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Abstract

This paper describes a new parallel global surrogate-based algorithm Global Opti-

mization in Parallel with Surrogate (GOPS) for the minimization of continuous 

black-box objective functions that might have multiple local minima, are expensive 

to compute, and have no derivative information available. The task of picking P 

new evaluation points for P processors in each iteration is addressed by sampling 

around multiple center points at which the objective function has been previously 

evaluated. The GOPS algorithm improves on earlier algorithms by (a) new center 

points are selected based on bivariate non-dominated sorting of previously evalu-

ated points with additional constraints to ensure the objective value is below a target 

percentile and (b) as iterations increase, the number of centers decreases, and the 

number of evaluation points per center increases. These strategies and the hyper-

parameters controlling them significantly improve GOPS’s parallel performance on 

high dimensional problems in comparison to other global optimization algorithms, 

especially with a larger number of processors. GOPS is tested with up to 128 pro-

cessors in parallel on 14 synthetic black-box optimization benchmarking test prob-

lems (in 10, 21, and 40 dimensions) and one 21-dimensional parameter estimation 

problem for an expensive real-world nonlinear lake water quality model with par-

tial differential equations that takes 22 min for each objective function evaluation. 

GOPS numerically significantly outperforms (especially on high dimensional prob-

lems and with larger numbers of processors) the earlier algorithms SOP and PSD-

MADS-VNS (and these two algorithms have outperformed other algorithms in prior 

publications).

Keywords PDE-constrained optimization · Surrogate models · Parallel computing · 

Water quality models · Global optimization · Multi-modal and black-box objective
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1 Introduction

Optimization of numerical simulation models is important because they are 

widely used in numerous real-world applications in many fields, including sci-

ence and engineering. One essential category of computer simulation models is 

those that are computing solutions to a system of partial differential equations 

(PDE) on, for instance, surface water and groundwater problems (Culver and 

Shoemaker 1992; Gorelick et al. 1993; Hinkelmann 2006; Pinder and Gray 1977; 

Yeh 2015), and aerodynamics problems (Bons et al. 2019; Sóbester and Forrester 

2014). The computational time of these models tends to be significant (many 

minutes to hours per simulation).

For optimization of simulation models that are expensive, the optimization algo-

rithm needs to be able to find a good solution with relatively few objective function 

evaluations. There are many efficient algorithms for linear, convex PDE optimiza-

tion problems (e.g., Culver and Shoemaker 1992), which only have one local solu-

tion. However, when the simulation models contain multiple interacting nonlinear 

relationships, the objective function based on simulation results can have many local 

minima (Gorelick and Zheng 2015), so a global optimization method is necessary to 

find the global optimum. Optimizing multi-modal objectives is much harder because 

these non-global methods (e.g., linear, convex, or unimodal nonconvex algorithms) 

are not designed to find the best among multiple separated local minima. In addi-

tion, we assume no derivative information is available, and hence gradient-based 

methods or methods using an adjoint approach are not applicable.

Our goal is to present an algorithm that is effective for global optimization 

of expensive objective functions, including but not limited to objective functions 

subject to simulation models with partial differential equations. We propose a 

new parallel algorithm Global Optimization in Parallel with Surrogate (GOPS) 

that uses a surrogate model of the original expensive function to help guide the 

optimization search and reduce the number of evaluations on the expensive objec-

tive function. The surrogate model is cheap-to-compute, built with previously 

evaluated points, and is dynamically updated during the optimization process. 

The new algorithm enables evaluating multiple simulations simultaneously in one 

iteration. These multiple evaluation points are sampled around multiple centers 

selected from previously evaluated points. The parallel processing can help fur-

ther to speed up the optimization processes and to reduce the wall-clock time that 

the user needs to spend on waiting for results.

GOPS uses some features of the earlier SOP algorithm (Krityakierne et  al. 

2016) but improves on earlier algorithms by (a) new centers are selected based 

on bivariate non-dominated sorting of previously evaluated points with additional 

constraints to ensure the objective value is below a target percentile and (b) as 

iterations increase, the number of centers decreases and the number of evalua-

tion points per center increases. These features in GOPS are not present in earlier 

algorithms, which makes GOPS more robust and faster to converge.

We tested the GOPS algorithm on 14 analytical test functions (with 10, 21, 40 

dimensions) and one real-word PDE-constrained parameter estimation problem 
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(with 21 dimensions). The real-world test problem involves a highly nonlinear 

multi-modal model (solving partial differential equations) for fate and transport of 

many water quality constituents in a lake. This, hence, is an important example of 

the use of the GOPS algorithm on a PDE-based objective function. GOPS showed 

improved performance over SOP algorithms and other optimization methods.

The structure of this paper is as follows. In Sect. 2, the literature review is given. 

Section 3 describes the GOPS algorithm. In Sect. 4, we explain in detail the water 

quality model parameter estimation problem. In Sect. 5, we discuss the numerical 

results of algorithm performance on test functions and the real-world test prob-

lem. The Online Resource contains an extensive list of supplementary information, 

including definitions of symbols and parameters.

2  Literature review

Our focus is on global optimization of expensive, black-box, multi-modal objective 

functions for which no derivatives of the objective function available. Optimization 

algorithms that do not require derivative information are also referred to as deriva-

tive-free algorithms. A comprehensive literature review of different kinds of deriv-

ative-free algorithms, including both local and global optimization methods, can be 

found in Audet and Hare (2017) and Rios and Sahinidis (2013).

The global optimization algorithms can be classified into non-surrogate methods 

and surrogate methods based on whether the surrogate model is used to direct the 

algorithm search. A popular class of global non-surrogate methods for engineer-

ing problems are heuristic methods (e.g., Genetic Algorithm, Evolutionary Strat-

egies, and Particle Swarm  Optimization). These methods are straightforward to 

implement, and they can escape from local optima. However, such methods usually 

require many thousands of function evaluations (Jakobsson et al. 2010). Hence they 

are not suitable for problems that are computationally expensive to evaluate, such as 

an objective function that requires the solution of an expensive nonlinear PDE, and 

they are not considered in this paper.

There is another set of global non-surrogate methods that are combinations of a 

local optimization method and a global heuristic method that has global exploration 

features. Audet et  al. (2008a) explored the combination of Mesh Adaptive Direct 

Search (MADS) with the metaheuristic Variable Neighborhood Search (VNS) algo-

rithm. The MADS algorithm is an extension of the Generalized Pattern Search algo-

rithm (Torczon 1997) and converges to a local minimum under appropriate assump-

tions. VNS is a metaheuristic method proposed by Mladenović and Hansen (1997). 

It uses a random perturbation method, which makes it able to move away from a 

local optimum solution and has been proven efficient on a broad range of problems. 

The study by Audet et al. (2008a) indicates that MADS with VNS allows the algo-

rithm to move away from local solutions. MADS with VNS is available in NOMAD 

software (Le Digabel 2011), and it has three parallel versions: p-MADS, COOP-

MADS, and PSD-MADS (Le Digabel et  al. 2010). PSD-MADS performs better 

than other parallel MADS versions when the decision vector dimension is equal to 

or greater than 20 (Le Digabel 2011).
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Global surrogate-based methods are suitable for expensive objective functions. 

These methods use an inexpensive surrogate model that approximates the black-box 

function to guide the search. Hence surrogate-based optimization models usually 

require a fewer number of evaluations on expensive black-box objective function 

than required by algorithms without surrogates.

There are two types of popular global surrogate-based optimization methods: (1) 

Gaussian Process (GP) based and (2) Radial Basis Functions (RBF) based. There 

are also other types of surrogates used in optimization, e.g., polynomial model and 

support vector regression. Detailed information of these surrogates could be found 

in Díaz-Manríquez et al. (2011), Forrester et al. (2008), and Müller and Shoemaker 

(2014). The most well-known GP-based method is EGO, which was introduced by 

Jones et al. (1998) and has gained popularity for some types of problems. However, 

a disadvantage of GP-based methods is that these methods can become computa-

tionally prohibitive in the non-evaluation phase of optimization and require an enor-

mous amount of memory when the problem is high dimensional (Hensman et  al. 

2013; Regis 2013). Isaacs (2009) also showed that the time for the Gaussian process 

model to fit its surrogate (training time) is much longer than that for an RBF model 

of the same dimension.

RBF was first introduced in global optimization by Gutmann (2001), and there 

are various RBF-based serial methods proposed (Jakobsson et al. 2010; Regis and 

Shoemaker 2005, 2007b, 2009, 2013). RBF-based methods are proven to be effec-

tive for solving real-word computationally expensive problems, e.g., designing the 

specifics of trains (Björkman and Holmström 2000), groundwater problem (Chris-

telis et al. 2018; Mugunthan et al. 2005), watershed problem (Regis and Shoemaker 

2007b, 2013), methane emission problem (Müller et  al. 2015), and  aerodynamic 

regional airliner wing design (Sóbester et al. 2014). Jakobsson et al. (2010) applied 

an RBF-based global optimization method to the combustion engine design prob-

lem, which is a noisy function and computationally expensive with one simulation 

taking 42 h. There are also efforts made on using RBF-based methods to solve high 

dimensional problems. For example, DYCORS (Regis and Shoemaker 2013) has 

been successfully applied to 200-dimensional problems. RBF-based methods were 

applied to a 124-dimensional automotive problem with 68 black-box inequality con-

straints (Regis 2011, 2014). Díaz-Manríquez et al. (2011) compared RBF with GP 

(also known as kriging), polynomial model and support vector regression in term of 

accuracy, robustness, scalability and efficiency and suggested that for high dimen-

sional problems (with d > 15) RBF is the best techniques to be combined with opti-

mization algorithms.

There are also advances in the parallelization of surrogate-based algorithms to 

tackle expensive optimization problems with the assistance of parallel computing 

(Haftka et al. 2016). Sóbester et al. (2004) proposed a parallel version of the GP-

based optimization method. Given P processors, in each iteration, the best P points 

with the maximum expected improvement value (based on the GP surrogate) are 

selected as evaluation points for the next iteration. Bischl et  al. (2014) applied a 

multi-objective infill criterion on a parallel GP-based optimization algorithm 

to select multiple evaluation points that considered both diversity and expected 

improvement.
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Regis and Shoemaker (2009), in the parallel Stochastic RBF (SRBF) algorithm, 

used a weighted metric to select P points sequentially in each iteration from candi-

date points generated around the best solution found so far. The selection of evaluation 

points in each iteration is not only dependent on the candidate point’s estimated func-

tion value (based on surrogate model) but also its minimum distance from the evalu-

ated and selected points in that iteration. The value of the weight between the surrogate 

estimation and distance criteria is varied to select as many evaluation points as there are 

processors.

Krityakierne et  al. (2016) proposed the SOP algorithm for parallel computation 

and reported that there are a few studies on parallel surrogate global optimization that 

scaled up to many processors. The proposed SOP algorithm showed good speed up 

with up to 64 processors per iteration. In previous studies before their SOP study (Kri-

tyakierne et al. 2016), the maximum number of processors in parallel with global sur-

rogate optimization was not larger than 10. Given P processors, SOP selects P eval-

uation points for the next iteration from candidate points generated around P center 

points. The P center points are selected from all previously evaluated points, based on 

bi-objective optimization on (1) the objective function value and (2) the distance from 

all other evaluated points. The utilization of multi-objective techniques is to balance the 

trade-off between exploration and exploitation during the search. Their study showed 

promising results that their optimization algorithm could be scaled up to use many pro-

cessors effectively.

However, in the SOP study, the maximum dimension of the tested problem is 12. 

So, it is not clear whether the SOP algorithm is still efficient on higher dimensional 

optimization problems. Many real-world optimization problems involving PDE objec-

tive functions are high dimensional (Björkman and Holmström 2000; Shan and Wang 

2010).

The new algorithm GOPS, introduced here, is significantly different from previous 

algorithms, including SOP. GOPS is designed to do well when the problem is high 

dimensional and/or the number of processors is large. The numerical result presented 

latter shows that GOPS has a significantly better numerical performance and can work 

with a larger number of parallel processors than other algorithms tested, even when the 

dimension of the decision vector is high.

3  GOPS

GOPS is a general purpose global optimization algorithm solving optimization prob-

lem in following form:

where f (�) is the objective function to minimize and is assumed to be multi-modal, 

black-box (no derivative information available). � is the decision vector that in d 

dimensional. � is the d dimensional solution space usually defined by the upper bound 

and lower bound of the values of the parameters, so � = {�� ≤ � ≤ ��} ⊂ ℝ
d.

(1)

min
�

f (�)

� ∈ � ⊂ ℝ
d
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GOPS uses some features from the earlier parallel algorithm SOP (Krityakierne 

et al. 2016) and adds important new features to improve performance quite signifi-

cantly, especially with many processors and decision vectors of high dimensions. 

GOPS has new strategies to dynamically change the diversity of candidate points 

generated by multiple sampling centers.

In following subsections, we will first describe the general framework of the 

GOPS algorithm and then specifically introduce new, improved strategies used in 

the iterative phases of GOPS that are dynamic by changing (1) P
(n)

C
 the number of 

centers (around which candidate points are generated) in iteration n, (2) Ncj
 the num-

ber of points around each center ( cj, j ∈ {1,… , P
(n)

C
} ), and (3) P

(n)

good
 , which is the 

percentile of the previously evaluated points (based on only function value) that are 

allowed to be selected as centers (which we refer to as “Good center candidate 

pool”). As discussed later, these three factors, which are dynamically changing as 

the iterations n increase, are helpful both in exploration and exploitation. Note that 

Ncj
 is a function of n, but n is suppressed to reduce the complexity of the notation.

3.1  General description of GOPS

GOPS follows the iterative master-worker framework for the RBF surrogate algo-

rithms (Regis and Shoemaker 2007a) and consists of three core steps, namely (1) 

Initialization, (2) Iterative loop and (3) Termination. The difference between GOPS 

and previous RBF-based algorithms is in the Iterative loop. The Initialization phase 

is to compute the objective function f (�) at n
0
 points, so there are multiple points 

{

�i, f (�i)
}

 (for i = 1,… , n0 ) that are used to initialize the surrogate model and start 

the iterative loop. These initial points in Step (1) could be obtained via any experi-

mental design method (e.g., Latin hypercube sampling) where the number of points 

n
0
 to be evaluated is given. In the Termination step, the only terminal condition for 

GOPS is computing budget, i.e., the maximum number of evaluations N
max

 , which is 

an input variable. In GOPS we set the number of evaluations in each iteration to be 

the number of processors available P. So, the terminal conditions can also be consid-

ered to be the maximum number of iterations, MAXIT ( MAXIT = (Nmax − n
0
)
/

P ). 

Note to make full use of the P processors, the values of N
max

 and n
0
 are set to be 

multiples of the number of processors P.

The core of the algorithm and most complicated part is the Iterative loop, the 

main tasks of which are (a) to use the surrogate to select P points at which to simul-

taneously evaluate the objective function on the P available processors and then (b) 

to update the surrogate with the newly available values of the objective function. It 

is increasingly difficult to find P worthwhile points to evaluate on P processors as 

P gets large because one wants points that the surrogate indicates are likely to have 

low values (for minimization) and that are not too close together (so that there is 

some exploration). Our numerical experiments later use up to 128 processors, so we 

need to pick as many as 128 evaluation points in each iteration to assign to different 

processors.

There are five sub-steps within the iterative loop step of GOPS, including (1) Sur-

rogate fit; (2) Center selection; (3) Candidate point generation and search; (4) 
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Objective function evaluation; (5) Adaptive learning. For sub-steps (1), (4) and (5) 

GOPS and SOP are the same. Sub-step (2) and (3) use some of the steps in SOP, 

including (a) non-dominated sorting and tabu and radius constraints for center 

selection and (b) dynamic coordinate search around the center for candidate search. 

GOPS is different from SOP in sub-step (2) and (3) by adding two more sampling 

strategies (a) the dynamic number of centers P
(n)

C
 and evaluations of each center Ncj

 

and (b) P
(n)

good
 , which guarantees that points with poor objective function values do 

not become centers. In the following text, we will illustrate these steps that are com-

mon with SOP and then provide a detailed description of the two strategies in detail 

in Sects. 3.2 and 3.3.

3.1.1  Surrogate fit

In the surrogate fit step, the surrogate model of the original black-box func-

tion f (�) is denoted as f̂ (�) . The surrogate f̂ (�) is built with the points evaluated 

previously before the nth iteration, where n is the index of the iteration number 

( 1 ≤ n ≤ MAXIT  ). The reason to use the surrogate model is to help guide the opti-

mization search to reduce the number of evaluations on the expensive objective 

function f (�) . The surrogate model is used to do a preliminary screening on the 

larger number of trial points such that only these points with a relatively small sur-

rogate value (regard as “promising” points) and not too close to previously evaluated 

points will be selected to do the expensive function evaluation. A cubic Radial Basis 

Function (RBF) is selected as the surrogate model function.

Let S(n) be the set of evaluated sample points before n algorithm iterations and N
E
 

the number of evaluation points in S(n) , where N
E
= n

0
+ P × (n − 1) . The surrogate 

model is fit on S(n) with a cubic Radial Basis Function (RBF), which takes the inter-

polant of the form:

where ||•|| is the Euclidean norm, p(�) is a linear polynomial in d variables with 

d + 1 coefficients b
i
∈ ℝ for i = 1,… d + 1 , and ϕ has a cubic form: �(r) = r

3 , the 

coefficients �
i
∈ ℝ for i = 1,… , N

E
 [in Eq. (2)], are determined by solving the fol-

lowing linear system of equations:

where � ∈ ℝ
N

E
×N

E and �x,y = �(||�x − �y||), x, y = 1,… , NE , � ∈ ℝ
(d+1)×(d+1) is a 

matrix of zeros, � =
[

f (�
1
) … f (�NE

)
]T

 , � ∈ ℝ
N

E
×(d+1) and the ith row of the 

matrix � is 
[

�
T

i
1
]

 , � =

[

�
1
… �

N
E

]T

 , � =

[

b
1
… b

d+1

]T
 . The matrix 

[

� �

�T �

]

 in 

Eq. (3) is nonsingular and the linear system Eq. (3) has a unique solution if and only 

(2)f̂ (�) =

n∑

i=1

�i�(||� − �i||) + p(�),� ∈ ℝ
d

(3)

[

� �

�T �

][

�

�

]

=

[

�

�

]
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if rank(�) = d + 1 (Powell 1992). This condition is satisfied when there is a subset 

of d + 1 affinely independent points in S(n).

After the surrogate model f̂ (�) is built, given any � ∈ ℝ
d , there will be a surro-

gate function value f̂ (�) as an estimation of the black-box function f (�) . The value 

f̂ (�) is used to help guide the optimization search because it is much cheaper to 

evaluate than f (�).

3.1.2  Center selection

During each iteration of the algorithm, a number of evaluated points are selected 

as center points, which will be used for generating candidate points, some of which 

will become evaluation points where the expensive f (�) is evaluated. We will gener-

ate candidate points considered for expensive evaluation by many random perturba-

tions around each center point. P
(n)

C
 is the number of center points in the nth iteration, 

which can change as the number of iterations increases. In the earlier RBF algorithm 

SOP, the value of P
(n)

C
 is equal to the number of processors P and does not change 

with iteration number n. The P
(n)

C
 center points are selected from previously evalu-

ated points (denoted as S(n) ). In GOPS, the number of centers P
(n)

C
 is being reduced 

as the number iterations n increase. A detailed description of the computation of P
(n)

C
 

is discussed in Sect. 3.2.

Centers in each iteration are selected based on the non-dominated sorting tech-

niques (Krityakierne et  al. 2016). In each iteration, all the evaluated points in S(n) 

are ranked based on two objectives, (1) the objective function value f (�
i
) and (2) 

the negative of minimum distance from �
i
 to all other evaluated points S(n)�

{

�
i

}

 

(denoted as �(n)(�
i
) ). In non-dominated sorting, the evaluation point �

a
 dominates �

b
 

if both f (�
a
) < f (�

b
) and �(n)(�

a
) < �(n)(�

b
).

Note that as the iteration number n increases, there are new points added to S(n) . 

Hence the value of the negative distance �(n)(�
i
) for the same evaluated point �

i
 is 

different at different iterations. We want to sample around points with a small value 

of f (�
i
) for exploitation and with small �(n)(�

i
) for exploration (note �(n)(�

i
) is the 

negative of distance).

The non-dominated sorting ranks all previous evaluation points into different 

fronts, where the points in the jth front dominate all the points on the j + 1th front. 

On any front m, all the points on the jth front are ranked in order of the value of f (�) 

from smaller value to larger value. The detailed implementation of non-dominated 

sorting refers to Line 4 Step 1–3 in Algorithm 3 in Online Resource. The selection 

of center points begins from points in the first front to the last front and starts from 

points with the smallest value of f (�) within each front. Note that the best solution 

found so far (denoted as � ∗ ) is always selected as the first center c
1
 (Line 6 in Algo-

rithm 3 in Online Resource).

In GOPS, we add a constraint on the evaluated points for non-dominated sorting. 

Essentially, only evaluated points that are in the “Good center candidate pool” 

(which contains points in the best P
(n)

good
 percent of all evaluated points, based on 

objective function values) are allowed to become centers and are included for non-

dominated sorting. Non-dominated sorting has a time complexity of O(MN
2) to 
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generate non-dominated fronts for N evaluation points and M objective functions (In 

our case, M = 2). Limiting evaluation points to the best P
(n)

good
 percent of the objective 

function values cuts down the number of evaluation points N for non-dominated 

sorting and hence can significantly reduce the calculation time for non-dominating 

sorting compared with SOP. However, the biggest advantage of limiting the selec-

tion of candidate points to the best P
(n)

good
 percent of objective functions is that it is 

likely to provide an improved set of candidate points. P
(n)

good
 is updated by the algo-

rithm dynamically in each iteration, which will be discussed in Sect. 3.3.

Besides the non-dominated sorting for center selection, two additional criteria, 

(1) Tabu Rule and (2) Radius Rule, are adopted from SOP to balance the exploration 

and exploitation further. Tabu rule is that points that were chosen as centers but did 

not induce an improvement in Nfail iteration will be forbidden from being selected as 

centers for a tenure of N
tenure

 iterations. The Radius constraint is that the points being 

selected as centers should be at least rj distance from selected centers cj in that itera-

tion, where rj is the search neighborhood sampling radius of center cj and j is the index 

of center in iteration n ( j = 1,… , P
(n)

C
 ). The Tabu and Radius constraints in GOPS 

and SOP are the same. Only those points that do not violate the Tabu and Radius con-

straints can be selected as centers (as in Line 10 in Algorithm 3 in Online Resource). 

The implementation of center selection refers to Algorithm 3 in Online Resource.

3.1.3  Candidate search

To make full use of the P processors, we must in each iteration select P evaluation 

points 
{

�
(n)

i
, i = 1,… , P

}

 , at which the expensive black-box objective function 

f (�
(n)

i
) will be evaluated. In the original SOP, the P evaluation points are generated 

around P centers and the number of points selected for evaluation around each 

center is equal to 1. Let Ncj
 be the number of samples around the center cj . Hence in 

SOP P
(n)

C
= P ( ∀n ∈ {1,… , MAXIT} ), and Ncj

= 1 ( ∀j ∈ {1,… , P
(n)

C
} ). In GOPS, 

the number of centers in the nth iteration P
(n)

C
 is dynamically decreasing. Hence the 

number of samples around each center changes as the number of iterations increases. 

Note that we keep the total number of expensive evaluations f (�) in each iteration as 

constant P (hence 
∑P

(n)

C

j=1
Ncj

= P ). We will demonstrate how the number of samples 

around each center changes as the number of iterations n increases in Sect. 3.2.

The samples around each center are generated by perturbing some selected coor-

dinates of the current center point. We adopt the dynamically coordinated search 

from DYCORS (Regis and Shoemaker 2013) whereby the expected number of coor-

dinates being chosen for perturbation is dynamically reduced during the search. This 

perturbation strategy is also used in SOP. For each center, a set of N
cand

 candidate 

points will be generated by perturbing only dimensions that have been randomly 

selected. Each coordinate of the center c
i
 has a probability of pselected = �(n) being 

selected to be perturbed, where �(n) is reduced as the iteration number n increases 

by �(n) = �
0
× [1 − ln((n − 1)P + 1)∕ln(MAXIT × P)] , where 1 ≤ n ≤ MAXIT  . 

We set �0 = min(20∕d, 1) , as in DYCORS and SOP. For those coordinates selected 

to vary (denoted as Iperturb ), the variation of the trial points in each coordinate 
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k ∈ Iperturb is sampled from truncated normal distribution N
truncated

(0, �2, a, b) with 

the standard deviation � = rj . rj is the sampling radius of center cj and the bound 

[a, b] = [lb(k) − cj(k), ub(k) − cj(k)] (see Line 13 Algorithm 5 in Online Resource). 

For centers that are for the first time being selected as centers, the initial value of 

search radius rj is equal to r
int

 . We adopt the value used in DYCORS and SOP, 

r
int

= 0.2 × l(�) , where l(�) is the length of the shortest side of the hypercube � [as 

defined in Eq. (1)]. Detailed information about the truncated normal distribution can 

be seen in Krityakierne et al. (2016).

For center cj we choose evaluation points by selecting Ncj
 candidate points with the 

smallest surrogate value f̂ (�) from the N
cand

 candidate points. Detailed implementa-

tion of the candidate search around centers is described in Algorithm  5 in Online 

Resource. These candidate points selected as evaluation points are sent to P proces-

sors to do all the objective function evaluations, with one evaluation per processor.

3.1.4  Adaptive learning

In the adaptive learning step, GOPS evaluates the candidate search around the center 

cj , which is labeled success only if there is at least one evaluation point of the newly 

generated samples from center cj (denoted as Snew
cj

 ) providing a significant improve-

ment based on the hypervolume improvement metric ( HI , used in Krityakierne et al. 

(2016)). The hypervolume of a set of evaluated points S(n) is the area that is domi-

nated by S(n) on the objective space based on two objectives: (1) the objective func-

tion value f (�) and (2) the negative of minimum distance from � to all other evalu-

ated points �(n)(�) . The hypervolume improvement is the difference between 

hypervolume of previously evaluated points with and without the newly evaluated 

point. If the value of HI exceeds a pre-defined threshold � (usually set to be a small 

positive value), the search around center c
i
 is considered a success. Otherwise, the 

search around center c
i
 is a failure, in which case the search radius rj (around center 

c
i
 ) is reduced by half, and the failure count of the center point is increased by one 

(Line 3–5 in Algorithm 6 in Online Resource). Note that the value of rj affects sam-

pling of candidate points around centers. With a large value of rj , the generated can-

didate points have a higher chance of being far from the center points. If the search 

around the center was not successful, it makes sense to search the region farther 

from that center. If the failure count exceeds a pre-defined threshold Nfail , the center 

point is added to Tabu list (Line 13–14 in Algorithm 6 in Online Resource) and will 

be removed from that Tabu list only after N
tenure

 iterations. The implementation of 

adaptive learning is explained in more detail in Algorithm 6 in Online Resource.

We can now give the general framework of the GOPS algorithm in Algorithm 1. The 

detailed implementation of each step in Algorithm 1 is demonstrated in Algorithm 2–5 

in Online Resource. For example, “2.1” in Algorithm 1 refers to “Step 2.1” in Algo-

rithm 2 in Online Resource. Symbols defined in definitions tables in Table B1–B2 in 

Online Resource. Note that the main difference between GOPS and SOP is the dynamic 

changes in the algorithm controlled by the varying numbers of centers P
(n)

C
 and newly 

evaluated points around each center N
cj
 , and P

(n)

good
 that eliminates centers at points with 

very poor objective values.
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Before explaining the calculation of P
(n)

C
 , N

cj
 and P

(n)

good
 in the following subsec-

tions, we first introduce a diversity factor �
(n)

diversity
 which is used to control the value 

of P
(n)

C
 , N

cj
 and P

(n)

good
 . The diversity factor �

(n)

diversity
 is decreasing linearly as the num-

ber of iterations n increases. The value of �
(n)

diversity
 at the nth iteration is calculated as:

hence �
(n)

diversity
= 1 when n = 1 to �

(n)

diversity
= 0 when n = MAXIT .

3.2  Dynamic number of centers P
(n)

C
 and evaluations per center Ncj

In GOPS, to increase the exploitation ability of the algorithm during the optimiza-

tion search, we dynamically reduce the number of centers in each iteration to focus 

on centers that seem to be especially promising as we obtain more information. We 

add a hard constraint on the number of centers in each iteration so that P
(n)

C
≤ P

(n)max

C
 

for the nth iteration. The value of P
(n)max

C
 is being dynamically reduced during the 

operation search process and controlled by the diversity factor �
(n)

diversity
 . Since we 

want at least one center to be selected in each iteration, the value of P
(n)max

C
 should be 

at least one (Line 5 in Algorithm 3 in Online Resource). Hence the maximum num-

ber of centers in the nth iteration is

Note the ceiling function ⌈ℝ⌉ is used to make sure P
(n)max

C
 is an integer in Eq. (5). 

The formula in Eq. (5) allows a larger number of centers to be selected in the initial 

search stage and allows only a smaller number of centers being selected in the final 

search stage. With a smaller number of centers, there is more focus put on exploita-

tion in the later part of the search. Initially (i.e., when n is small), the number of 

centers is much larger, so the focus is more on exploration. As the number of itera-

tions increases, GOPS eventually has more samples around one center to allow suf-

ficient exploitation of each dimension of a good solution that is at the center point. 

This is very important for high dimensional problems. The original version of SOP 

only evaluates one sample around each of the centers, which limits exploitation, 

especially in high dimensional problems.

To further enhance the exploitation ability of the algorithm, we add one more 

constraint for the number of samples around the best solution found so far. Note that 

the best solution found so far will always be selected as the first center point c
1
 . We 

set the minimum number of samples around the center that is the best solution found 

so far to be N
min

c
1

 , which is dynamically increasing as the number of iteration 

increases:

(4)�
(n)

diversity
= 1 − (n − 1)∕(MAXIT − 1)

(5)P
(n)max

C
= max

(⌈

P × �
(n)

diversity

⌉

, 1

)

(6)N(n)min
c1

= max

(⌈

P × (1 − �
(n)

diversity
)

⌉

, 1

)
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In GOPS, we treat the best solution found so far differently from other centers, 

which is different from the SOP (Krityakierne et al. 2016) algorithm. We want to 

sample more around the best solution found so far, especially in the final search 

stage. We dynamically increase the value of N
min

c
1

 as the optimization iteration 

increases. This helps exploitation in each dimension of a good solution in the final 

optimization search stage.

To actually implement GOPS, we first decide the number of evaluations points 

around the best center c
1
 (Line 2–6 Algorithm 4 in Online Resource):

hence the number of evaluation points that could be assigned to the remaining 

P
(n)

C
− 1 centers is P − N

c
1

 . We try to treat the reminding P
(n)

C
− 1 centers 

{

c2,… , c
P
(n)

C

}

 equally. Hence the remaining P − N
c

1

 evaluation points are distributed 

to the P
(n)

C
− 1 centers by cycling though the reminding centers set 

{

c2,… , c
P
(n)

C

}

 

until all the P
(n)

C
− 1 evaluation points are assigned. The detailed implementation of 

the calculation of Ncj
 for j = 1,… , P

(n)

C
 refers to Line 2–15 Algorithm 4 in Online 

Resource.

3.3  P
(n)

good
 for a “Good Center Candidate Pool”

In GOPS, we introduce P
(n)

good
 , which is a variable, to ensure a good center candidate 

pool. We rank all the evaluation points found so far based on their objective function 

value f (�) (where lowest is best). Then in iteration n, the best P
(n)

good
 percent of the 

previously evaluated points are put in the “good center candidate pool.” The per-

centage of the “good center candidate pool” in the nth iteration P
(n)

good
 declines as 

iteration n increases so (Line 1–3 Algorithm 3 in Online Resource):

where pini
good

 and pend
good

 are parameters (values are given in Table  B1 in Online 

Resource) to control the percentage of solutions that can be selected as center points 

in the initial and final iterations.

The introduction of the “good” center candidate pool is to prevent the selection 

of the “poor” solutions during the center selection. In the original SOP, the centers 

in the nth iteration are selected from all the evaluation points found so far before 

iteration n based on the non-dominated sorting on two objectives (1) objective func-

tion value f (�) and (2) the negative minimum distance �(n)(�) to all other evaluated 

points. Recall that the distance function is used to encourage exploration into unex-

plored areas.

The center selection process in the SOP algorithm will iteratively select solutions 

from the first front and then from the remaining fronts (going in order front 2, front 

3, etc.) until enough centers are selected. A drawback of the center selection method 

(7)N
c

1
=

{
⌈

P

/

P
(n)

C

⌉

if

⌈

P

/

P
(n)

C

⌉

> N
min
c

1

N
min
c

1

else

(8)P
(n)

good
= Pini

good
× �

(n)

diversity
+ Pend

good
× (1 − �

(n)

diversity
)
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in SOP is that an evaluation point z with a very large objective function value f(z) 

(a bad feature) has a reasonable chance of being selected in SOP as a center just 

because z is far from other previously evaluated points. Moreover, this will con-

tinue from the beginning of the optimization to the end of the optimization in each 

iteration. In the early iterations, search around these solutions might be useful for 

exploration, but as we get closer to the maximum number of iteration, we want to 

focus on the search around evaluation points with low objective function values. By 

contrast, SOP’s approach will cause a waste of computing resources by searching 

around those centers that have evaluated points with high objective function value in 

the later phases of the search.

In Fig. 1, there is a simple example of the GOPS algorithm on center selec-

tion for three successive iterations on a two-dimensional optimization problem. 

The f (�) test problem used in Fig. 1 is the F15 function from the 14 BBOB syn-

thetical test problem (Hansen et al. 2009) that will be used to test GOPS’s per-

formance later but with 10, 21, and 40 dimensions. In Fig. 1, the range of the 

Fig. 1  Example of center selection in GOPS using the P
(n)max

C
 , Nmin

c
1

 , and P
(n)

good
 strategies on optimization 

of f (�) that is the two-dimensional Rastrigin Function problem. Three successive optimization iterations 

are shown (i.e., n = 1, 2, 3 , where n is iteration number). Previously evaluated points are plotted (pane a) 

in terms of decision variable values (black dots) and (pane b) in terms of objective function values f (�) 

and negative of distance �(n)(�) . (Colored lines for different fronts). In a, the surface of the Rastrigin 

function is shown in contour plot. The circles in pane a denote the search radius of the selected centers. 

In b the evaluated points on different levels of non-dominated fronts are shown. In b the shaded region 

denotes the “Good Center Candidate Pool”. Evaluated points being selected as centers are noted with C1 , 

C2 , C3 , C4 in both a and b 
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two decision variables �
1
 and �

2
 is [− 5, 5]. For the example in Fig. 1, we used 

the result from a real optimization trial where we set the number of initial points 

n
0
= 12 , the maximum number of iterations MAXIT = 3 , and the number of sam-

ples in each iteration P = 4 . The value of Pini
good

 and Pend
good

 are set to be 100% and 

1%, respectively. We show three successive iterations (i.e., n = 1, 2, 3 ). Accord-

ing to Eq.  (8), the percentage of all evaluated points that are classified into 

“Good center candidate pool” at iterations 1, 2, and 3 are P
(1)

good
= 100% , 

P
(2)

good
= 50.5% , P

(3)

good
= 1% , respectively. The number of centers in each iteration 

P
(n)

C
 is dynamically decreasing from four in iteration 1 to one in iteration 4. The 

“good center candidate pool” controlled by P
(n)

good
 effectively prevents those 

points with a very large objective function value being selected as center points. 

Note that in the original SOP, these points with a large value of f (�) in the first 

front in iteration 1 (i.e., the center points C3 and C4 in Fig. 1b) are most likely 

to be selected as center points again by SOP in iteration 2 and 3 just because 

they are far from other evaluated points. Exploring the region around these 

points, which are far from the global optima, is less likely to improve the best 

solution found so far. Hence selecting center points with poor objective dimin-

ishes somewhat the effectiveness of SOP, and this problem of selecting center 

points with poor objective values is eliminated in GOPS.

3.4  Convergence of GOPS

Theorem 1 Suppose that x∗ = minx∈D
f (x) > −∞ is the unique global minimizer of 

f  in D such that minx∈D,‖x−x∗‖≥� f (x) > f (x∗) for all � > 0. If the number of evalua-

tions per iteration P > 1, GOPS converges almost surely to the global minimum.

The proof of Theorem 1 is given in Online Resource. The convergence analysis of 

GOPS is similar to that of SOP. Note that the changes between GOPS and SOP 

are (a) SOP has the number of centers always equal to the number of processors, 

and the number of samples per center is constant, whereas in GOPS the number 

of centers P
(n)

C
 and number of samples around each center Ncj

 can change in each 

iteration (in Sect.  3.2) and (b) GOPS adds constraints to ensure the objective 

value of the selected centers are below a target percentile to prevent poor evalua-

tion points being selected as centers (in Sect. 3.3). From the original SOP paper, 

the convergence analysis of SOP is preserved when the following three conditions 

are met: (1) in each dimension of the vectors that are the P centers, there is a 

bounded-away-from-zero probability of being perturbed, (2) the range of sam-

pling for a variable is a truncated normal distribution covering the entire compact 

hyperrectangle domain, (3) the variance of the normal distribution (perturbation 

distribution) is bounded above zero because it can only be reduced in half at most 

Nfail times. These conditions of SOP’s convergence proof are independent of the 

number of centers and the number of samples around each center and is also inde-

pendent of the location of centers. GOPS does not violate the three conditions 

above, and these features are used in the proof of convergence for GOPS.
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4  A multi-modal optimization with objective function based 
on nonlinear PDE model

We consider the PDE model based parameter estimation problem [a particular 

case of the optimization problem in the form of Eq. (1)], which can be general-

ized in the following form:

where �(�) is a parameterized PDE model that involves a system of partial differen-

tial equations. �(�) is the solution from the PDE model �(�) given input parameter 

vector � = (�1,�2,…�
d
) , where d is the number of parameters included in the cali-

bration. � is the d dimensional solution space usually defined by the upper bound 

and lower bound of the values of the parameters, � = {�� ≤ � ≤ ��} ⊂ ℝ
d . The 

objective function of the optimization f (�) equals an error function g that evaluates 

the difference between the simulated solution �(�) to the desired state �̂ . These and 

other variables are defined in Table B3 in Online Resource.

Note that we consider an optimization problem where more than one state vari-

able is simulated in the PDE model �(�) . For example, the PDE model analyzed 

latter in Sect. 4.1 simulates different kinds of water quality substances in the water 

body simultaneously. Hence, the vector � = {u1, u2,… u
Ns
} contains a set of simula-

tion outputs for N
s
 state variables (i.e., different substances). � = {u1, u2,… u

Ns
} is 

the desired state of these N
s
 variables. In our application, the desired state is a vector 

of observation data points used for model parameter calibration. Note that N
s
 is the 

number of state variables considered in the objective function, which can be smaller 

than the total number of state variables included in the PDE model. This situation 

could happen when there are state variables that do not appear in the objective func-

tion (because there is no observation data available) but that are necessary for the 

simulation of other essential state variables. For example perhaps no observation 

data is available on the organic matter in fast decomposing status (and hence no 

“desired state”).

For the above PDE-constrained parameter optimization problem, it is the execu-

tion of the model simulation, i.e., the evaluation of �(�) in Eq.  (9) that takes the 

majority of the computational time in optimization. In the following subsection, we 

provide the details of a real word PDE model for the water quality simulation of 

a tropical reservoir, which is referred to as WAQ in the following text. The GOPS 

algorithm is applicable to expensive, multi-modal functions without derivative 

information available in general, including objective functions that require the solu-

tion of a PDE model. In Sect. 4.1 and later, we discuss our real-world PDE model 

used as an application in this paper.

(9)

min
�

f (�) = g((�(�),�)

s.t.�(�) is solved

� ∈ � ⊂ ℝ
d
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4.1  Partial differential equation models of water quality

One application of PDE equations is to simulate or predict the spatial and tempo-

ral behavior of water quality substances in lakes or reservoirs (Matta et  al. 2016; 

Smits and van Beek 2013), groundwater aquifers (Gorelick et al. 1993; Mugunthan 

et al. 2005; Pinder and Celia 2006) and other water bodies. The water flow carries 

with it many substances, including some that are not beneficial, like algae or pollut-

ants. These models are essential in water management so that water managers can 

have them as tools (1) to estimate the water quality in area or time (not measured) 

based on the model plus data measured at other points in time or space and (2) to 

estimate future events. For example, if there is going to be a significant change, e.g., 

nutrient emissions to the lake or reservoir or a change in water level (Matta et al. 

2016), managers can evaluate what is the response of the water by feeding the cur-

rent situation into the model and running it into the future.

In response to the demand for models to simulate the surface water systems, engi-

neering firms have developed commercial and open-source software [e.g., Delft3D-

WAQ (Hydraulics 2003), ELCOM (Hodges and Dallimore 2006), MIKE ECO lab 

(Butts et  al. 2012), and WASP (Wool et  al. 2006)]. This software is widely used 

around the world for water management.

These PDE models involve a large number of model parameters, which need to 

be calibrated to the measured data (known as solving an inverse problem) in order 

to simulate the studied system correctly. The PDE model used in this study dynami-

cally simulates the water quality dynamics in an irregularly shaped tropical reservoir 

in Singapore that has over 250  ha of water surface and uneven depth. The water 

quality model describes the nonlinear dynamic process by which nutrients enter-

ing the lake are converted to different chemical forms and some nutrient species are 

taken up by algae. Hence the model has multiple nonlinear interactions, leading to 

an objective function (goodness of fit between model simulation output and meas-

urement) that has multiple local minima. The multi-modal nature of the objective 

function will be discussed in Sect. 4.3. We will call the numerical PDE model based 

on Singapore data “WAQ.”

The Delft3D-WAQ software suite (Hydraulics 2005) is employed in WAQ to sim-

ulate the transport of substances (e.g., nutrients) by solving the three-dimensional 

advection–diffusion equation as below:

where C
i
 is the concentration of the ith substance included in the PDE simulation 

model. There are a total of 64 substances included in the PDE model simulation. 

� = (�1,�2,… ,�
d
)T is the model calibration parameters vector ( � ∈ ℝ

d ), 
⃖⃖⃗∇Ci =

(

�Ci

�x
,

�Ci

�y
,

�Ci

�z

)

 is concentration gradient, where x, y, z represent coordinates 

in three spatial dimensions; � ⊆ ℝ
3 represents the three-dimensional space domain. 

T is the simulation period length; �⃗v is the velocity vector.D⃗ = (Dx, Dy, Dz) represents 

the diffusion coefficient in different spatial directions. S(C
i
) = sources or sinks of 

(10)

�Ci(�)

�t
= −⃖⃗v ⋅ ⃖⃖⃗∇Ci(�) +

⃖⃖⃗∇ ⋅ (⃖⃖⃗D ⋅
⃖⃖⃗∇Ci(�)) + S(Ci) + fR(Ci(�), t) in � × [0, T]
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substance C
i
 , which could be time and spatial variant. fR(Ci(�), t) is the reaction 

term involving the physical, chemical and biological processes. For physical pro-

cesses, e.g., settling, evaporation or volatilization, fR(Ci(�), t) describes the loss or 

increase rate of substance C
i
 at a specific location. For chemical or biological pro-

cesses, fR(Ci(�), t) generally characterizes the relation between substance C
i
 and all 

other substance Cj,j≠i at precisely the same location at that time. For example, ammo-

nia and oxygen can form nitrite through chemical reactions. Dissolved nutrients are 

transformed into organic nutrients during the growth of algae. The decay of the sub-

stance organic nutrients to dissolved nutrients. In the aquatic environment, the rela-

tion between different substances is complicated, and in many forms, we are not 

going to list them all here (Hydraulics 2003).

The above Eq.  (10) is only the simulation of one substance. Since there are, in 

total, 64 substances simulated in the WAQ model, for each substance, there is an 

advection–diffusion equation [i.e., Eq. (10)] to solve. The reaction term fR(Ci(�), t) 

links the advection–diffusion equation [in Eq.  (10)] of different substances C
i
 

together, which makes the solving of the PDE simulation �(�) complicated.

The WAQ model is discretized in space by finite volume method leading to 

1141 segments for our lake example. Figure 2 plots the horizontal grid layout of 

WAQ. The simulation period of the PDE model �(�) is 1 year. We set the time 

interval Δt to be 5 min, resulting in 105, 120 time steps. One run of the WAQ for 

a one-year simulation takes around 22 min to run on a Linux platform with CPU 

E5-2690 @2.60GHZ.

Fig. 2  Horizontal grid layout of the lake (has over 250 ha of water surface and uneven depth) for which 

the water quality model (WAQ) is computed
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4.2  The objective function

In the parameter estimation problem for WAQ, the desired state of a substance s 

at specific locations l ∈ � and time t ∈ [0, T] is the real-world observation data 

in the tropical reservoir, denoted as C
s,l,t

 . We want to find the value of the param-

eter vector � with which the simulated concentration of a substance s at the same 

location l at the same time t, C
s,l,t

(�) , from the WAQ model, is as close to C
s,l,t

 as 

possible when considering all substances, times, and locations. To assign a scalar 

measure of closeness between the simulated C
s,l,t

(�) and C
s,l,t

 , we use the good-

ness-of-fit metric adopted from previous studies in this field (Gibson et al. 2006):

where m is the index of the month, m ∈ [1, M], M = 12 . C̄
l,s,m

(�) is the monthly 

mean value of the simulated substance s at the location l in the month m. ̄̂C
l,s,m

 is 

the monthly mean value of the observed concentration in real-word of substance s 

at the location l in the month m.�
l,s

 is the standard deviation of ̄̂C
l,s,m

 with degree of 

freedom 11 (= 12–1).

Hence our goal is to calibrate the model parameters to the observed data by opti-

mizing the objective function of the optimization in Eq. (9), which is the sum of the 

goodness of fit gfl,s at different locations and for different substances, as below:

For the studied case, there are bi-monthly observation data of 5 different sub-

stances, including Chlorophyll-A, Total Nitrogen, Total Phosphorus, Ammonia, and 

Nitrate at two locations in the tropical reservoir for 1 year. The biological connec-

tion between them is Chlorophyll-A that is an indicator of algal concentrations and 

algal growth is strongly affected by the availability of Nitrogen and Phosphorous, 

which are contained in the remaining four substances.

In total, 21 model parameters ( d = 21 ) are selected for the model calibration. 

These parameters are from the reaction term fR(Ci(�), t) in Eq.  (10). They were 

introduced in the model to characterize the water quality physical (e.g., sedimenta-

tion), chemical (e.g., nitrification and denitrification), and biological processes (e.g., 

the phytoplankton growth) processes. The value of these 21 parameters affects the 

simulated concentration of all the five substances.

This problem is a good example of why the availability of parallel algorithms is 

so crucial because the number of model evaluations required by optimization algo-

rithms to get a good solution is very high with such a high dimensional and com-

putationally expensive problem. For example, assume 1200 evaluations are needed 

to get a good solution (for the value of 21 parameters), the time to compute these 

1200 evaluations in serial would be about 18 days. Water managers typically over-

see multiple water bodies, so having to wait 18 days for the analysis for each water 

(11)
gfl,s =

1

m

M∑

m=1

���
Cl,s,m(�) − Cl,s,m

���

�l,s

(12)f (�) =
∑

l

∑

s

gfl,s
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body is inconvenient. With the 48 processors used in this example, it takes only 

0.375 days to compute the 1200 evaluations. Besides, the cost for the computation 

time (in serial or parallel) using standard rates (US$0.019/core-hours) for the NSCC 

supercomputer was a total of US$8.37, so it is a very modest cost. Hence an efficient 

parallel algorithm like GOPS is needed.

Fig. 3  The values of f (�) for various values of two parameters ar_p_w and Fr_Feox_sed in � . a Only the 

parameter ar_p_w is varied. b Only the parameter Fr_Feox_sed is varied. c Both the parameter ar_p_w 

and Fr_Feox_sed are varied. d The 2-D contour plot of the surface plot in c 
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4.3  Demonstration of the nonlinear, multi-modal features of water quality model 

calibration

As mentioned in Sect. 4.2, the WAQ model contains a system of partial differen-

tial equations describing many complicated physical, chemical, and biological pro-

cesses. Hence, the relation between the objective function f (�) ) and the value of 

these parameters � can be highly nonlinear and multi-modal.

We select two model parameters from the 21 parameters to demonstrate the 

nonlinearity and multi-modal feature of the optimization problem. The first 

parameter is ar_p_w, the stoichiometric constant for phosphorus in refractory 

detritus in water column. It controls the first order mineralization rate of the 

organic phosphorus detritus (Smits and van Beek 2013). The second parameter 

is Fr_feox_sed, the fraction of the iron (III) oxide over the reactive iron in sedi-

ment, which affects the adsorption of dissolved phosphorus in the sediment. Both 

parameters have a direct or indirect influence on the concentration of dissolved 

phosphorus in the water column. The concentration of the dissolved phosphorus 

will then affect the growth of the algae, which will affect many other water qual-

ity substances, such as dissolved nitrogen and chlorophyll-a. Hence, the response 

of the objective function f (�) to the variation of the parameter value is complex 

and likely to be multi-modal.

A major focus of this research is to optimize multi-modal functions. To dem-

onstrate the multimodality of the lake water quality objective function [Eq. (12)], 

we computed the objective function value of f (�) when the value of the two 

parameters were changing independently, and all other parameters were kept at 

their original value. By computing the values of the PDE model (Delft3D-WAQ) 

and substituting the values into Eq. (12), we got the values of the objective func-

tion f (�) , which are plotted below in Fig. 3.

Figure 3a, b show the response of objective function f (�) to the variation of one 

parameter at a time. In other words, the values of all the other 20 parameters are kept 

unchanged as the value of the one parameter is varied. It is quite apparent that the 

optimization problem in one dimension is nonlinear, nonconvex, and has multiple 

local minima. Changing one parameter can lead to improving the fit of some sub-

stances and worsening the fit of other substances with complex interactions, leading 

to the multi-modal objective function seen in Fig. 3a, b.

Figure 3c, d show the landscape of f (�) when the values of the two parameters 

are changing simultaneously while the values of the other 19 parameters are kept 

at their original value. As shown in both Fig. 3c, d, the landscape of the objective 

function surface has a large number of local minima. Figure 3c, d indicate that the 

impact of one parameter on the model simulation output is affected by the value of 

another parameter. For example, when ar_p_w = 0.004, increase of Fr_Fe_ox_sed’s 

value leads to an increase in the objective function value f (�) . On the contrary, 

when ar_p_w = 0.0028, the objective function value f (�) is generally decreasing 

with the increase of Fr_Fe_ox_sed’s value.

We only present in Fig.  3c, d the objective function f (�) landscape over two 

parameters out of the 21 parameters, since it is challenging to include the investi-

gation of all the combinations of parameters. For the 21-dimensional optimization 
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problem, the relation between the objective function value f (�) and the parameter 

value � is expected to be more complicated and to have even more local minima.

5  Numerical experiments

5.1  Alternative parallel optimization algorithms

We compared our algorithm to the original SOP algorithm and the parallel MADS 

algorithm Parallel Space Decomposition of MADS (PSD-MADS) (Audet et  al. 

2008b) with the use of variable neighborhood search (VNS) option (Le Digabel 

2011). The NOMAD’s user guide (Le Digabel 2011) indicates that PSD-MADS is 

much more efficient than other parallel versions of MADS algorithms on the larger 

problems with the number of decision variables above 20. The use of VNS with 

MADS enables the algorithm to escape from local minima and to search for the 

global minimum (Audet et  al. 2008a, 2013; Le Digabel 2011). We refer to PSD-

MADS with VNS as PSD-MADS-VNS. Krityakierne et  al. (2016) compared the 

SOP algorithm with many alternative methods, including Parallel Stochastic RBF 

method (Regis and Shoemaker 2009) and an evolutionary algorithm that uses radial 

basis function approximation (ESGRBF) (Regis and Shoemaker 2004; Shoemaker 

et al. 2007). Their results show that SOP is more efficient than these algorithms, so 

in this paper, we did not consider these algorithms here.

We use Latin hypercube sampling for the generation of the initial evaluation 

points in both GOPS and SOP algorithms for all the following experiments. The 

number of candidate points around each center N
cand

 is set to be min(500d, 5000) . 

The initial sampling radius r
int

 is 0.2 × l(�) , where � is the solution domain, a 

hyperrectangle, and l(�) denotes the length of the shortest side of the hyperrectangle 

� . The threshold value of failure account Nfail and the tenure length N
tenure

 are set to 

be 3, and 5, respectively. The tolerance for local improvement � is  10−5. The values 

of the parameters above (applied to both GOPS and SOP) are kept the same as the 

value suggested in the original SOP paper. For the GOPS algorithm, there are two 

more user-defined parameters pini
good

 and pend
good

 . Good results are obtained by setting 

pini
good

= 50% and pend
good

= 1% . Like the other hyperparameters in Table B1 (in Online 

Resource), we use these parameter values for all the numerical experiments, includ-

ing synthetical test problem and the WAQ problem, so we do not tune parameters to 

specific problems.

The implementation of PSD-MADS-VNS is in NOMAD version 3.9, and we use 

MPI for parallel implementation (Snir et al. 1996). We followed MADS instructions 

on how to set up the problem, as described below. In PSD-MADS, the black-box 

problem is divided into lower dimension subproblems where only a subset of vari-

ables ( ns out of d ) are variant with the value of the rest of d − ns variables fixed. ns 

is a parameter the value of which is chosen by users. The value of these d − ns fixed 

variables are taken directly from the best solution found so far. Each subproblem is 

assigned to a worker that executes the MADS algorithm on the ns-dimensional sub-

problem. The worker terminates the MADS search on the assigned subproblem after 
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bbe
max

 black-box evolutions and sends the best solution it found back to the master, 

where bbe
max

 is another user-defined parameter. The master then collects the return 

solutions from all workers and updates the best solution found so far. The above pro-

cesses are repeated until the terminal conditional of PSD-MADS-VNS algorithm is 

met (i.e., the maximum number of total black box evaluations).

For PSD-MADS-VNS tests, we set the maximal number of evaluations per-

formed by each worker processor bbe
max

 to be ten, and the number of variables con-

sidered by the worker ns to be two as previous study (Le Digabel et al. 2010) sug-

gests good results were obtained with this setting for problems with dimensions 20 

and 50. NOMAD’s VNS option has been used in order for the algorithm to be a 

global optimizer that can escape from local optima (by setting VNS to be 1). The 

PSD-MADS-VNS algorithm needs to start from a given initial trial point, which we 

set to be the best solution in the initial experimental design of GOPS and SOP for 

the respective trial.

5.2  Algorithm comparison on test function suit

The performance of the algorithms is investigated on 14 multi-modal benchmark 

functions F3, F4, F8, F9, and F15–F24 taken from the BBOB test suite (Hansen 

et al. 2009) before it is applied to the WAQ problem. There are in total 24 noiseless 

test functions in the BBOB test suite. The rest of the 10 noiseless functions are uni-

modal, which is not the focus of this study. These 14 BBOB problems (F3, F4, F8, 

F9, and F15–F24) are all challenging multi-modal noiseless functions.

Fig. 4  Performance profile (upper pane) and data profile (lower pane) for accuracy level tol = 10
−3 for 

algorithms SOP, GOPS, PSD-MADS-VNS with 16, 32, 64, 128 processors on 14 10-dimensional BBOB 

test problems with 30 trials. High value is best
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Fig. 5  Performance profile (upper pane) and data profile (lower pane) for accuracy level tol = 10
−3 for 

algorithms SOP, GOPS, PSD-MADS-VNS with 16, 32, 64, 128 processors on 14 21-dimensional BBOB 

test problems with 30 trials. High value is best

Fig. 6  Performance profile (upper pane) and data profile (lower pane) for accuracy level tol = 10
−3 for 

algorithms SOP, GOPS, PSD-MADS-VNS with 16, 32, 64, 128 processors on 14 40-dimensional BBOB 

test problems with 30 trials. High value is best
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The BBOB test suite enables varying the dimensions of the problems. We test 

the algorithm’s performance on the 14 test functions with three different dimen-

sions (i.e., 10, 21, and 40 dimensions). We set the dimension of test functions 

to be 21 dimensional in order to be consistent with the dimension of the WAQ 

problem. The search domain for all the ten BBOB test problems is [−5, 5]d , where 

d = 10, 21, 40.

All algorithms are tested with the number of processors P = 16, 32, 64, and 

128. We use the notation A-16P, A-32P, A-64P, and A-128P in the text and fig-

ures below to distinguish the number of processors used by the algorithm A. For 

each problem, we repeated the optimization experiments with 30 trials for each 

algorithm. All algorithms use the same initial experiment design (randomly gen-

erated) in each trial in order to facilitate a fair comparison.

Figures 4, 5 and 6 shows data and performance profiles of all the three algo-

rithms when different numbers of processors are used (i.e.,P = 16, 32, 64, 128 ) 

on 14 BBOB test problems in 10, 21, and 40 dimensional, respectively. We use 

methods from Moré and Wild (2009) and Müller (2016) to generate these data 

and performance profiles that consider the results of all trials on all problems to 

compare the overall performance of each algorithm.

The explanation of the calculations in these profiles is given in Online Resource. 

The performance profile demonstrates how well an algorithm performs over other 

algorithms on a set of problems. Data profile illustrates the percentage of problems 

that could be solved with the accuracy level of tol by an algorithm given a number of 

function evaluations. For both profile plots, high values indicate the best algorithms.

Both the data profiles and performance profiles (Figs. 4, 5 and 6) indicate that 

GOPS outperforms both SOP and PSD-MADS-VNS algorithm for all cases. SOP 

performs better than PSD-MADS-VNS for all cases (i.e., number of processors, 

P = 16, 32, 64, and 128) and on all the three different dimensions (i.e., 10, 21, and 

40 dimensions).

The upper panes of Figs. 4, 5 and 6 show performance profiles with high accu-

racy levels tol = 10
−3 when 16, 32, 64, and 128 processors are used respectively on 

all 14 synthetic test problems in their 10, 21, and 40 dimensional versions.

Table 1  Percentage of solutions from SOP and PSD-MADS-VNS that is worse than that of GOPS (with 

16, 32, 64, and 128 processors) in terms of mean objective function values over 30 trials after 1920 func-

tion evaluations (excluding 2(d + 1) evaluations in the initial experimental design)

The percentage is averaged over 14 BBOB test functions. Results on BBOB with three different dimen-

sions (10, 21, and 40) are shown

SOP PSD-MADS-

VNS

SOP PSD-MADS-

VNS

SOP PSD-MADS-

VNS

SOP PSD-MADS-

VNS

16P (%) 32P (%) 64P (%) 128P (%)

10D 1.2 25.7 5.6 31.4 1.4 30.3 23.8 69.4

21D 18.2 117.2 43.5 182.7 112.7 1632.5 126.8 2380.2

40D 64.1 1042.6 153.8 3542.2 290.3 7511.6 104.3 3197.5
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From the performance profiles, we can see that the differences between GOPS 

and the other two algorithms (SOP and PSD-MADS-VNS) are more significant 

when larger numbers of processors are used and in higher dimensional problems. 

The percentage of problems for which GOPS is the fastest is increasing when a 

larger number of processors are used. The performance profiles also show that PSD-

MASD-VNS is the worst among the three, and PSD-MASD-VNS is the fastest on 

only less than 10% of problems for all cases.

The data profiles (Figs. 4, 5 and 6 (lower panel)) show that the performance dif-

ference between GOPS and SOP increases as the number of evaluations (measured 

as simplex gradients) increases. This indicates that the adaptive diversity feature of 

GOPS (related to changes in P
(n)

C
 , Ncj

 , and P
(n)

good
 ) helps the exploration in the later 

stage of the algorithm. More detailed analysis of the performance and data profiles 

is in Online Resource.

Table 1 provides a summary of the performance of SOP and PSD-MADS-VNS 

over GOPS based on the mean objective function value (over 30 trials) that each 

algorithm achieved on all problems (in 10, 21, and 40 dimensional) after 1920 func-

tion evaluations (excluding 2*(d + 1) evaluations in the initial experimental design) 

when the number of processors P = 16, 32, 64, 128. The detailed results of mean 

objective function value with the standard error (over 30 trails) for each algorithm 

on each BBOB test problems is given in Table A1 to Table A3 of Online Resource. 

The percentage in Table 1 is calculated as follows: given the number of processors 

to be 16 (as an example), let X be the algorithm compared with GOPS-16P (e.g., 

X = SOP-16P or PSD-MADS-VNS-16P), and let YX

i
 (i = 1,…, 14) be the solution 

of algorithm X on each of the 14 BBOB problem in d-dimension, Yi (i = 1,…, 14) 

be the solution of GOPS-16P on each of 14 BBOB problem in d-dimensional. The 

percentage for algorithm X on d-dimensional problems is 1∕14

∑14

i=1

�
(YX

i
− Y

i
)∕��Yi

�
�
�
 . 

Since all the 14 BBOB test problems are minimization problems, the percentage in 

Table 1 denotes the percentage of time that algorithm X’s solution is worse (if posi-

tive percentage) or better (if negative percentage) than GOPS’s solution.

The numerical results in Table 1 show that GOPS in general obtained better solu-

tions than SOP and PSD-MADS-VNS on all cases (when P = 16, 32, 64, and 128), 

since the percentage in Table 1 are all positive. The positive percentages denote the 

percentage of SOP or PSD-MADS-VNS’s solutions that are worse than GOPS’s 

solution. The percentage is larger on higher dimensional problems (for X being 

either SOP or PSD-MADS-VNS), which means that GOPS’s solution is much better 

than SOP or PSD-MADS-VNS on higher dimensional problems. The percentage for 

PSD-MADS-VNS is larger than that of SOP, which indicates that PSD-MADS-VNS 

is much worse than SOP’s solution. These results are consistent with the conclusion 

from the data and performance profiles above. The percentages in Table 1 are the 

average value of all the 14 BBOB test problems. The detailed results on each prob-

lem in Table A1 to Table A3 in the Online Resource also show that GOPS obtained 

the best solution on most of the problems if not all and GOPS’s solution is generally 

much better than SOP or PSD-MADS-VNS on higher dimensional problems.
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5.3  Relative speedup on test function suite

Speedup is an important measure of a parallel algorithm since it indicates the effi-

ciency of the algorithm in using multiple processors synchronously. In this section, 

we investigate the parallel speedups of all the three algorithms on the 14 BBOB 

test function suit with three different dimensions (10, 21, and 40). We did not do 

a speedup investigation for the PDE problem because the time required for each 

evaluation makes this very time and resource intensive and because we can use the 

inexpensive test function to evaluate the algorithm’s speedup. We follow the relative 

speedup calculation in Krityakierne et al. (2016) that the relative speedup is calcu-

lated as:

where n(�)(1) is the number of iterations that the fast serial algorithm required to 

reach a specified level of accuracy � . n
(�)(P) is the number of iterations that the 

parallel algorithm with P processors needs to reach the same level of accuracy � . 

Note for the serial algorithm, the number of iterations equals the number of evalu-

ations. Equation (13) requires the knowledge of the fastest serial algorithm, which 

is hard to know. In the SOP paper (Krityakierne et al. 2016), the serial StochRBF 

(Regis and Shoemaker 2007b) is used as the serial algorithm to compute n
(�)(1) . 

However, results showed that DYCORS is more efficient than StochRBF (Regis and 

Shoemaker 2013). We thus used DYCORS as the serial algorithm to compute n(�)(1) 

from Eq. (13).

The relative � − Speedup(P) for each test function is calculated, given the accu-

racy level of � . Let y∗
1
 , y∗

16
 , y∗

32
 , y∗

64
 , y∗

128
 be the average (over 30 trials) of the best 

objective function values obtained from serial DYCORS, and the parallel algo-

rithms GOPS-16P, GOPS-32P, GOPS-64P, GOPS-128P, respectively. We set 

� = max{y
∗
1
, y

∗
16

, y
∗
32

, y
∗
64

, y
∗
128

} for algorithm GOPS. We calculate the accuracy level 

� for SOP and PSD-MADS-VNS in a similar approach. Tables 2, 3 and 4 show the 

� − Speedup(P) values Eq. (13) for all three algorithms when a different number of 

processors are used with the 14 BBOB test problems with 10, 21, and 40 dimen-

sions, respectively.

A parallel algorithm has the favorable trait “scalability” if it has good speed-

ups for a significant number for processors. As shown in Table  2 (in 10-dimen-

sional case), for problems F4, F8-F9, F17-F20 and F22-F24, GOPS has outstand-

ing scalability and is even superlinear in some cases. Superlinear speedup (i.e., 

� − Speedup(P) is larger than P) indicates that the use of P processors has a speedup 

that is higher than P, and so its efficiency is greater than 100%. Note that superlinear 

scalability could happen in cases when the serial algorithms perform much worse 

than parallel algorithms. Figure A1 in Online Resource gives two examples where 

serial algorithm DYCORS performance is relatively worse than GOPS and SOP on 

problem F21 (in 10-dimensional) and F22 (in 21-dimensional), which could lead 

to a high value of speedup. The superlinear speedup holds for algorithm GOPS on 

problems F17-F20, and F22–F24 for all cases when P = 16, 32, 64, 128, on problems 

F9 when P = 16, 32, 64, on problem F4 and F21 when P = 16, 64, 128, on problem 

(13)� − Speedup(P) = n
(�)(1)

/

n
(�)(P)
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F8 when P = 32. There are also many problems for which SOP has a superlinear 

speedup. For example on problem F17–F18, F21-F22, and F24 for all cases when 

P = 16, 32, 64, 128. While in 21-dimensional cases (Table 3), GOPS has a super-

linear speedup than SOP on more problems. The superlinear speedup also holds for 

GOPS on problem F17–F20 and F22–F23 for all cases when P = 16, 32, 64, 128, 

and on problem F21 for P = 16, 32, 64. By contrast, for SOP algorithm, superlinear 

speedup only holds on problem F21 and F22 when P = 16, 32, 64, 128. For PSD-

MADS-VNS superlinear speedup only holds for problem F23 when P = 32, 64, 128 

(in 10-dimensional case) and when P = 16 (in 21-dimensional case). The results sug-

gest that GOPS has a significantly improved speedup over SOP on almost all prob-

lems, especially for problems F3, F4, F15–F16, F20, F23, F24 (in 10 dimensional), 

for problems F17, F18, F19, F20, and F23 (in 21 dimensional) and for problems F8, 

F18, F19, F21, F23 (in 40 dimensional).

GOPS has much better scalability over PSD-MADS-VNS on all problems (in 10, 

21, and 40 dimensional) for all cases when P = 16, 32, 64, 128. SOP has better scal-

ability over PSD-MADS-VNS on most of the problems except for F4 (on 10 and 21 

dimensional cases), F16 (on 21 and 40 dimensional), and F23. For function F16 and 

F23, Krityakierne et al. (2016) reported SOP had rather poor scalability.

Hence, GOPS has, by far, the best average speedup over all the problems and 

dimensions compared to SOP and PSD-MADS-VNS. Remarkably there is not a sin-

gle combination of problems and dimensions for which PSD-MADS-VNS has the 

best speedup.

The good performance of GOPS and SOP over PSD-MADS-VNS might be 

because firstly, GOPS and SOP use a surrogate to guide the search, while PSD-

MADS-VNS does not use a surrogate. The use of surrogates helps guide the search 

to reach the regions where values of the objective function are lower, and often the 

Fig. 7  Calibration progress plot of average best solution on the WQ PDE problem found so far in terms 

of objective function value (over ten trials) vs the number of evaluations for algorithms SOP, GOPS, 

PSD-MADS-VNS on WAQ when 24 processors are used (a) and 48 processors are used (b). Lower 

objective function value is better. Note in a GOPS required only 55% as many evaluations to get the final 

answer of PSD-MADS-VNS after 1200 evaluations. In b this percentage is 60%
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global minimum is located more quickly; Secondly, GOPS and SOP use multiple 

perturbation centers, while PSD-MADS-VNS generates simulation points around 

only one center (which is the best solution found so far). Hence GOPS and SOP 

have a more diverse set of evaluation points per iteration. The diversity of evalua-

tion points can help to escape from local minima and also helps to locate promising 

regions faster.

5.4  Algorithm comparison on WAQ

In this section, we compare GOPS, SOP, and PSD-MADS-VNS on the expensive 

PDE-constrained calibration optimization problem on lake water quality, WAQ 

(refer to Sect. 4.1)

Figure 7 shows that with 1200 evaluations the best solution on the WAQ PDE 

model calibration problem is always obtained by GOPS. However, even more 

important is that with 24 processors, GOPS was able to obtain in only 660 evalu-

ations the solution that was the best solutions found by the other two algorithms 

(SOP and PSD-MADS-VNS) in 1200 evaluations, which means GOPS only needed 

about 55% (660/1200) as many evaluations as the other two algorithms to get the 

same result. This is equivalent to saying GOPS was 1.8 (= 1/0.55) times as fast as 

the other two algorithms on the WAQ problem with 24 processors. With 48 proces-

sors, the GOPS algorithm used only about 60% as many evaluations as the other two 

algorithms, which is equivalent to a speed up of 1.7 (= 1/0.6). For the optimization 

experiments, each algorithm was repeated for 10 trials on the WAQ problem and the 

analysis above is based on the average over the 10 trials as plotted in Fig. 7.

The performance improvement of GOPS over SOP provides the evidence that the 

introduction of the new elements P
(n)

C
 , Ncj

 , and P
(n)

good
 did improve the search on the 

WAQ problem. Especially in case when 48 processor are used, GOPS shows the 

same convergence speed as SOP in the first 300 evaluations, and later GOPS con-

verges much faster than SOP, as shown in Fig. 7b. Note that one difference between 

GOPS and SOP is that GOPS dynamically reduces the number of sampling centers 

P
(n)

C
 and increases the sampling around the best solution found so far N

c
1

 as the num-

ber of iterations increases. This difference allows GOPS to have exploration ability 

that is similar to SOP in the beginning iterations but stronger exploitation ability in 

the latter search stages. Also, since the sampling around the best solution found so 

far in GOPS (and also in SOP) is based on the truncated normal distribution in the 

solution domain, GOPS is a global optimizer that can get out of local minima. The 

ability of GOPS to be a global optimizer is described in the Theorem 1 in Sect. 3.4, 

and the proof of that theorem is given in the Online Resource.
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6  Conclusion

Global Optimization in Parallel with Surrogate (GOPS) is a new algorithm for 

parallel optimization of computationally expensive, multi-modal continuous func-

tions with no objective function derivatives available. Its effectiveness is demon-

strated here in highly parallelized computations both on test functions and on a very 

complex PDE model (based on real data) that generates a multi-modal objective 

function. The PDE model involves a set of nonlinear partial differential equations 

describing the spatial distribution of concentration of many constituents and is a 

challenging calibration problem.

The difficulty in designing parallel global optimization algorithms is how to pick 

P new points to evaluate on the objective function simultaneously, where P is the 

number of processors. This can be very inefficient unless we can decide how to 

explore primarily promising areas while not allowing sampled points to be too close 

to one another. This problem becomes more difficult as P gets larger.

GOPS addresses this problem by (a) first some promising centers are selected 

from previously evaluated points and (b) new candidate points are created by adding 

random perturbations to each of these center points. The new features in GOPS are 

controlled by the new variables P
(n)

C
 , Ncj

 , and P
(n)

good
 . GOPS promotes exploration in 

the early iteration by having many centers and hence fewer evaluation points picked 

from each center. However, gradually as the iterations increase, the number of cent-

ers decreases, and hence the number of points selected from each center becomes 

larger. In addition, previously evaluated points with sufficiently poor objective func-

tions are not allowed to become center points. These new elements help enable the 

algorithm to search better even when it has to do as P expensive function evalua-

tions in each iteration even when P is large.

The new GOPS algorithm is very efficient up to P = 128 processors, which ena-

bles GOPS to use a large number of computing resources for solving PDE-con-

strained optimization problems in a relatively short wall-clock time.

The performance of GOPS was tested on 14 synthetic BBOB test problems (in 

10, 21, and 40 dimensions) and one real-world PDE-constrained parameter estima-

tion problem (WAQ) that is 21 dimensional. GOPS was compared with the SOP 

algorithm and the widely used MADS algorithm with its parallel global optimiza-

tion option, PSD-MADS-VNS. GOPS performance was clearly the best on all test 

problems (especially on high dimensional problems and/or with larger number of 

processors) based on performance and data profile plots that evaluate all the test 

results. Numerical experimental results indicate GOPS dramatically outperformed 

the other algorithms with regard to (a) accuracy of solution for a fixed number of 

evaluations, (b) speedup and efficiency for up to 128 processors, (c) GOPS’ ability 

to find the global minimum of multi-modal test functions without derivatives for 

objective functions with up to 40 dimensions, and (d) its ability to efficiently solve a 

parameter calibration problem of a 21 dimensional nonlinear PDE model describing 

spatial and temporal dynamics of multiple water quality constituents in a large lake 

utilizing real data.
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GOPS performed the best on the calibration of real-world water quality PDE 

problem WAQ, which is multi-modal. There have been very few studies of global 

optimization of multi-modal, PDE models because these models are expensive, and 

popular global methods like particle swarm optimization or genetic algorithms take 

too many evaluations to be practical for expensive functions. Hence GOPS is an 

essential tool for this kind of environmental problem as well as for many other prob-

lems described by nonlinear PDE’s that result in the occurrence of multiple local 

minima in the objective function. This lake water quality application illustrates the 

practical use of GOPS algorithm to solve real world problems.

The numerical result indicates that the use of the P
(n)

C
 , Ncj

 , and P
(n)

good
 strategies (in 

Sects.  3.2 and 3.3) in the GOPS algorithm improves the algorithm’s exploitation 

ability, especially in later iterations, which in turn enables the algorithm to find more 

accurate solutions than SOP and PSD-MADS-VNS.

As is noted in Sect.  5.1, the values of all algorithm parameters in GOPS are 

given, and all tests were performed with this same set of parameters. So the expecta-

tion is that the GOPS algorithm will be used with these algorithm parameters, and 

parameter tuning is not required.

GOPS is a general-purpose global optimization method that is not limited to 

PDE-constrained global optimization only. For problems with an objective function 

that is computationally expensive, multi-modal, with no available derivatives, GOPS 

is a very promising option compared with other parallel global optimization meth-

ods, e.g., SOP, PSD-MADS-VNS or non-surrogate metaheuristics.
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