
2
1

1
2
.6

6
.4

3
.4

1
8
.9

8
.7

4
.7

2
3
.1

1
2
.5

5
.6

2
6
.0

1
4
.1

7
.3

F
2
2

1
0
.0

7
.1

3
.1

1
6
.4

1
0
.3

4
.4

1
8
.6

1
4
.9

5
.2

1
7
.4

1
7
.9

6
.9

F
2
3

7
.9

3
.2

2
.9

1
3
.9

5
.6

6
.1

2
4
.1

1
9
.2

1
5
.4

3
9
.2

2
6
.5

2
3
.5

F
2
4

1
0
.5

8
.0

2
.4

1
8
.1

1
9
.0

3
.1

2
1
.5

3
0
.5

4
.7

2
8
.3

2
8
.6

5
.8

A
vg

.
1
2
.3

9
.1

3
.0

2
1
.4

1
4
.3

4
.3

2
7
.1

1
9
.7

6
.4

3
4
.5

2
1
.3

9
.0

2770 W. Xia, C. Shoemaker

1 3

5.3 Relative speedup on test function suite

Speedup is an important measure of a parallel algorithm since it indicates the effi-

ciency of the algorithm in using multiple processors synchronously. In this section,

we investigate the parallel speedups of all the three algorithms on the 14 BBOB

test function suit with three different dimensions (10, 21, and 40). We did not do

a speedup investigation for the PDE problem because the time required for each

evaluation makes this very time and resource intensive and because we can use the

inexpensive test function to evaluate the algorithm’s speedup. We follow the relative

speedup calculation in Krityakierne et al. (2016) that the relative speedup is calcu-

lated as:

where n(�)(1) is the number of iterations that the fast serial algorithm required to

reach a specified level of accuracy � . n
(�)(P) is the number of iterations that the

parallel algorithm with P processors needs to reach the same level of accuracy � .

Note for the serial algorithm, the number of iterations equals the number of evalu-

ations. Equation (13) requires the knowledge of the fastest serial algorithm, which

is hard to know. In the SOP paper (Krityakierne et al. 2016), the serial StochRBF

(Regis and Shoemaker 2007b) is used as the serial algorithm to compute n
(�)(1) .

However, results showed that DYCORS is more efficient than StochRBF (Regis and

Shoemaker 2013). We thus used DYCORS as the serial algorithm to compute n(�)(1)

from Eq. (13).

The relative � − Speedup(P) for each test function is calculated, given the accu-

racy level of � . Let y∗
1
 , y∗

16
 , y∗

32
 , y∗

64
 , y∗

128
 be the average (over 30 trials) of the best

objective function values obtained from serial DYCORS, and the parallel algo-

rithms GOPS-16P, GOPS-32P, GOPS-64P, GOPS-128P, respectively. We set

� = max{y
∗
1
, y

∗
16

, y
∗
32

, y
∗
64

, y
∗
128

} for algorithm GOPS. We calculate the accuracy level

� for SOP and PSD-MADS-VNS in a similar approach. Tables 2, 3 and 4 show the

� − Speedup(P) values Eq. (13) for all three algorithms when a different number of

processors are used with the 14 BBOB test problems with 10, 21, and 40 dimen-

sions, respectively.

A parallel algorithm has the favorable trait “scalability” if it has good speed-

ups for a significant number for processors. As shown in Table 2 (in 10-dimen-

sional case), for problems F4, F8-F9, F17-F20 and F22-F24, GOPS has outstand-

ing scalability and is even superlinear in some cases. Superlinear speedup (i.e.,

� − Speedup(P) is larger than P) indicates that the use of P processors has a speedup

that is higher than P, and so its efficiency is greater than 100%. Note that superlinear

scalability could happen in cases when the serial algorithms perform much worse

than parallel algorithms. Figure A1 in Online Resource gives two examples where

serial algorithm DYCORS performance is relatively worse than GOPS and SOP on

problem F21 (in 10-dimensional) and F22 (in 21-dimensional), which could lead

to a high value of speedup. The superlinear speedup holds for algorithm GOPS on

problems F17-F20, and F22–F24 for all cases when P = 16, 32, 64, 128, on problems

F9 when P = 16, 32, 64, on problem F4 and F21 when P = 16, 64, 128, on problem

(13)� − Speedup(P) = n
(�)(1)

/

n
(�)(P)

2771

1 3

GOPS: efficient RBF surrogate global optimization algorithm…

F8 when P = 32. There are also many problems for which SOP has a superlinear

speedup. For example on problem F17–F18, F21-F22, and F24 for all cases when

P = 16, 32, 64, 128. While in 21-dimensional cases (Table 3), GOPS has a super-

linear speedup than SOP on more problems. The superlinear speedup also holds for

GOPS on problem F17–F20 and F22–F23 for all cases when P = 16, 32, 64, 128,

and on problem F21 for P = 16, 32, 64. By contrast, for SOP algorithm, superlinear

speedup only holds on problem F21 and F22 when P = 16, 32, 64, 128. For PSD-

MADS-VNS superlinear speedup only holds for problem F23 when P = 32, 64, 128

(in 10-dimensional case) and when P = 16 (in 21-dimensional case). The results sug-

gest that GOPS has a significantly improved speedup over SOP on almost all prob-

lems, especially for problems F3, F4, F15–F16, F20, F23, F24 (in 10 dimensional),

for problems F17, F18, F19, F20, and F23 (in 21 dimensional) and for problems F8,

F18, F19, F21, F23 (in 40 dimensional).

GOPS has much better scalability over PSD-MADS-VNS on all problems (in 10,

21, and 40 dimensional) for all cases when P = 16, 32, 64, 128. SOP has better scal-

ability over PSD-MADS-VNS on most of the problems except for F4 (on 10 and 21

dimensional cases), F16 (on 21 and 40 dimensional), and F23. For function F16 and

F23, Krityakierne et al. (2016) reported SOP had rather poor scalability.

Hence, GOPS has, by far, the best average speedup over all the problems and

dimensions compared to SOP and PSD-MADS-VNS. Remarkably there is not a sin-

gle combination of problems and dimensions for which PSD-MADS-VNS has the

best speedup.

The good performance of GOPS and SOP over PSD-MADS-VNS might be

because firstly, GOPS and SOP use a surrogate to guide the search, while PSD-

MADS-VNS does not use a surrogate. The use of surrogates helps guide the search

to reach the regions where values of the objective function are lower, and often the

Fig. 7 Calibration progress plot of average best solution on the WQ PDE problem found so far in terms

of objective function value (over ten trials) vs the number of evaluations for algorithms SOP, GOPS,

PSD-MADS-VNS on WAQ when 24 processors are used (a) and 48 processors are used (b). Lower

objective function value is better. Note in a GOPS required only 55% as many evaluations to get the final

answer of PSD-MADS-VNS after 1200 evaluations. In b this percentage is 60%

2772 W. Xia, C. Shoemaker

1 3

global minimum is located more quickly; Secondly, GOPS and SOP use multiple

perturbation centers, while PSD-MADS-VNS generates simulation points around

only one center (which is the best solution found so far). Hence GOPS and SOP

have a more diverse set of evaluation points per iteration. The diversity of evalua-

tion points can help to escape from local minima and also helps to locate promising

regions faster.

5.4 Algorithm comparison on WAQ

In this section, we compare GOPS, SOP, and PSD-MADS-VNS on the expensive

PDE-constrained calibration optimization problem on lake water quality, WAQ

(refer to Sect. 4.1)

Figure 7 shows that with 1200 evaluations the best solution on the WAQ PDE

model calibration problem is always obtained by GOPS. However, even more

important is that with 24 processors, GOPS was able to obtain in only 660 evalu-

ations the solution that was the best solutions found by the other two algorithms

(SOP and PSD-MADS-VNS) in 1200 evaluations, which means GOPS only needed

about 55% (660/1200) as many evaluations as the other two algorithms to get the

same result. This is equivalent to saying GOPS was 1.8 (= 1/0.55) times as fast as

the other two algorithms on the WAQ problem with 24 processors. With 48 proces-

sors, the GOPS algorithm used only about 60% as many evaluations as the other two

algorithms, which is equivalent to a speed up of 1.7 (= 1/0.6). For the optimization

experiments, each algorithm was repeated for 10 trials on the WAQ problem and the

analysis above is based on the average over the 10 trials as plotted in Fig. 7.

The performance improvement of GOPS over SOP provides the evidence that the

introduction of the new elements P
(n)

C
 , Ncj

 , and P
(n)

good
 did improve the search on the

WAQ problem. Especially in case when 48 processor are used, GOPS shows the

same convergence speed as SOP in the first 300 evaluations, and later GOPS con-

verges much faster than SOP, as shown in Fig. 7b. Note that one difference between

GOPS and SOP is that GOPS dynamically reduces the number of sampling centers

P
(n)

C
 and increases the sampling around the best solution found so far N

c
1

 as the num-

ber of iterations increases. This difference allows GOPS to have exploration ability

that is similar to SOP in the beginning iterations but stronger exploitation ability in

the latter search stages. Also, since the sampling around the best solution found so

far in GOPS (and also in SOP) is based on the truncated normal distribution in the

solution domain, GOPS is a global optimizer that can get out of local minima. The

ability of GOPS to be a global optimizer is described in the Theorem 1 in Sect. 3.4,

and the proof of that theorem is given in the Online Resource.

2773

1 3

GOPS: efficient RBF surrogate global optimization algorithm…

6 Conclusion

Global Optimization in Parallel with Surrogate (GOPS) is a new algorithm for

parallel optimization of computationally expensive, multi-modal continuous func-

tions with no objective function derivatives available. Its effectiveness is demon-

strated here in highly parallelized computations both on test functions and on a very

complex PDE model (based on real data) that generates a multi-modal objective

function. The PDE model involves a set of nonlinear partial differential equations

describing the spatial distribution of concentration of many constituents and is a

challenging calibration problem.

The difficulty in designing parallel global optimization algorithms is how to pick

P new points to evaluate on the objective function simultaneously, where P is the

number of processors. This can be very inefficient unless we can decide how to

explore primarily promising areas while not allowing sampled points to be too close

to one another. This problem becomes more difficult as P gets larger.

GOPS addresses this problem by (a) first some promising centers are selected

from previously evaluated points and (b) new candidate points are created by adding

random perturbations to each of these center points. The new features in GOPS are

controlled by the new variables P
(n)

C
 , Ncj

 , and P
(n)

good
 . GOPS promotes exploration in

the early iteration by having many centers and hence fewer evaluation points picked

from each center. However, gradually as the iterations increase, the number of cent-

ers decreases, and hence the number of points selected from each center becomes

larger. In addition, previously evaluated points with sufficiently poor objective func-

tions are not allowed to become center points. These new elements help enable the

algorithm to search better even when it has to do as P expensive function evalua-

tions in each iteration even when P is large.

The new GOPS algorithm is very efficient up to P = 128 processors, which ena-

bles GOPS to use a large number of computing resources for solving PDE-con-

strained optimization problems in a relatively short wall-clock time.

The performance of GOPS was tested on 14 synthetic BBOB test problems (in

10, 21, and 40 dimensions) and one real-world PDE-constrained parameter estima-

tion problem (WAQ) that is 21 dimensional. GOPS was compared with the SOP

algorithm and the widely used MADS algorithm with its parallel global optimiza-

tion option, PSD-MADS-VNS. GOPS performance was clearly the best on all test

problems (especially on high dimensional problems and/or with larger number of

processors) based on performance and data profile plots that evaluate all the test

results. Numerical experimental results indicate GOPS dramatically outperformed

the other algorithms with regard to (a) accuracy of solution for a fixed number of

evaluations, (b) speedup and efficiency for up to 128 processors, (c) GOPS’ ability

to find the global minimum of multi-modal test functions without derivatives for

objective functions with up to 40 dimensions, and (d) its ability to efficiently solve a

parameter calibration problem of a 21 dimensional nonlinear PDE model describing

spatial and temporal dynamics of multiple water quality constituents in a large lake

utilizing real data.

2774 W. Xia, C. Shoemaker

1 3

GOPS performed the best on the calibration of real-world water quality PDE

problem WAQ, which is multi-modal. There have been very few studies of global

optimization of multi-modal, PDE models because these models are expensive, and

popular global methods like particle swarm optimization or genetic algorithms take

too many evaluations to be practical for expensive functions. Hence GOPS is an

essential tool for this kind of environmental problem as well as for many other prob-

lems described by nonlinear PDE’s that result in the occurrence of multiple local

minima in the objective function. This lake water quality application illustrates the

practical use of GOPS algorithm to solve real world problems.

The numerical result indicates that the use of the P
(n)

C
 , Ncj

 , and P
(n)

good
 strategies (in

Sects. 3.2 and 3.3) in the GOPS algorithm improves the algorithm’s exploitation

ability, especially in later iterations, which in turn enables the algorithm to find more

accurate solutions than SOP and PSD-MADS-VNS.

As is noted in Sect. 5.1, the values of all algorithm parameters in GOPS are

given, and all tests were performed with this same set of parameters. So the expecta-

tion is that the GOPS algorithm will be used with these algorithm parameters, and

parameter tuning is not required.

GOPS is a general-purpose global optimization method that is not limited to

PDE-constrained global optimization only. For problems with an objective function

that is computationally expensive, multi-modal, with no available derivatives, GOPS

is a very promising option compared with other parallel global optimization meth-

ods, e.g., SOP, PSD-MADS-VNS or non-surrogate metaheuristics.

Acknowledgements This research is supported by the National Research Foundation, Prime Minister’s

Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE)

programme and Prof. Shoemaker’s grant from the National University of Singapore (NUS). Water quality

numerical model and Data models were provided by PUB, Singapore’s National Water Agency. The com-

putational work for this article was entirely performed on resources of the National Supercomputing Cen-

tre, Singapore (https ://www.nscc.sg). The GOPS software was built in the pySOT toolbox (see (Eriksson

et al. 2019) in references). (The GOPS software will be publicly (open source) available soon after this

paper is published. The GOPS code is also available from the first author upon request (xiawei@u.nus.

edu)).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,

which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as

you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-

mons licence, and indicate if changes were made. The images or other third party material in this article

are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is

not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission

directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen

ses/by/4.0/.

References

Audet C, Hare W (2017) Derivative-free and blackbox optimization. Springer, Berlin

https://www.nscc.sg
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

2775

1 3

GOPS: efficient RBF surrogate global optimization algorithm…

Audet C, Béchard V, Le Digabel S (2008a) Nonsmooth optimization through mesh adaptive direct

search and variable neighborhood search. J Glob Optim 41:299–318. https ://doi.org/10.1007/s1089

8-007-9234-1

Audet C, Dennis JE Jr, Digabel SL (2008b) Parallel space decomposition of the mesh adaptive direct

search algorithm. SIAM J Optim 19:1150–1170. https ://doi.org/10.1137/07070 7518

Audet C, Diest K, Le Digabel S, Sweatlock LA, Marthaler DE (2013) Metamaterial design by mesh adap-

tive direct search. Numerical methods for metamaterial design, vol 127. Springer, Berlin, pp 71–96

Bischl B, Wessing S, Bauer N, Friedrichs K, Weihs C (2014) MOI-MBO: multiobjective infill for par-

allel model-based optimization. In: International conference on learning and intelligent optimiza-

tion, Gainesville, FL, USA, 2014. Springer, Cham, pp 173–186. https ://doi.org/10.1007/978-3-319-

09584 -4

Björkman M, Holmström K (2000) Global optimization of costly nonconvex functions using radial basis

functions. Optim Eng 1:373–397. https ://doi.org/10.1023/A:10115 84207 202

Bons NP, He X, Mader CA, Martins JR (2019) Multimodality in aerodynamic wing design optimization.

AIAA J 57:1004–1018. https ://doi.org/10.2514/1.J0572 94

Butts M, Loinaz M, Bauer-Gottwein P, Unnasch R, Gross D (2012) MIKE SHE-ECOLAB: an integrated

catchment-scale eco-hydrological modelling tool. In: 19th international conference on computa-

tional methods in water resources, University of Illinois at Urbana, Champaign, 2012

Christelis V, Regis RG, Mantoglou A (2018) Surrogate-based pumping optimization of coastal aquifers

under limited computational budgets. J Hydroinform 20:164–176. https ://doi.org/10.2166/hydro

.2017.063

Culver TB, Shoemaker CA (1992) Dynamic optimal control for groundwater remediation with flexible

management periods. Water Resour Res 28:629–641

Díaz-Manríquez A, Toscano-Pulido G, Gómez-Flores W (2011) On the selection of surrogate models in

evolutionary optimization algorithms. In: 2011 IEEE congress of evolutionary computation (CEC),

New Orleans, LA, USA, 2011. IEEE, pp 2155–2162. https ://doi.org/10.1109/CEC.2011.59498 81

Eriksson D, Bindel D, Shoemaker CA (2019) pySOT and POAP: an event-driven asynchronous frame-

work for surrogate optimization. arXiv preprint arXiv :00420

Forrester A, Sobester A, Keane A (2008) Engineering design via surrogate modelling: a practical guide.

Wiley, Chichester

Gibson R, Atkinson R, Gordon J (2006) Review of three-dimensional ecological modelling related to

the North Sea shelf system. Part II: model validation and data needs. In: Hawkins SJ, Allcock AL,

Bates AE, Firth LB, Smith IP, Swearer SE, Todd PA (eds) Oceanography marine biology: an annual

review, vol 44. CRC Press, Boca Raton

Gorelick SM, Zheng C (2015) Global change and the groundwater management challenge. Water Resour

Res 51:3031–3051. https ://doi.org/10.1002/2014W R0168 25

Gorelick SM, Freeze RA, Donohue D, Keely JF (1993) Groundwater contamination: optimal capture and

containment. Lewis Publishers Inc., Chelsea

Gutmann H-M (2001) A radial basis function method for global optimization. J Glob Optim 19:201–227

Haftka RT, Villanueva D, Chaudhuri A (2016) Parallel surrogate-assisted global optimization with

expensive functions: a survey. Struct Multidiscip Optim 54:3–13

Hansen N, Finck S, Ros R, Auger A (2009) Real-parameter black-box optimization benchmarking 2009:

noiseless functions definitions. RR-6829, INRIA. https ://hal.inria .fr/inria -00362 633v2 . Accessed 10

Sept 2020

Hensman J, Fusi N, Lawrence ND (2013) Gaussian processes for big data. arXiv preprint arXiv :13096

835

Hinkelmann R (2006) Efficient numerical methods and information-processing techniques for modeling

hydro-and environmental systems, vol 21. Springer, Berlin

Hodges B, Dallimore C (2006) Estuary, lake and coastal ocean model: ELCOM v2. 2 science manual.

Centre for Water Research, University of Western Australia

Hydraulics D (2003) Delft3D-WAQ: technical reference manual. WL| Delft Hydraulics, Delft

Hydraulics D (2005) Delft3D-WAQ users manual. WL Delft Hydraulics, Delft

Isaacs A (2009) Development of optimization methods to solve computationally expensive problems.

University of New South Wales, Australian Defence Force Academy, School of Engineering and

Information Technology

Jakobsson S, Patriksson M, Rudholm J, Wojciechowski A (2010) A method for simulation based opti-

mization using radial basis functions. Optim Eng 11:501–532. https ://doi.org/10.1007/s1108

1-009-9087-1

https://doi.org/10.1007/s10898-007-9234-1
https://doi.org/10.1007/s10898-007-9234-1
https://doi.org/10.1137/070707518
https://doi.org/10.1007/978-3-319-09584-4
https://doi.org/10.1007/978-3-319-09584-4
https://doi.org/10.1023/A:1011584207202
https://doi.org/10.2514/1.J057294
https://doi.org/10.2166/hydro.2017.063
https://doi.org/10.2166/hydro.2017.063
https://doi.org/10.1109/CEC.2011.5949881
http://arxiv.org/abs/00420
https://doi.org/10.1002/2014WR016825
https://hal.inria.fr/inria-00362633v2
http://arxiv.org/abs/13096835
http://arxiv.org/abs/13096835
https://doi.org/10.1007/s11081-009-9087-1
https://doi.org/10.1007/s11081-009-9087-1

2776 W. Xia, C. Shoemaker

1 3

Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions.

J Glob Optim 13:455–492

Krityakierne T, Akhtar T, Shoemaker CA (2016) SOP: parallel surrogate global optimization with Pareto

center selection for computationally expensive single objective problems. J Glob Optim 66:417–437

Le Digabel S (2011) Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm. ACM

Trans Math Softw 37:44

Le Digabel S, Abramson MA, Audet C, Dennis Jr J (2010) Parallel versions of the MADS algorithm for

black-box optimization. In: Optimization days, Montreal, 2010

Matta E, Selge F, Gunkel G, Rossiter K, Jourieh A, Hinkelmann R (2016) Simulations of nutrient emis-

sions from a net cage aquaculture system in a Brazilian bay. Water Sci Technol 73:2430–2435

Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24:1097–1100

Moré JJ, Wild SM (2009) Benchmarking derivative-free optimization algorithms. SIAM J Optim

20:172–191

Mugunthan P, Shoemaker CA, Regis RG (2005) Comparison of function approximation, heuristic, and

derivative-based methods for automatic calibration of computationally expensive groundwater

bioremediation models. Water Resour Res 41:W11427

Müller J (2016) MISO: mixed-integer surrogate optimization framework. Optim Eng Optim 17:177–203

Müller J, Shoemaker CA (2014) Influence of ensemble surrogate models and sampling strategy on the

solution quality of algorithms for computationally expensive black-box global optimization prob-

lems. J Glob Optim 60:123–144

Müller J, Paudel R, Shoemaker C, Woodbury J, Wang Y, Mahowald N (2015) CH 4 parameter estimation

in CLM4. 5bgc using surrogate global optimization. Geosci Model Dev 8:3285–3310

Pinder GF, Celia MA (2006) Subsurface hydrology. Wiley, Hoboken

Pinder GF, Gray WG (1977) Finite element simulation in surface and subsurface hydrology. Academic,

New York

Powell M (1992) The theory of radial basis function approximation in 1990. In: Light WA (ed) Advances

in numerical analysis II: wavelets, subdivision, and radial functions, vol 105. Oxford University

Press, Oxford

Regis RG (2011) Stochastic radial basis function algorithms for large-scale optimization involving expen-

sive black-box objective and constraint functions Computers. Oper Res 38:837–853

Regis RG (2013) An initialization strategy for high-dimensional surrogate-based expensive black-box

optimization. In: Takáč M, Terlaky T (eds) Modeling and optimization: theory and applications.

Springer, Berlin, pp 51–85

Regis RG (2014) Constrained optimization by radial basis function interpolation for high-dimensional

expensive black-box problems with infeasible initial points. Eng Optim 46:218–243

Regis RG, Shoemaker CA (2004) Local function approximation in evolutionary algorithms for the opti-

mization of costly functions. IEEE Trans Evol Comput 8:490–505

Regis RG, Shoemaker CA (2005) Constrained global optimization of expensive black box functions using

radial basis functions. J Glob Optim 31:153–171

Regis RG, Shoemaker CA (2007a) Parallel radial basis function methods for the global optimization of

expensive functions. Eur J Oper Res 182:514–535

Regis RG, Shoemaker CA (2007b) A stochastic radial basis function method for the global optimization

of expensive functions. INFORMS J Comput 19:497–509

Regis RG, Shoemaker CA (2009) Parallel stochastic global optimization using radial basis functions.

INFORMS J Comput 21:411–426

Regis RG, Shoemaker CA (2013) Combining radial basis function surrogates and dynamic coordinate

search in high-dimensional expensive black-box optimization. Eng Optim 45:529–555

Rios LM, Sahinidis NV (2013) Derivative-free optimization: a review of algorithms and comparison of

software implementations. J Glob Optim 56:1247–1293

Shan S, Wang GG (2010) Survey of modeling and optimization strategies to solve high-dimensional

design problems with computationally-expensive black-box functions. Struct Multidiscip Optim

41:219–241

Shoemaker CA, Regis RG, Fleming RC (2007) Watershed calibration using multistart local optimization

and evolutionary optimization with radial basis function approximation. Hydrol Sci J 52:450–465

Smits JG, van Beek JK (2013) ECO: a generic eutrophication model including comprehensive sediment-

water interaction. PLoS ONE 8:e68104

2777

1 3

GOPS: efficient RBF surrogate global optimization algorithm…

A�liations

Wei Xia1 · Christine Shoemaker1,2

 * Christine Shoemaker

 shoemaker@nus.edu.sg

1 Department of Civil and Environmental Engineering, National University of Singapore,

Singapore 117576, Singapore

2 Department of Industrial Systems Engineering and Management, National University

of Singapore, Singapore 117576, Singapore

Snir M, Otto S, Huss-Lederman S, Walker D, Dongarra J (1996) MPI: the complete reference—the MPI

core. MIT Press, Cambridge

Sóbester A, Forrester AI (2014) Aircraft aerodynamic design: geometry and optimization. Wiley, West

Sussex

Sóbester A, Leary SJ, Keane AJ (2004) A parallel updating scheme for approximating and optimizing

high fidelity computer simulations. Struct Multidiscip Optim 27:371–383

Sóbester A, Forrester AI, Toal DJ, Tresidder E, Tucker S (2014) Engineering design applications of sur-

rogate-assisted optimization techniques. Optim Eng 15:243–265

Torczon V (1997) On the convergence of pattern search algorithms. SIAM J Optim 7:1–25

Wool TA, Ambrose RB, Martin JL, Comer EA, Tech T (2006) Water quality analysis simulation program

(WASP), vol 6. User’s Manual, Version 6

Yeh WW (2015) Optimization methods for groundwater modeling and management. Hydrogeol J

23:1051–1065

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	GOPS: efficient RBF surrogate global optimization algorithm with high dimensions and many parallel processors including application to multimodal water quality PDE model calibration
	Abstract
	1 Introduction
	2 Literature review
	3 GOPS
	3.1 General description of GOPS
	3.1.1 Surrogate fit
	3.1.2 Center selection
	3.1.3 Candidate search
	3.1.4 Adaptive learning

	3.2 Dynamic number of centers and evaluations per center
	3.3 for a “Good Center Candidate Pool”
	3.4 Convergence of GOPS

	4 A multi-modal optimization with objective function based on nonlinear PDE model
	4.1 Partial differential equation models of water quality
	4.2 The objective function
	4.3 Demonstration of the nonlinear, multi-modal features of water quality model calibration

	5 Numerical experiments
	5.1 Alternative parallel optimization algorithms
	5.2 Algorithm comparison on test function suit
	5.3 Relative speedup on test function suite
	5.4 Algorithm comparison on WAQ

	6 Conclusion
	Acknowledgements
	References

