
..

GORDON: AN IMPROVED
ARCHITECTURE FOR DATA-INTENSIVE

APPLICATIONS
..

GORDON IS A SYSTEM ARCHITECTURE FOR DATA-CENTRIC APPLICATIONS COMBINING

LOW-POWER PROCESSORS, FLASH MEMORY, AND DATA-CENTRIC PROGRAMMING

SYSTEMS TO IMPROVE PERFORMANCE AND EFFICIENCY FOR DATA-CENTRIC APPLICATIONS.

THE ARTICLE EXPLORES THE GORDON DESIGN SPACE AND THE DESIGN OF A SPECIALIZED

FLASH TRANSLATION LAYER. GORDON SYSTEMS CAN OUTPERFORM DISK-BASED

CLUSTERS BY 1.5� AND DELIVER 2.5� MORE PERFORMANCE PER WATT.

......We live in a world overflowing
with data. From handheld devices to data
centers, we collect and analyze ever-greater
amounts of information. Companies such
as Google and Microsoft routinely process
many terabytes of data, and users of desktop
search engines routinely pose queries across
hundreds of gigabytes of data stored on
their hard drives. There’s no reason to expect
that our appetite for collecting and process-
ing data will stop growing at its current
breakneck speed.

To satiate our appetite for large-scale data
processing, current technology must over-
come three challenges. First, the recent slow-
down in uniprocessor performance and the
difficulties in programming their chip multi-
processor (CMP) replacements make it in-
creasingly difficult to bring large computing
power to bear on a single problem. Second,
while hard-drive capacity continues to grow,
the latency and bandwidth that hard drives
can deliver do not. Third, power constraints
due to cooling, economic, and ecological

concerns severely limit the range of possible
solutions for both of these problems.

Designers have made some progress on
each of these fronts: For data-centric appli-
cations, programming models such as
Google’s Map-Reduce1 and Microsoft’s
Dryad2 largely automate the task of parallel-
izing data-processing programs. Solid-state
storage devices offer increased bandwidth
and reduced latency for mass storage. Finally,
processor manufacturers have developed
capable, yet power-efficient processors.

For data-centric computing, the most fun-
damental of these three advances is the rise of
solid-state storage. Flash memory’s perfor-
mance characteristics enable systems far out-
side the design space covered by existing
technologies, such as conventional servers,
processor-in-disk systems, and processor-in-
memory systems. The highest-density flash
memories available today (or in the near fu-
ture) offer 16� the density per package of
DRAM at 1/16 the power.3,4 In the near fu-
ture, an array of four flash packages will

[3B2] mmi2010010121.3d 1/2/010 16:11 Page 121

Adrian M. Caulfield

Laura M. Grupp

Steven Swanson

University of California,

San Diego

0272-1732/10/$26.00 �c 2010 IEEE Published by the IEEE Computer Society

...

121

deliver 4� the read bandwidth of a high-end
disk at 1/30 the power and a fraction of the
latency. These advantages, combined with
the fact that solid-state storage arrays com-
prise many discrete chips instead of a few
large drives, provide much more flexibility
in the architecture of a combined computing
and storage platform.

With this in mind, we developed Gordon
(see Figure 1), a flash-based system architec-
ture for massively parallel, data-centric com-
puting. Gordon leverages solid-state disks,
low-power processors, and data-centric pro-
gramming paradigms to deliver enormous
gains in performance and power efficiency.
(For a brief overview of these technologies,
see the ‘‘Enabling technologies for efficient,
data-centric computing’’ sidebar.) Gordon
also offers a flash management software
layer that allows a highly parallel operation
of large arrays of flash devices.

As we describe how we designed Gordon,
we’ll review several considerations, including

� an evaluation of flash management
techniques for data-centric applications,

� a thorough analysis of the Gordon sys-
tem design space and the trade-offs be-
tween power, energy, and performance
that Gordon must make, and

� a discussion of cost, virtualization, and
system-level issues in Gordon machines.

Our results show that Gordon systems
can deliver up to 2.5� the computation
per energy of a conventional cluster-based
system while increasing performance by a
factor of up to 1.5. We also demonstrate
that our specialized flash management system
can deliver up to 900 megabytes per second
(Mbps) of read-and-write bandwidth for the
applications we used.

Gordon’s storage system
Gordon’s flash-based storage system is the

key to its power efficiency and performance
advantage. Although Gordon’s storage system
targets data-intensive applications, several of
the approaches we describe are applicable to
more general-purpose storage systems as well.
The following sections describe our storage-
array hardware and management layer.

Storage hardware
The flash storage system comprises two

components—a flash controller and the
flash memory itself. The flash devices we
model have program and read latencies of
200 microseconds (ms) and 25 ms, respec-
tively. The maximum achievable sustained
bandwidth on a 133-megahertz (MHz) bus
is then 5 Mbps and 126.4 Mbps. Erases
take 2 milliseconds (ms).3,5-7

The flash controller implements Gordon’s
flash translation layer (FTL), which provides
the link between the CPU and the flash
array. We would like the controller to man-
age as much storage as possible, but hardware
constraints limit its capacity. Flash chips con-
nect to the controller over shared buses. Each
bus supports up to four flash packages, each
of which contains four dies. The physical or-
ganization of the flash memories and the log-
ical organization that the FTL imposes on

[3B2] mmi2010010121.3d 1/2/010 16:11 Page 122

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

Fl
as

h

Fl
as

h

Fl
as

h

Fl
as

h

Fl
as

h

Fl
as

h

Fl
as

h

Fl
as

h
D

R
A

M

D
R

A
M

D
R

A
M

CPU

30 mm

(a)

(b)

Flash and
memory

controller

Figure 1. The Gordon system: A scale drawing of a Gordon node process

control block (a) and a sketch of 16 nodes in a single enclosure (b).

Gordon’s nodes can be very compact. This configuration (with flash on

both sides) holds 256 Gbytes of flash memory and 2.5 Gbytes of double-

data-rate synchronous DRAM (DDR2 SDRAM). The enclosure holds 4

Tbytes of storage and provides 14.4 Gbytes per second of aggregate I/O

bandwidth.

..

122 IEEE MICRO

...

TOP PICKS

them significantly influence the storage sys-
tem’s performance.

Gordon’s flash translation layer
Gordon’s FTL is an extension of Birrell

et al.’s FTL.8 (For an overview of FTLs,
see the ‘‘Flash translation layer implementa-
tions’’ sidebar.) Birrell et al.’s FTL lets the
application write to and read from any logi-
cal block address at random, hiding the
flash’s idiosyncrasies from the rest of the sys-
tem and spreading erases evenly across the
flash devices. It does this by using a write
point to track the next location for writing
data. As writes occur, the pointer progresses
through a block and then is free to move
to a new block anywhere in the array.

A key limitation of Birrell et al.’s FTL.8 is
that it only allows for only a single write
point. As a result, it will never allow two

operations to proceed in parallel except in
the case of cleaning blocks in the back-
ground. For small flash storage systems,
such as a USB key, this is acceptable, but
for Gordon it isn’t.

We use two techniques to solve this prob-
lem. First, we extend our FTL to support
multiple write points and spread accesses be-
tween them. Using multiple write points
doesn’t affect the read bandwidth signifi-
cantly, but it can improve the write band-
width dramatically. Our data show that
increasing the number of write points per
133-MHz bus from one to four increases
the write bandwidth by 2.8�.

The second approach is to combine phys-
ical pages from several dies into 2D super-
pages (and, therefore, superblocks for erase
operations) and manage the flash array at
this larger granularity. The 2D striping

[3B2] mmi2010010121.3d 1/2/010 16:11 Page 123

...

Enabling technologies for efficient, data-centric computing

In addition to power-efficient microprocessors, Gordon relies on

two technologies: large-scale data parallel-programming systems

and solid-state storage. Here we provide a brief overview of these

technologies.

Peta-scale data-centric parallel programming
Industrial researchers have recently developed several systems for

processing extremely large data sets in parallel. Two of these systems,

Microsoft Dryad1 and Google MapReduce,2 offer an alternative to paral-

lel databases3-5 for managing and computing with massive data sets.

Both systems provide simple abstractions for specifying data-parallel

computations and then automating the task of making them run in par-

allel on commodity hardware.

Solid-state storage
Flash memory gained prominence in the last decade because of the

rising popularity of mobile devices with large storage requirements

(iPods, digital cameras, and so on). In response, flash manufacturers pri-

marily pursued density and cost improvements and paid less attention to

performance.

However, recent industrial efforts (see http://www.onfi.org/specifica-

tions) promise to raise peak bus bandwidth to at least 133 Mbytes per

second, and researchers have sought to improve flash performance in

general-purpose systems with new chip-level interfaces,6 solid-state

disk organizations,7 flash translation layer designs,8 and system-level

interfaces (see http://www.fuionio.com). These advances signal the be-

ginning of flash memory’s coming of age as a high-performance storage

technology.

References

1. M. Isard et al., ‘‘Dryad: Distributed Data-Parallel Programs

from Sequential Building Blocks,’’ ACM Special Interest

Group on Operating Systems’ (SIGOPS) Operating Systems

Rev., vol. 41, no. 3, 2007, pp. 59-72.

2. J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified Data Pro-

cessing on Large Clusters,’’ Proc. 6th Conf. Symp. Operating

Systems Design and Implementation, ACM Press, 2004, p. 10.

3. D. DeWitt and J. Gray, ‘‘Parallel Database Systems: The

Future of High Performance Database Systems,’’ Comm.

ACM, vol. 35, no. 6, 1992, pp. 85-98.

4. G. Graefe, ‘‘Encapsulation of Parallelism in the Volcano

Query Processing System,’’ ACM Special Interest Group on

Management of Data (SIGMOD) Record, vol. 19, no. 2,

1990, pp. 102-111.

5. D.J. Dewitt et al., ‘‘The Gamma Database Machine Project,’’

IEEE Trans. Knowledge and Data Eng., vol. 2, no. 1, 1990,

pp. 44-62.

6. R. Schuetz et al., ‘‘Hyperlink NAND Flash Architecture for

Mass Storage Applications,’’ Proc. IEEE Non-Volatile Semi-

conductor Memory Workshop, IEEE CS Press, 2007, pp. 3-4.

7. N. Agrawal et al., ‘‘Design Tradeoffs for SSD Performance,’’

Proc. Usenix 2008 Ann. Tech. Conf., Usenix Assoc., 2008;

http://research.microsoft.com/pubs/63596/USENIX-08-SSD.

pdf.

8. A. Birrell et al., A Design for High-Performance Flash Disks,

tech. report MSR-TR-2005-176, Microsoft Research, 2005.

..

JANUARY/FEBRUARY 2010 123

combines horizontal (similar to ganging dis-
cussed in Agrawal et al.9) and vertical striping
to generate even larger superpages. This
approach lets us divide the array into rectan-
gular sets of chips that are part of the same
horizontal and vertical stripes. Our FTL pro-
vides one write point for each of these sets.

This 2D striping trades parallelism be-
tween operations for parallelism within a sin-
gle operation. It also reduces management
overhead by reducing the total number of
superpages in the array. This is important,
because the logical-to-physical map for a
large flash array can be prohibitively large.
For instance, for 256 Gbytes of flash and
2-Kbyte pages, the mapping is 512 Mbytes
(as opposed to 16 Mbytes with 64-Kbyte
superpages).

However, large superpages also increase
the latency of subpage accesses, because the
FTL will need to read or program more
data than requested. Our workloads present
a mix of large and small transfers. Whereas
88 to 93 percent of the bytes read and writ-
ten are part of transfers of 120 Kbytes or
larger, roughly half of the individual transfers
are only 8 Kbytes. As a result, setting our
page size to 128 Kbytes would roughly dou-
ble the amount of data the FTL has to read
and write.

Fortunately, the traces from our work-
loads show a clear pattern in accesses: An
8-Kbyte access aligned on a 128-Kbyte
boundary is followed immediately by a
120-Kbyte access to the rest of that
128-Kbyte region. To exploit the pattern,
we added a simple bypassing mechanism to
our FTL that merges incoming read requests
with pending requests to the same page and
also caches the result of the last read. Our
FTL also performs limited write combining
by merging write requests to the same page
when possible. This mechanism nearly elim-
inates the negative impact of large pages for
small sequential reads.

Figure 2 shows how page size and bypass-
ing affect overall storage performance of our
data-intensive workloads, normalized to
8-Kbyte pages. In Figure 2a, bypassing is dis-
abled and then large page sizes benefit the
Index, Identity, RandomWriter, and Sort
applications (we detail these applications’
purposes in the following section).
Figure 2b shows performance with bypass-
ing. The 64-Kbyte pages provide between
1.1� and 6.3� speedups for all applications.
For sequential accesses (and random accesses
to superpages of a similar size) our storage
array delivers 900 Mbps of bandwidth for
reads and writes.

[3B2] mmi2010010121.3d 1/2/010 16:11 Page 124

...

Flash translation layer implementations

Researchers have worked hard to improve the performance of flash-

based solid-state drives by improving their flash translation layers. FTLs

present a disk-like interface to flash memory by dynamically mapping

logical block addresses (LBAs) to physical flash pages, providing wear

leveling, ensuring reliability in the face of power failure, and maximizing

performance. The granularity of the LBA map divides FTLs into three cat-

egories: page, block, and hybrid mapping.1

Page mapping (or sector mapping)
These schemes map every LBA to its own physical page. The flexibil-

ity of this option allows for fast reading and writing as well as minimal

erases, especially for small accesses. However, the memory required for

the simplest version of this design balloons with drive size.

Block mapping
The granularity of the map in these schemes is that of flash blocks.

This reduces the memory footprint of the FTL, simplifies the erasure algo-

rithms, and is well-suited to large accesses on single chips.

Unfortunately, it does nothing to hide the disparity between erase and

program operation granularities.

Hybrid mapping
Hybrid FTLs combine techniques from both approaches to capture ben-

efits from each. In one example, the mapping is block-based but we can

store each page anywhere within the block. This allows for a small

DRAM footprint and the flexibility to modify individual pages several

times before erasing.

With the striping technique, Gordon’s FTL increases the bandwidth for

large accesses and reduces the memory requirement by creating blocks

out of pages that span chips. The large-granularity map, combined with

the flexibility of page remapping, places it in the hybrid-mapping category.

Reference

1. T.-S. Chung et al., ‘‘A Survey of Flash Translation Layer,’’

J. Systems Architecture, vol. 55, nos. 5-6, 2009, pp. 332-343.

..

124 IEEE MICRO

...

TOP PICKS

Configuring Gordon
Having tuned Gordon’s flash storage sys-

tem for data-intensive applications, we turn
our attention to the remainder of the
Gordon node design.

Workloads
To evaluate Gordon’s designs, we use a

set of highly parallel, data-intensive appli-
cations with MapReduce benchmarks,
each of which process up to 15 Gbytes of
data:

� RandomWriter outputs random data,
� Identity copies all inputs to the output,
� Sort sorts random numbers,
� SimpleGrep searches for ‘‘the’’ in multi-

lingual text,
� ComplexGrep searches for a complex

regular expression in multilingual text,
� N-Gram finds frequently occurring N-

word phrases in multilingual text, and
� WebIndex generates an index for a Web

search engine.

Two of the benchmarks (Identity and
RandomWriter) focus specifically on I/O.
The other benchmarks represent more realis-
tic applications from a range of domains.
WebIndex is our most sophisticated applica-
tion and ComplexGrep is the most computa-
tionally demanding.

To run the benchmarks, we use Apache
Hadoop (see http://hadoop.apache.org/
core), an industrial-strength open source
MapReduce implementation written in
Java. It provides many of MapReduce’s fea-
tures,1 including a distributed file system
(Hadoop DFS), similar to the Google File
System (GFS).10 All our experiments run
under Linux 2.6.24 using Sun’s 64-bit
Java implementation (JDK 1.6).

To characterize the workloads, we ran
each application on a cluster of eight 2.4-
GHz Core 2 Quad machines with 8 Gbytes
of RAM and a single, large serial advanced-
technology attachment (SATA) hard disk.
A private 1-Gbit Ethernet network connects
the machines.

Power model
To measure power consumption, we

developed a power model that describes ma-
chine configurations as a set of identical
nodes, each of which contains DRAM, a
disk (or flash), and one or more processors.
Within each node, we model each compo-
nent’s power as P ¼ IdlePower � (1 � Acti-
vityFactor) þ ActivePower � (ActivityFactor).
The activity factors come from our traces on
our flash simulator.

For experiments in which we vary the
CPU speed, we scale voltage with frequency
across the range supported by each processor

[3B2] mmi2010010121.3d 1/2/010 16:11 Page 125

250200150100500

4

5

6

7

0

1

2

3

P
er

fo
rm

an
ce

 v
s.

 8
-K

b
yt

e
p

ag
es

 w
ith

b
yp

as
si

ng
 o

r
w

rit
e

co
m

b
in

in
g

Page size (Kbytes)

(a) (b)

4

5

6

0

1

2

3

250200150100500P
er

fo
rm

an
ce

 v
s.

 8
-K

b
yt

e
p

ag
es

 w
ith

ou
t

b
yp

as
si

ng
 o

r
w

rit
e

co
m

b
in

in
g

Page size (Kbytes)

RandomWater
Sort
Indes
Average

Identity
N-gram
SimpleGrep
ComplexGrep

Figure 2. Application-level I/O performance with and without bypassing: Read bypassing and write combining allow all appli-

cations to benefit from larger page sizes (a). Without these two optimizations, large pages degrade performance (b).

..

JANUARY/FEBRUARY 2010 125

(from 0.75 to 1.2 V for the Atom11 and 0.8
to 1.6 V for the Core 2).12

Measuring cluster performance
To evaluate the architecture’s perfor-

mance for a cluster of machines, we use
two simulators. The first is a high-level,
trace-driven cluster simulator used to mea-
sure total system performance. The second
simulator provides detailed storage system
simulations that let us explore architectural
options for flash storage arrays.

We calculate two sets of results from the
simulators using two methods that model
different amounts of internode synchroniza-
tion. The first, called Sync, models tight syn-
chronization between nodes during
execution. The second method, NoSync,
models no synchronization between nodes.
These two models provide upper and lower
limits on execution time.

High-level simulator. The high-level simu-
lator measures overall performance. We col-
lect traces from running systems that
contain second-by-second utilization infor-
mation for each component. The traces de-
scribe the cache, disk, CPU, and network
use. They’re collected from otherwise idle
machines, but include all system activity
(such as the operating system, system dae-
mons, and so on).

We model a 32-node cluster by running
four VMWare virtual machines (see http://
vmware.com) on each of our eight servers
(giving each virtual machine its own CPU
and 2 Gbytes of memory) and gather inde-
pendent traces for each one. Because

VMWare virtualizes performance counters,
we gather instruction and second-level (L2)
miss counts for the virtual machine itself.

The simulator processes a set of traces
(one per node) in parallel. For each sample
of data in the trace, it computes the time
needed for instruction execution, disk
accesses, and network transfers during that
second. It then takes the maximum of these
values as the simulated execution time for
that sample, effectively modeling perfect par-
allelism between the disk, the network, and
the CPU.

To measure power, the simulator uses the
power model we previously described to
compute the power consumption for each
second of each node in the cluster. The
Sync model includes power for the idle peri-
ods when one node is waiting for the other
nodes to finish. Nodes are never idle in the
NoSync model until they finish executing.
Once execution on a node is complete, we
assume it goes into a deep power-down state.

Storage simulator. We use two different
simulators. For disk simulations we use
DiskSim,13 configured to model a 1-Tbyte,
7,200-revolutions-per-minute (rpm) SATA-
II hard drive with a 32-Mbyte disk cache.
To model flash behavior we use a custom-
built flash storage-array simulator. Both sim-
ulators process block-level traces taken from
running systems and generate latency and
bandwidth measurements for a high-level
cluster simulator.

Design space survey
We carried out a systematic survey of the

design space for Gordon’s nodes, which
includes both flash-based and hard-drive-
based designs. Table 1 shows the parameters
and values we varied in our survey. We re-
strict ourselves to a single storage type and
processor type in each configuration, as
well as a power budget of 300 watts (W)
per node.

We use our simulators to measure the
performance of a cluster of 32 of each
node configuration using the Sync model.
Figure 3 contains the results for the average
across our benchmark suite. Each point rep-
resents a single node configuration and mea-
sures the energy consumption of the entire

[3B2] mmi2010010121.3d 1/2/010 16:11 Page 126

Table 1. The parameters for our

design space exploration. For all node

configurations, we model a cluster

of 32 nodes.

Parameter Value

Processors 1, 2, 4

Flash dies 0, 64

Hard drives 0, 1, 2, 4

Processor type Atom, Core 2

Atom frequency (in GHz) 0.8, 1.5, 1.9

Core 2 frequency (in GHz) 0.6, 1.2, 1.8, 2.4

..

126 IEEE MICRO

...

TOP PICKS

system versus the runtime. All data are nor-
malized to a four-processor Core 2 configu-
ration with one disk.

The circled points are the Pareto-optimal
node designs. Note that shorter runtimes are
impossible without increasing energy and
lowering energy is impossible without
increasing the runtime. For all workloads,
the same designs are Pareto-optimal
and flash-based. Table 2 summarizes the
Pareto-optimal designs and the lowest-
power design. The designs labeled MinT,
MaxE, and MinP are the fastest (minimum
time), most efficient (performance per
watt), and minimum average power configu-
rations, respectively.

Table 2 also summarizes (highlighted in
bold) the improvements in performance, ef-
ficiency, and power consumption that flash
provides for MaxE, MinP, and MinT relative
to otherwise identical disk-based configura-
tions. For instance, MaxE is between 2.2�
and 2.5� more efficient than the most effi-
cient disk configuration, while MinP saves
more than 68 percent in power. The gains
in performance are substantial as well:
MinT is between 1.5� and 1.8� faster
while expending nearly equal energy.

Gordon power consumption
Figure 4 shows the per-component energy

consumption for the MaxE configuration
relative to the MaxE-Disk (the most efficient
disk-based configuration). Per-component
energy consumption is mostly uniform

[3B2] mmi2010010121.3d 1/2/010 16:11 Page 127

1
1.2
1.4

0
0.2
0.4
0.6
0.8

0 5 10 15 20

R
el

at
iv

e
en

er
g

y

Average relative runtime

Atom–Disk
Atom–Flash
Core 2–Disk

Core 2–Flash
Pareto optimal
points

Figure 3. Pareto-optimal Gordon system

designs: Results of our design space sur-

vey for the average across our benchmark

suite. We circled the Pareto-optimal

designs.

Table 2. Optimal Gordon configurations. For all three design goals (performance, performance per watt,

and power consumption) Gordon achieves substantially better results than disk-based designs.

CPU

Average power

(in watts)

Power vs.

MinP-Disk

Performance

per watt vs.

MaxE-Disk

Speedup vs.

MinT-Disk

Name configuration NoSync Sync NoSync Sync NoSync Sync NoSync Sync

MinP* 1 Atom, 1.43 3.91 0.33 0.32 1.74 1.12 0.07 0.07

0.8 GHz

MaxE 1 Atom, 2.32 4.81 0.54 1.39 2.54 2.15 0.16 0.16

1.9 GHz

1 Core 2, 9.14 19.89 2.11 1.63 2.31 1.88 0.59 0.56

2.4 GHz

2 Core 2, 23.82 45.66 5.51 3.74 1.64 1.45 1.09 1.00

2.4 GHz

4 Core 2, 47.56 92.74 11.00 7.59 1.11 0.92 1.48 1.29

1.8 GHz

MinT 4 Core 2, 58.50 106.18 13.54 8.69 1.08 0.93 1.77 1.49

2.4 GHz...
* MinP isn’t Pareto-optimal.

..

JANUARY/FEBRUARY 2010 127

across the applications. On average, the flash-
based MaxE consumes 40 percent of the en-
ergy of the disk-based configuration, but ex-
ecution times are longer, leading to a factor
of two increases in performance per watt.
The data show that the increased idle
power of a disk has a twofold impact on ef-
ficiency: It causes the disk to burn excess
power, but also encourages the design to
use higher-performing, less-efficient process-
ors (because these processors reduce the
amount of time in which the disk sits idle).
Flash eliminates much of the storage system’s
idle power, allowing the design to exploit
more efficient processors.

Further reducing Gordon’s power con-
sumption is challenging. The DRAM and
overhead power account for most of the
remaining power. Reducing the amount
of DRAM might be possible, especially if
the in-memory working sets of our applica-
tions are small. Overhead power is a widely
reported problem at the system level.14,15

Reducing this source of waste would benefit
a wide range of systems, and make the
power savings that flash can offer even
more significant.

Utilizing Gordon
Incorporating flash memory into

Gordon’s system architecture required us to
re-evaluate the trade-offs between power,
performance, efficiency, and cost in the
design of a Gordon node. At a larger scale,
fully exploiting the efficiency gains that
Gordon offers requires careful consideration
of larger-scale trade-offs. We explore several
of the trade-offs here and examine usage
models for large Gordon systems and their
potential roles in a large data center.

Exploit disks for cheap redundancy
Using a distributed, replicated file system

increases the cost of storage for both disk-
and flash-based systems. We can mediate
this problem for some applications by com-
bining Gordon nodes with other servers
that have conventional hard drives. Gordon’s
file system keeps one replica in flash and re-
dundant copies on disk. If a failure occurs,
recovery will be automatic. When we don’t
need the disk-based replicas (the vast major-
ity of the time), we can put the conventional
servers into deep sleep with their hard drives
spun down.

[3B2] mmi2010010121.3d 1/2/010 16:11 Page 128

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

Flash DiskFlash DiskFlash DiskFlash DiskFlash DiskFlash DiskFlash Disk

Index ComplexGrep Sort SimpleGrep Identity N-gram Average

R
el

at
iv

e
en

er
g

y

Overhead CPU Disk/flash Memory

Figure 4. Relative energy consumption: Node energy consumption for MaxE relative to the

disk-based configuration with the highest performance per watt.

..

128 IEEE MICRO

...

TOP PICKS

This system works well for reads, because
the replicas don’t need updating. For write-
intensive workloads, we must store the rep-
lica in flash at least temporarily; otherwise
the disk bandwidth for updating the hard-
drive-based replicas would limit performance
and significantly increase power consump-
tion. One approach to mitigating this effect
is to treat the flash storage array as a replica
cache. We can keep all replicas of frequently
updated data in flash, but keep replicas of
less-frequently updated data on disk. If writes
become less frequent, we can migrate the
replicas to disk. Indeed, if a piece of data
hasn’t been accessed at all in a long time,
we can move all replicas to disk.

Virtualizing Gordon
Gordon’s strength is in providing high-

bandwidth, highly parallel access to large vol-
umes of data, not in storing that data. For
storage, disks are more cost effective. This
means that we’re effectively using a Gordon
system if we’re frequently accessing the data
Gordon stores. Consequently, it makes
sense to manage Gordon’s systems to maxi-
mize bandwidth use.

For some latency-critical workloads and
workloads that need to process all the data
stored by a group or organization, it makes
sense to store data in a Gordon system and
process it in place. In other scenarios, we
imagine that the total data stored will be
much larger than Gordon’s capacity. In
these cases, we can virtualize the Gordon sys-
tem so that we can use its data-processing
abilities on much larger data sets than it
can store.

This usage model treats all or part of a
Gordon system as a specialized coprocessor
for performing computations on a small
part of a much larger quantity of data
stored in a disk-based data warehouse. Be-
fore a job runs, Gordon will load the neces-
sary data into flash storage and, once the
job completes, data for another job will
take its place.

For instance, we could partition a
1,024-node system into 16 64-node slices,
each with nonvolatile memory (NVM)
storage for 16 Tbytes of data. Each slice
provides a total of 112 Gbytes per second
of I/O bandwidth. Assuming dual 1-Gbit

network connections between the Gordon
slice and the data warehouse, loading
10 Tbytes of data (leaving room for scratch
data in the flash storage array) would take
about 11 hours. Gordon would perform
the computations on the data, transfer the
results to the warehouse, and load the
data for the next job. Network limitations
mean that transferring data between the
Gordon array and the warehouse uses
only 0.4 percent of Gordon’s bandwidth
resources. We can improve the situation
by overlapping data transfer with execution
and reducing the storage space allocated to
each job by 50 percent (to accommodate
storing both data sets simultaneously).
The impact on execution time would be
minimal and, if jobs spent at least four sec-
onds processing each gigabyte of data, the
time cost of loading the next job would
be fully hidden by useful processing.

G ordon demonstrates that flash affords
the opportunity to re-engineer many

aspects of system design, and therefore
enables a new class of computing systems.
We believe that as flash performance
improves, Gordon’s performance gains will
only increase. MICRO

Acknowledgments
We would like to thank the Architectural

Support for Programming Languages and
Operating Systems (ASPLOS) program com-
mittee reviewers as well Nathan Goulding
and Joel Coburn for their helpful comments.
This work is supported in part by US
National Science Foundation awards
NSF0811794 and NSF0643880.

..
References

1. J. Dean and S. Ghemawat, ‘‘MapReduce:

Simplified Data Processing on Large Clus-

ters,’’ Proc. 6th Conf. Symp. Operating Sys-

tems Design and Implementation, ACM

Press, 2004, p. 10.

2. M. Isard et al., ‘‘Dryad: Distributed Data-

Parallel Programs from Sequential Build-

ing Blocks,’’ ACM Special Interest Group

on Operating Systems’ (SIGOPS) Operat-

ing Systems Rev., vol. 41, no. 3, 2007,

pp. 59-72.

[3B2] mmi2010010121.3d 1/2/010 16:11 Page 129

..

JANUARY/FEBRUARY 2010 129

3. Samsung, Samsung K9f8g08uxm Flash

Memory Datasheet, 11 June 2007;

http://www.samsung.com/global/system/

business/semiconductor/product/2007/6/

11/NANDFlash/SLC_LargeBlock/8Gbit/

K9F8G08U0M/ds_k9f8g08x0m_rev10.pdf.

4. Micron, Micron DDR3 SDRAM Mt41j256m8

Datasheet, 2008; http://download.micron.

com/pdf/datasheets/dram/ddr3/2GbDDR3

SDRAM.pdf.

5. D. Kwak et al., ‘‘Integration Technology of

30nm Generation Multi-Level NAND Flash

for 64GB NAND Flash Memory,’’ Proc.IEEE

Symp. Very Large-Scale Integration (VLSI)

Technology, IEEE Press, 2007, pp. 12-13.

6. Y. Park et al., ‘‘Highly Manufacturable 32GB

Multi-Level NAND Flash Memory with

0.0098 mm2 Cell Size Using Tanos

(Si-oxide-al2o3-tan) Cell Technology, Proc.

IEEE Int’l Electron Devices Meeting, IEEE

Press, 2006, pp. 1-4.

7. Open NAND Flash Interface Group, Open

NAND Flash Interface Specification 2.0, 27

Feb. 2008; http://www.onfi.org/specifications.

8. A. Birrell et al., A Design for High-

Performance Flash Disks, tech. report MSR-

TR-2005-176, Microsoft Research, 2005.

9. N. Agrawal et al., ‘‘Design Tradeoffs for

SSD Performance,’’ Proc. Usenix 2008

Ann. Tech. Conf., Usenix Assoc., 2008;

http://research.microsoft.com/pubs/63596/

USENIX-08-SSD.pdf.

10. S. Ghemawat, H. Gobioff, and S.-T. Leung,

‘‘The Google File System,’’ ACM Special

Interest Group on Operating Systems’

(SIGOPS) Operating Systems Rev., vol. 37,

no. 5, 2003, pp. 29-43.

11. T.R. Halfhill, ‘‘Intel’s Tiny Atom,’’ Microproc-

essor Report, Apr. 2008.

12. Intel, Quad-Core Intel Xeon Processor 3200

Series Datasheet, 2007; http://www.intel.

com/Assets/en_US/PDF/datasheet/316133.

pdf.

13. G. Ganger, B. Worthington, and Y. Patt,

DiskSim, tech. report, Parallel Data Lab, Car-

negie Mellon Univ., 2009; http://www.pdl.

cmu.edu/DiskSim.

14. X. Fan, W.-D. Weber, and L.A. Barroso,

‘‘Power Provisioning for a Warehouse-

Sized Computer,’’ Proc. Int’l Symp. Com-

puter Architecture (ISCA 07), ACM Press,

2007, pp. 13-23.

15. D. Economou et al., ‘‘Full-System Power

Analysis and Modeling for Server Environ-

ments,’’ white paper, Hewlett-Packard,

June 2006; http://whitepapers.zdnet.com/

abstract.aspx?docid=347834.

Adrian M. Caulfield is a doctoral student in
computer engineering at the Nonvolatile
Systems Laboratory at the University of
California, San Diego. He’s interested in all
aspects of computer architecture, but focuses
mainly on the integration of nonvolatile
memory technologies into system architec-
tures to enhance the performance and energy
efficiency of computer systems. Caulfield
received a BS in computer science from the
University of Washington.

Laura M. Grupp is a third-year doctoral
student in the department of Computer
Science and Engineering at the University of
California, San Diego. Her current research
focuses on the intricacies of flash translation
layers, the development of models for new
types of nonvolatile memory, and the
characterization of flash memory. Grupp
received a BS in electrical engineering from
the University of Washington.

Steven Swanson is an assistant professor in
the Computer Science and Engineering
Department at the University of California,
San Diego, and leads the Nonvolatile
Systems Laboratory. His research interests
include architectural, systems, and security
issues surrounding nonvolatile, solid-state
memories as well as massively heterogeneous
multiprocessor architectures. Swanson has a
PhD in computer science from the Uni-
versity of Washington. He is a member of
the ACM.

Direct questions and comments to Steven
Swanson, Computer Science and Engineer-
ing Dept., Univ. of California, San Diego,
9500 Gilman Dr. #0404, La Jolla, CA
92093-0404; swanson@cs.ucsd.edu.

[3B2] mmi2010010121.3d 1/2/010 16:11 Page 130

..

130 IEEE MICRO

...

TOP PICKS

