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GORENSTEIN CATEGORIES, SINGULAR EQUIVALENCES

AND FINITE GENERATION OF COHOMOLOGY RINGS

IN RECOLLEMENTS

CHRYSOSTOMOS PSAROUDAKIS, ØYSTEIN SKARTSÆTERHAGEN,
AND ØYVIND SOLBERG

Abstract. Given an artin algebra Λ with an idempotent element a we com-
pare the algebras Λ and aΛa with respect to Gorensteinness, singularity cat-
egories and the finite generation condition Fg for the Hochschild cohomology.
In particular, we identify assumptions on the idempotent element a which en-
sure that Λ is Gorenstein if and only if aΛa is Gorenstein, that the singularity
categories of Λ and aΛa are equivalent and that Fg holds for Λ if and only if
Fg holds for aΛa. We approach the problem by using recollements of abelian
categories and we prove the results concerning Gorensteinness and singularity
categories in this general setting. The results are applied to stable categories
of Cohen–Macaulay modules and classes of triangular matrix algebras and
quotients of path algebras.
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1. Introduction

This paper deals with Gorenstein algebras and categories, singularity categories
and a finiteness condition ensuring existence of a useful theory of support for mod-
ules over finite dimensional algebras. First we give some background and indicate
how these subjects are linked for us. Then we discuss the common framework for
our investigations and give a sample of the main results in the paper. Finally we
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describe the structure of the paper. For related work see Green–Madsen–Marcos
[34] and Nagase [47]. In Subsection 8.4, we compare our results to those of Nagase.

For a group algebra of a finite group G over a field k there is a theory of sup-
port varieties of modules introduced by Jon Carlson in the seminal paper [13].
This theory has proven useful and powerful, where the support of a module is
defined in terms of the maximal ideal spectrum of the group cohomology ring
H∗(G, k). Crucial facts here are that the group cohomology ring is graded commu-
tative and noetherian, and for any finitely generated kG-module M , the Yoneda
algebra Ext∗kG(M,M) is a finitely generated module over the group cohomology
ring (see [29, 31, 62]). For a finitely generated kG-module M the support variety
is defined as the variety associated to the annihilator ideal of the action of the
group cohomology ring H∗(G, k) on Ext∗kG(M,M). This construction is based on
the Hopf algebra structure of the group algebra kG, and until recently a theory of
support was not available for finite dimensional algebras in general.

Snashall and Solberg [59] have extended the theory of support varieties from
group algebras to finite dimensional algebras by replacing the group cohomology
H∗(G, k) with the Hochschild cohomology ring of the algebra. Whenever similar
properties as for group algebras are satisfied, that is, (i) the Hochschild cohomology
ring is noetherian and (ii) all Yoneda algebras Ext∗Λ(M,M) for a finitely generated
Λ-module M are finitely generated modules over the Hochschild cohomology ring,
then many of the same results as for group algebras of finite groups are still true
when Λ is a selfinjective algebra [26]. The above set of conditions is referred to as
Fg (see [26, 60]).

Triangulated categories of singularities or for simplicity singularity categories
have been introduced and studied by Buchweitz [12], under the name stable derived
categories, and later they have been considered by Orlov [50]. For an algebraic
variety X, Orlov introduced the singularity category of X, as the Verdier quotient
Dsg(X) = Db(cohX)/perf(X), where Db(cohX) is the bounded derived category of
coherent sheaves on X and perf(X) is the full subcategory consisting of perfect com-
plexes on X. The singularity category Dsg(X) captures many geometric properties
of X. For instance, if the variety X is smooth, then the singularity category Dsg(X)
is trivial but this is not true in general [50]. It should be noted that the singularity
category is not only related to the study of the singularities of a given variety X but
is also related to the Homological Mirror Symmetry Conjecture due to Kontsevich
[42]. For more information we refer to [50–52].

Similarly, the singularity category over a noetherian ring R is defined [12] to
be the Verdier quotient of the bounded derived category Db(modR) of the finitely
generated R-modules by the full subcategory perf(R) of perfect complexes and is
denoted by

Dsg(R) = Db(modR)/perf(R).

In this case the singularity category Dsg(R) can be viewed as a categorical measure
of the singularities of the spectrum Spec(R). Moreover, by a fundamental result
of Buchweitz [12], and independently by Happel [37], the singularity category of a
Gorenstein ring is equivalent to the stable category of (maximal) Cohen–Macaulay
modules CM(R), where the latter is well known to be a triangulated category [38].
Note that this equivalence generalizes the well known equivalence between the sin-
gularity category of a selfinjective algebra and the stable module category, a result
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due to Rickard [56]. If there exists a triangle equivalence between the singular-
ity categories of two rings R and S, then such an equivalence is called a singular
equivalence between R and S. Singular equivalences were introduced by Chen, who
studied singularity categories of non-Gorenstein algebras and investigated when
there is a singular equivalence between certain extensions of rings [15, 17, 19, 20].

Next, from the perspective of support varieties, we describe some links between
the above topics. Support varieties for Db(modΛ) using the Hochschild cohomology
ring of Λ were considered in [60] for a finite dimensional algebra Λ over a field k,
where all the perfect complexes perf(Λ) were shown to have trivial support variety.
Hence the theory of support via the Hochschild cohomology ring naturally only
says something about the Verdier quotient Db(modΛ)/perf(Λ) – the singularity
category. Furthermore, in [65], Hochschild (co)homology is discussed in connection
with a particular class of singular equivalences.

To have an interesting theory of support, the finiteness condition Fg is pivotal.
When Fg is satisfied for an algebra Λ, then Λ is Gorenstein [26, Proposition 1.2],
or equivalently, modΛ is a Gorenstein category.

As we pointed out above, when Λ is Gorenstein, then by Buchweitz–Happel the
singularity category Db(modΛ)/perf(Λ) is triangle equivalent to CM(Λ), the stable
category of Cohen–Macaulay modules. When Λ is a selfinjective algebra, then Λe

is selfinjective and CM(Λe) = modΛe is a tensor triangulated category with Λ
as a tensor identity. Let B be the full subcategory of CM(Λe) consisting of all
bimodules which are projective as a left and as a right Λ-module. Then B is also
a tensor triangulated category with tensor identity Λ. The strictly positive part of
the graded endomorphism ring

End∗B(Λ) =
⊕

i∈Z

HomB(Λ,Ω
i
Λe(Λ)),

of the tensor identity Λ in CM(Λe) is isomorphic to the strictly positive part

HH�1(Λ) of the Hochschild cohomology ring of Λ. This is the relevant part for
the theory of support varieties via the Hochschild cohomology ring. In addition B

is a tensor triangulated category acting on the triangulated category CM(Λ), and
we can consider a theory of support varieties for CM(Λ) based on the framework
described in the forthcoming paper [11]. Therefore the singularity category of the
enveloping algebra Λe encodes the geometric object for support varieties of modules
and complexes over the algebra Λ.

Next we describe the categorical framework for our work. There has recently
been a lot of interest around recollements of abelian (and triangulated) categories.
These are exact sequences of abelian categories

0 �� A
i �� B

e �� C �� 0,

where both the inclusion functor i : A −→ B and the quotient functor e : B −→ C

have left and right adjoints. They have been introduced by Beilinson, Bernstein and
Deligne [8] first in the context of triangulated categories in their study of derived
categories of sheaves on singular spaces.

Properties of recollements of abelian categories were studied by Franjou and
Pirashvili in [32], motivated by the MacPherson–Vilonen construction for the cat-
egory of perverse sheaves [45], and recently homological properties of recollements
of abelian and triangulated categories have also been studied in [54]. Recollements
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of abelian categories were used by Cline, Parshall and Scott in the context of rep-
resentation theory (see [24, 53]), and later Kuhn used recollements in his study of
polynomial functors (see [44]). Recently, recollements of triangulated categories
have appeared in the work of Angeleri Hügel, Koenig and Liu in connection with
tilting theory, homological conjectures and stratifications of derived categories of
rings (see [1–4]). Also, Chen and Xi have investigated recollements in relation with
tilting theory [21] and algebraic K-theory [22,23]. Furthermore, Han [35] has stud-
ied the relations between recollements of derived categories of algebras, smoothness
and Hochschild cohomology of algebras.

It should be noted that module recollements, i.e. recollements of abelian cat-
egories whose terms are categories of modules, appear quite naturally in various
settings. For instance any idempotent element e in a ring R induces a recolle-
ment situation between the module categories over the rings R/〈e〉, R and eRe.
In fact recollements of module categories are now well understood since every such
recollement is equivalent, in an appropriate sense, to one induced by an idempotent
element [55].

We want to compare the Fg condition for Hochschild cohomology, Gorenstein-
ness and the singularity categories of two algebras. Our aim in this paper is to
present a common context where we can compare these properties for an algebra
Λ and aΛa, where a is an idempotent of Λ. This is achieved using recollements
of abelian categories. To summarize our main results we introduce the following
notion. Given a functor f : B −→ C between abelian categories, the functor f is
called an eventually homological isomorphism if there is an integer t such that
for every pair of objects B and B′ in B, and every j > t, there is an isomorphism

Extj
B
(B,B′) ∼= Extj

C
(f(B), f(B′))

of abelian groups (the isomorphism is not necessarily induced by the functor f).
Our main results, stated in the context of artin algebras, are summarized in the
following theorem. The four parts of the theorem are proved in Corollary 3.12,
Corollary 5.4, Corollary 4.7 and Theorem 7.10, respectively. More general versions
of the first three parts, in the setting of abelian categories, are given in Corollary 3.6
and Proposition 3.7, Theorem 5.2 and Theorem 4.3.

Main Theorem. Let Λ be an artin algebra over a commutative ring k and let a be
an idempotent element of Λ. Let e be the functor a− : modΛ −→ mod aΛa given
by multiplication by a. Consider the following conditions :

(α) idΛ

( Λ/〈a〉

radΛ/〈a〉

)

< ∞ (β) pdaΛa aΛ < ∞

(γ) pdΛ

( Λ/〈a〉

radΛ/〈a〉

)

< ∞ (δ) pd(aΛa)op Λa < ∞

Then the following hold.

(i) The following are equivalent :
(a) (α) and (β) hold.
(b) (γ) and (δ) hold.
(c) The functor e is an eventually homological isomorphism.

(ii) The functor e induces a singular equivalence between Λ and aΛa if and
only if conditions (β) and (γ) hold.
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(iii) Assume that e is an eventually homological isomorphism. Then Λ is
Gorenstein if and only if aΛa is Gorenstein.

(iv) Assume that e is an eventually homological isomorphism. Assume also that
k is a field and that (Λ/ radΛ)⊗k (Λ

op/ radΛop) is a semisimple Λe-module
(for instance, this is true if k is algebraically closed). Then Λ satisfies Fg

if and only if aΛa satisfies Fg.

Now we describe the contents of the paper section by section. In Section 2,
we recall notions and results on recollements of abelian categories and Hochschild
cohomology that are used throughout the paper.

In Section 3, we study extension groups in a recollement of abelian categories
(A ,B,C ). More precisely, we investigate when the exact functor e : B −→ C

is an eventually homological isomorphism. It turns out that the answer to this
problem is closely related to the characterization given in [54] of when the functor
e induces isomorphisms between extension groups in all degrees below some bound
n. In Corollary 3.6 and Proposition 3.7 we give sufficient and necessary conditions,
respectively, for the functor e to be an eventually homological isomorphism. We
specialize these results to recollements of artin algebras and characterize when the
functor e is an eventually homological isomorphism in Corollary 3.12. The results
of this section are used in Section 4 and Section 7.

In Section 4, we study Gorenstein categories, introduced by Beligiannis and
Reiten [9]. Assuming that we have an eventually homological isomorphism f : D −→
F between abelian categories, we investigate when Gorensteinness is transferred
between D and F . Among other things, we prove that if f is an essentially sur-
jective eventually homological isomorphism, then D is Gorenstein if and only if
F is (see Theorem 4.3). We apply this to recollements of abelian categories and
recollements of module categories.

In Section 5, we investigate singularity categories, in the sense of Buchweitz
[12] and Orlov [50], in a recollement (A ,B,C ) of abelian categories. In fact, we
give necessary and sufficient conditions for the quotient functor e : B −→ C to
induce a triangle equivalence between the singularity categories of B and C ; see
Theorem 5.2. This result generalizes earlier results by Chen [15]. We obtain the
results of Chen in Corollary 5.4 by applying Theorem 5.2 to rings with idempotents.
Finally, for an artin algebra Λ with an idempotent element a, we give a sufficient
condition for the stable categories of Cohen–Macaulay modules of Λ and aΛa to be
triangle equivalent; see Corollary 5.6.

In Section 6 and Section 7, which form a unit, we investigate the finite generation
condition Fg for the Hochschild cohomology of a finite dimensional algebra over a
field. In particular, in Section 6 we show how we can compare the Fg condition
for two different algebras. This is achieved by showing, for two graded rings and
graded modules over them, that if we have isomorphisms in all but finitely many
degrees, then the noetherian property of the rings and the finite generation of the
modules is preserved; see Propositions 6.3 and 6.4. In Section 7, we use this result
to show that Fg holds for a finite dimensional algebra Λ over a field if and only if
Fg holds for the algebra aΛa, where a is an idempotent element of Λ which satisfies
certain assumptions (see Theorem 7.10). As part of this, we show that under the
same assumptions, the Hochschild cohomology rings of Λ and aΛa are the same in
almost all degrees (Proposition 7.9).



50 C. PSAROUDAKIS, Ø. SKARTSÆTERHAGEN, AND Ø. SOLBERG

The final Section 8 is devoted to examples and applications of our main results.
We first discuss conditions (α)–(δ) of the Main Theorem. Then we consider some
special cases where these conditions are related, and provide an interpretation for
quotients of path algebras. Then we apply our results to triangular matrix algebras.
For a triangular matrix algebra Λ =

(

Σ 0
ΓMΣ Γ

)

, we compare Λ to the algebras Σ and
Γ with respect to the Fg condition, Gorensteinness and singularity categories. In
particular, we recover a result by Chen [15] concerning the singularity categories of
Λ and Σ. Finally, we compare our results to those of Nagase [47].

Conventions and notation. For a ring R we usually work with left R-modules
and the corresponding category is denoted by ModR. The full subcategory of
finitely presented R-modules is denoted by modR. Our additive categories are
assumed to have finite direct sums and our subcategories are assumed to be closed
under isomorphisms and direct summands. The Jacobson radical of a ring R is
denoted by radR. By a module over an artin algebra Λ, we mean a finitely presented
(generated) left Λ-module.

2. Preliminaries

In this section we recall notions and results on recollements of abelian categories
and Hochschild cohomology.

2.1. Recollements of abelian categories. In this subsection we recall the defini-
tion of a recollement situation in the context of abelian categories (see for instance
[32, 36, 44]), we fix notation and recall some well known properties of recollements
which are used later in the paper. We also include our basic source of examples
of recollements. For an additive functor F : A −→ B between additive categories,
the essential image {B ∈ B | B ∼= F (A) for some A ∈ A } of F is denoted by
ImF and the kernel {A ∈ A | F (A) = 0} of F is denoted by KerF .

Definition 2.1. A recollement situation between abelian categories A ,B and
C is a diagram

A
i �� B

e ��

q

��

p

�� C

l

��

r

��

henceforth denoted by (A ,B,C ), satisfying the following conditions:

1. (l, e, r) is an adjoint triple.
2. (q, i, p) is an adjoint triple.
3. The functors i, l and r are fully faithful.
4. Im i = Ker e.

In the next result we collect some basic properties of a recollement situation of
abelian categories that can be derived easily from Definition 2.1. For more details,
see [32, 54].

Proposition 2.2. Let (A ,B,C ) be a recollement of abelian categories. Then the
following hold.

(i) The functors i : A −→ B and e : B −→ C are exact.
(ii) The compositions ei, ql and pr are zero.
(iii) The functor e : B −→ C is essentially surjective.
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(iv) The units of the adjoint pairs (i, p) and (l, e) and the counits of the adjoint
pairs (q, i) and (e, r) are isomorphisms :

IdA

∼=
−→ pi, IdC

∼=
−→ el, qi

∼=
−→ IdA , er

∼=
−→ IdC .

(v) The functors l : C −→ B and q : B −→ A preserve projective objects and
the functors r : C −→ B and p : B −→ A preserve injective objects.

(vi) The functor i : A −→ B induces an equivalence between A and the Serre
subcategory Ker e = Im i of B. Moreover, A is a localizing and colocalizing
subcategory of B and there is an equivalence of categories B/A ≃ C .

(vii) For every B in B there are A and A′ in A such that the units and counits
of the adjunctions induce the following exact sequences :

0 �� i(A) �� le(B) �� B �� iq(B) �� 0

and

0 �� ip(B) �� B �� re(B) �� i(A′) �� 0.

Throughout the paper, we apply our results to recollements of module cate-
gories, and in particular to recollements of module categories over artin algebras as
described in the following example.

Example 2.3. Let Λ be an artin k-algebra, where k is a commutative artin ring,
and let a be an idempotent element in Λ.

(i) We have the following recollement of abelian categories :

modΛ/〈a〉
inc �� modΛ

e=a(−)
��

Λ/〈a〉⊗Λ−

��

HomΛ(Λ/〈a〉,−)

��
mod aΛa

Λa⊗aΛa−

��

HomaΛa(aΛ,−)

		

The functor e : modΛ −→ mod aΛa can also be described as follows: e =
a(−) ∼= HomΛ(Λa,−) ∼= aΛ⊗Λ−. We write 〈a〉 for the ideal of Λ generated
by the idempotent element a. Then every left Λ/〈a〉-module is annihilated
by 〈a〉 and thus the category modΛ/〈a〉 is the kernel of the functor a(−).

(ii) Let Λe = Λ⊗kΛ
op be the enveloping algebra of Λ. The element ε = a⊗aop

is an idempotent element of Λe. Therefore as above we have the following
recollement of abelian categories :

modΛe/〈ε〉
inc �� modΛe

E=ε(−)
��

Λe/〈ε〉⊗Λe−

��

HomΛe (Λe/〈ε〉,−)

��
mod(aΛa)e

Λeε⊗(aΛa)e−

��

Hom(aΛa)e (εΛ
e,−)





Note that (aΛa)e ∼= εΛeε as k-algebras.

Remark 2.4. As in Example 2.3, any idempotent element e in a ring R induces a
recollement situation between the module categories over the rings R/〈e〉, R and
eRe. This should be considered as the universal example for recollements of abelian
categories whose terms are categories of modules. Indeed, in [55] it is proved that
any recollement of module categories is equivalent, in an appropriate sense, to one
induced by an idempotent element.
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2.2. Hochschild cohomology rings. We briefly explain the terminology we need
regarding Hochschild cohomology and the finite generation condition Fg, and recall
some important results. For a more detailed exposition of these topics, see sections
2–5 of [60].

Let Λ be an artin algebra over a commutative ring k. We define the Hochschild

cohomology ring HH∗(Λ) of Λ by

HH∗(Λ) = Ext∗Λe(Λ,Λ) =
∞
⊕

i=0

ExtiΛe(Λ,Λ).

This is a graded k-algebra with multiplication given by Yoneda product. Hochschild
cohomology was originally defined by Hochschild in [39], using the bar resolution.
It was shown in [14, IX, §6] that our definition coincides with the original definition
when Λ is projective over k.

Gerstenhaber showed in [33] that the Hochschild cohomology ring as originally
defined is graded commutative. This implies that the Hochschild cohomology ring
as defined above is graded commutative when Λ is projective over k. The following
more general result was shown in [59, Theorem 1.1] (see also [61], which proves
graded commutativity of several cohomology theories in a uniform way).

Theorem 2.5. Let Λ be an algebra over a commutative ring k such that Λ is
flat as a module over k. Then the Hochschild cohomology ring HH∗(Λ) is graded
commutative.

To describe the finite generation condition Fg, we first need to define a HH∗(Λ)-
module structure on the direct sum of all extension groups of a Λ-module with itself
(for more details about this module structure, see [59]). Assume that Λ is flat as a
k-module, and let M be a Λ-module. The direct sum

Ext∗Λ(M,M) =
∞
⊕

i=0

ExtiΛ(M,M)

of all extension groups of M with itself is a graded k-algebra with multiplication
given by Yoneda product. We give it a graded HH∗(Λ)-module structure by the
graded ring homomorphism

ϕM : HH∗(Λ) −→ Ext∗Λ(M,M),

which is defined in the following way. Any homogeneous element of positive degree
in HH∗(Λ) can be represented by an exact sequence

η : 0 −→ Λ −→ X −→ Pn −→ · · · −→ P1 −→ P0 −→ Λ −→ 0

of Λe-modules, where every Pi is projective. Tensoring this sequence throughout
with M gives an exact sequence

0 −→ Λ⊗Λ M −→ X ⊗Λ M −→ Pn ⊗Λ M −→ · · ·

−→ P1 ⊗Λ M −→ P0 ⊗Λ M −→ Λ⊗Λ M −→ 0

of Λ-modules (the exactness of this sequence follows from the facts that Λ is flat
as a k-module and that the modules Pi are projective Λe-modules). Using the
isomorphism Λ ⊗Λ M ∼= M , we get an exact sequence of Λ-modules starting and
ending in M ; we define ϕM ([η]) to be the element of Ext∗Λ(M,M) represented by
this sequence. For elements of degree zero in HH∗(Λ), the map ϕM is defined by
tensoring with M and using the identification Λ⊗Λ M ∼= M .
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In [26], Erdmann–Holloway–Snashall–Solberg–Taillefer identified certain
assumptions about an algebra Λ, which are sufficient in order for the theory of
support varieties to have good properties. They called these assumptions Fg1 and
Fg2. We say that an algebra satisfies Fg if it satisfies both Fg1 and Fg2. We use
the following definition of Fg, which is equivalent (by [60, Proposition 5.7]) to the
definition of Fg1 and Fg2 given in [26].

Definition 2.6. Let Λ be an algebra over a commutative ring k such that Λ is flat
as a module over k. We say that Λ satisfies the Fg condition if the following is
true:

(i) The ring HH∗(Λ) is noetherian.
(ii) The HH∗(Λ)-module Ext∗Λ(Λ/ radΛ,Λ/ radΛ) is finitely generated.

The following result states that in our definition of Fg we could have replaced
part (ii) by the same requirement for all Λ-modules. It can be proved in a similar
way as [26, Proposition 1.4].

Theorem 2.7. If an artin algebra Λ satisfies the Fg condition, then Ext∗Λ(M,M)
is a finitely generated HH∗(Λ)-module for every Λ-module M .

We end this section by describing a connection between the Fg condition and
Gorensteinness.

Theorem 2.8 ([26, Theorem 1.5 (a)]). If an artin algebra Λ satisfies the Fg con-
dition, then Λ is Gorenstein.

3. Eventually homological isomorphisms in recollements

Given a functor f : D −→ F between abelian categories and an integer t, the
functor f is called a t-homological isomorphism if there is a group isomorphism

Extj
B
(B,B′) ∼= Extj

C
(f(B), f(B′))

for every pair of objects B and B′ in B, and every j > t. Note that we do not
require these isomorphisms to be induced by the functor f . If f is a t-homological
isomorphism for some t, then it is an eventually homological isomorphism. In
this section, we investigate when the functor e in a recollement

A
i �� B

e ��

q

��

p

�� C

l

��

r

��

of abelian categories is an eventually homological isomorphism.
The functor e induces maps

(3.1) Extj
B
(X,Y ) −→ Extj

C
(e(X), e(Y ))

of extension groups for all objects X and Y in B and for every j ≥ 0. With one
argument fixed and the other one varying over all objects we study when these
maps are isomorphisms in almost all degrees, that is, for every degree j greater
than some bound n (see Theorem 3.4 and Theorem 3.5). We use this to find
two sets of sufficient conditions for the functor e : B −→ C to be an eventually
homological isomorphism (Corollary 3.6), and we find a partial converse (Proposi-
tion 3.7). Finally, we specialize these results to artin algebras, using the recollement
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(modΛ/〈a〉,modΛ,mod aΛa) of Example 2.3 (i). In particular, we characterize
when the functor e : modΛ −→ mod aΛa is an eventually homological isomorphism
(Corollary 3.12).

These results are used in Section 4 for comparing Gorensteinness of the categories
in a recollement, and in Section 7 for comparing the Fg condition of the algebras Λ
and aΛa, where a is an idempotent in Λ.

We start by fixing some notation. For an injective coresolution 0 −→ B −→
I0 −→ I1−→· · · of B in B, we say that the image of the morphism In−1 −→ In

is an n-th cosyzygy of B, and we denote it by Σn(B). Dually, if · · · −→ P1 −→
P0 −→ B −→ 0 is a projective resolution of B in B, then we say that the kernel of
the morphism Pn−1 −→ Pn−2 is an n-th syzygy of B, and we denote it by Ωn(B).
Also, if X is a class of objects in B, then the right orthogonal subcategory

{B ∈ B | HomB(X, B) = 0} of X is denoted by X
⊥ and the left orthogonal

subcategory {B ∈ B | HomB(B,X) = 0} of X is denoted by ⊥
X.

We now describe precisely how the maps (3.1) induced by the functor e in a
recollement are defined. Let D and F be abelian categories and let f : D −→ F

be an additive exact functor. If

ξ : 0 �� Xn
dn �� Xn−1

�� · · · �� X1
d1 �� X0

�� 0

is an exact sequence in D , then we denote by f(ξ) the exact sequence

f(ξ) : 0 �� f(Xn)
f(dn)

�� f(Xn−1) �� · · · �� f(X1)
f(d1)

�� f(X0) �� 0

in F . It is clear that this operation commutes with Yoneda product; that is, if ξ
and ζ are composable exact sequences in D , then f(ξζ) = f(ξ) · f(ζ). For every
pair of objects X and Y in D and every nonnegative integer j, we define a group
homomorphism

f j
X,Y : Extj

D
(X,Y ) −→ Extj

F
(f(X), f(Y ))

by

f0
X,Y (d) = f(d) for a morphism d : X −→ Y ;

f j
X,Y ([η]) = [f(η)] for a j-fold extension η of X by Y , where j > 0.

For an object X in D , the direct sum Ext∗D(X,X) =
⊕∞

j=0 Ext
j
D
(X,X) is a

graded ring with multiplication given by Yoneda product, and taking the maps
f j
X,X in all degrees j gives a graded ring homomorphism

f∗
X,X : Ext∗D(X,X) −→ Ext∗F (f(X), f(X)).

Remark 3.1. We explain briefly why the maps f j
X,Y and f∗

X,X defined above are
homomorphisms.

(i) Since the functor f is exact, it preserves pullbacks and pushouts. Thus

the map f j
X,Y preserves the Baer sum between two extensions.

(ii) For checking that the map f∗
X,X is a graded ring homomorphism, the only

nontrivial case to consider is the product of a morphism and an extension.
For this case, we again use that the functor f preserves pullbacks and
pushouts.
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We now consider the maps

ejB,B′ : Extj
B
(B,B′) −→ Extj

C
(e(B), e(B′))

induced by the functor e : B −→ C in a recollement, where we let one argument
be fixed and the other vary over all objects of B. In [54], the first author studied
when these maps are isomorphisms for all degrees up to some bound n, that is,
for 0 ≤ j ≤ n. This immediately leads to a description of when these maps are
isomorphisms in all degrees, which we state as the following theorem.

Theorem 3.2 ([54, Propositions 3.3 and 3.4, Theorem 3.10]). Let (A ,B,C ) be a
recollement of abelian categories and assume that B and C have enough projective
and injective objects. Let B be an object in B.

(i) The following statements are equivalent :

(a) The map ejB,B′ : Extj
B
(B,B′) −→ Extj

C
(e(B), e(B′)) is an isomor-

phism for every object B′ in B and every nonnegative integer j.
(b) The object B has a projective resolution of the form

· · · �� l(P2) �� l(P1) �� l(P0) �� B �� 0,

where Pj is a projective object in C .

(c) Extj
B
(B, i(A)) = 0 for every A ∈ A and j ≥ 0.

(d) Extj
B
(B, i(I)) = 0 for every I ∈ InjA and j ≥ 0.

(ii) The following statements are equivalent :

(a) The map ejB′,B : Extj
B
(B′, B) −→ Extj

C
(e(B′), e(B)) is an isomor-

phism for every object B′ in B and every nonnegative integer j.
(b) The object B has an injective coresolution of the form

0 �� B �� r(I0) �� r(I1) �� r(I2) �� · · · ,

where Ij is an injective object in C .
(c) Extj

B
(i(A), B) = 0 for every A ∈ A and j ≥ 0.

(d) Extj
B
(i(P ), B) = 0 for every P ∈ ProjA and j ≥ 0.

The above theorem describes when the maps ejB,B′ induced by the functor e
are isomorphisms in all degrees j. Our aim in this section is to give a similar
description of when these maps are isomorphisms in almost all degrees. The basic
idea is to translate the conditions in the above theorem to similar conditions stated
for almost all degrees, and show the equivalence of these conditions by using the
above theorem and dimension shifting. In order for this to work, however, we
need to modify the conditions somewhat. We obtain Theorem 3.4 which is stated
below and generalizes parts of Theorem 3.2 (i) (and the dual Theorem 3.5 which
generalizes parts of Theorem 3.2 (ii)). In order to prove the theorem, we need a
general version of dimension shifting as stated in the following lemma.

Lemma 3.3. Let A be an abelian category, let n be an integer, and let

ǫ : 0 �� X �� Em−1
�� · · · �� E0

�� Y �� 0

be an exact sequence in A with pdA Ei ≤ n for every i. Then for every i > n and
Z ∈ A , the map given by ǫ∗([η]) = [ηǫ] is an isomorphism:

ǫ∗ : ExtiA (X,Z) �� Exti+m
A

(Y, Z).
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Now we are ready to show our characterization of when the functor e in a
recollement induces isomorphisms of extension groups in almost all degrees.

Theorem 3.4. Let (A ,B,C ) be a recollement of abelian categories and assume
that B and C have enough projective and injective objects. Consider the following
statements for an object B of B and two integers n and m :

(a) The map ejB,B′ : Extj
B
(B,B′) −→ Extj

C
(e(B), e(B′)) is an isomorphism

for every object B′ in B and every integer j > m+ n.
(b) The object B has a projective resolution of the form

· · · �� l(Q1) �� l(Q0) �� Pn−1
�� · · · �� P0

�� B �� 0,

where each Qj is a projective object in C .

(c) Extj
B
(B, i(A)) = 0 for every A ∈ A and j > n, and there exists an n-th

syzygy of B lying in ⊥i(A ).

(d) Extj
B
(B, i(I)) = 0 for every I ∈ InjA and j > n, and there exists an n-th

syzygy of B lying in ⊥i(InjA ).

We have the following relations between these statements :

(i) (b) ⇐⇒ (c) ⇐⇒ (d).
(ii) If pdC e(P ) ≤ m for every projective object P in B, then (b) =⇒ (a).

Proof. (i) By dimension shift, statement (c) is equivalent to

Extj
B
(Ωn(B), i(A)) = 0 for every j ≥ 0 and every A ∈ A ,

and statement (d) is equivalent to

Extj
B
(Ωn(B), i(I)) = 0 for every j ≥ 0 and every I ∈ InjA ,

where in both cases Ωn(B) is a suitably chosen n-th syzygy of B. The equivalence
of statements (b), (c) and (d) now follows from the equivalence of (b), (c) and (d)
in Theorem 3.2 (i).

(ii) Let

π : 0 �� K �� Pn−1
�� · · · �� P1

�� P0
�� B �� 0

be the beginning of the chosen projective resolution of B, where K = Ωn(B) is the
n-th syzygy of B. Consider the following group homomorphisms:

(3.2) Extj
B
(B,B′)

π∗

←− Extj−n
B

(K,B′)
ej−n

K,B′

−−−−→ Extj−n
C

(e(K), e(B′))

(e(π))∗

−−−−→ Extj
C
(e(B), e(B′)).

Here, the maps π∗ and (e(π))∗ are isomorphisms by Lemma 3.3. Note that for
(e(π))∗ we use the fact that pdC e(P ) ≤ m for every projective object P in B. The

map ej−n
K,B′ is an isomorphism by Theorem 3.2 (i). Thus, we have an isomorphism

(e(π))∗ ◦ ej−n
K,B′ ◦ (π

∗)−1 : Extj
B
(B,B′) −→ Extj

C
(e(B), e(B′))

for every j ≥ m+ n+ 1 and B′ ∈ B. We want to show that this is the same map
as ejB,B′ . We consider an element [η] ∈ Extj−n

B
(K,B′), and follow it through the
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maps (3.2). We then get the following elements:

Extj
B
(B,B′) Extj−n

B
(K,B′)

π∗

∼=
��

ej−n

K,B′

∼=
�� Extj−n

C
(e(K), e(B′))

(e(π))∗

∼=
�� Extj

C
(e(B), e(B′))

[ηπ] [η]✤�� ✤ �� [e(η)] ✤ �� [e(η) · e(π)]

[e(ηπ)]

This shows that our isomorphism takes any element [ζ] ∈ Extj
B
(B,B′) to the

element [e(ζ)] ∈ Extj
C
(e(B), e(B′)). Thus, our isomorphism is ejB,B′ . �

Dually to the above theorem, we have the following generalization of some of the
implications in Theorem 3.2 (ii).

Theorem 3.5. Let (A ,B,C ) be a recollement of abelian categories and assume
that B and C have enough projective and injective objects. Consider the following
statements for an object B of B and two integers n and m :

(a) The map ejB′,B : Extj
B
(B′, B) −→ Extj

C
(e(B′), e(B)) is an isomorphism

for every object B′ in B and every integer j > m+ n.
(b) The object B has an injective coresolution of the form

0 �� B �� I0 �� · · · �� In−1 �� r(J0) �� r(J1) �� · · · ,

where each Jj is a projective object in C .
(c) Extj

B
(i(A), B) = 0 for every A ∈ A and j > n, and there exists an n-th

cosyzygy of B lying in i(A )⊥.

(d) Extj
B
(i(P ), B) = 0 for every P ∈ ProjA and j > n, and there exists an

n-th cosyzygy of B lying in i(ProjA )⊥.

We have the following relations between these statements :

(i) (b) ⇐⇒ (c) ⇐⇒ (d).
(ii) If idC e(I) ≤ m for every injective object I in B, then (b) =⇒ (a).

In the above results, we fixed an object B of the category B, and considered the
maps ejB,B′ or e

j
B′,B for all objects B′ in B. With certain conditions on the object

B, we found that these maps are isomorphisms for almost all degrees j. We now
describe some conditions on the recollement which are sufficient to ensure that the
maps ejB,B′ are isomorphisms in almost all degrees j for all objects B and B′ of
B, in other words, that the functor e is an eventually homological isomorphism.
These conditions are given in the following corollary, which follows directly from
Theorem 3.4 and Theorem 3.5.

Corollary 3.6. Let (A ,B,C ) be a recollement and assume that B and C have
enough projective and injective objects. Let m and n be two integers. Assume that
one of the following conditions holds :

(i) (α′) sup{idB i(I) | I ∈ InjA } < m.
(ǫ) Every object of B has an m-th syzygy which lies in ⊥i(InjA ).
(β) sup{pdC e(P ) | P ∈ ProjB} ≤ n.

(ii) (γ′) sup{pdB i(P ) | P ∈ ProjA } < m.
(ǫop) Every object of B has an m-th cosyzygy which lies in i(ProjA )⊥.
(δ) sup{idC e(I) | I ∈ InjB} ≤ n.
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Then the functor e is an (m + n)-homological isomorphism, and in particular the
map

ejB,B′ : Extj
B
(B,B′)

∼= �� Extj
C
(e(B), e(B′))

is an isomorphism for all objects B and B′ of B and for every j > m+ n.

We now show a partial converse of the above result.

Proposition 3.7. Let (A ,B,C ) be a recollement and assume that B and C have
enough projective and injective objects. Assume that the functor e is an eventually
homological isomorphism. Then the following hold :

(α) sup{idB i(A) | A ∈ A } < ∞.
(β) sup{pdC e(P ) | P ∈ ProjB} < ∞.
(γ) sup{pdB i(A) | A ∈ A } < ∞.
(δ) sup{idC e(I) | I ∈ InjB} < ∞.

In particular, if e is a t-homological isomorphism for a nonnegative integer t, then
each of the above dimensions is bounded by t.

Proof. (α) Let A be an object of A . For every B in B and j > t, we get

Extj
B
(B, i(A)) ∼= Extj

C
(e(B), ei(A)) ∼= Extj

C
(e(B), 0) = 0,

since ei = 0 by Proposition 2.2, and thus idB i(A) ≤ t. The proof of (γ) is similar.
(β) Let P be a projective object of B. For every C in C and j > t, we get

Extj
C
(e(P ), C) ∼= Extj

C
(e(P ), el(C)) ∼= Extj

B
(P, l(C)) = 0,

since el ∼= IdC by Proposition 2.2, and thus pdC e(P ) ≤ t. The proof of (δ) is
similar. �

Remark 3.8. Recall from [54] that sup{pdB i(A) | A ∈ A } < ∞, which appears in
statement (γ) above, is called the A -relative global dimension of B, and denoted
by gl. dimA B.

We close this section by interpreting Theorem 3.4, Theorem 3.5 and Corollary 3.6
for artin algebras. To this end, for an artin algebra Λ and a ∈ Λ an idempotent
element, we denote by

e = (aΛ⊗Λ −) : modΛ −→ mod aΛa

the quotient functor of the recollement (modΛ/〈a〉,modΛ,mod aΛa); see Exam-
ple 2.3.

We first need the following well known observation.

Lemma 3.9. Let Λ be an artin algebra, let M be a Λ-module and let S be a simple
Λ-module. Then for every n ≥ 1 we have :

ExtnΛ(M,S) ∼= HomΛ(Ω
n(M), S) and ExtnΛ(S,M) ∼= HomΛ(S,Σ

n(M)),

where Ωn(M) is the n-th syzygy in a minimal projective resolution of M , and Σn(M)
is the n-th cosyzygy in a minimal injective coresolution of M .
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We also need the next easy result whose proof is left to the reader.

Lemma 3.10. Let Λ be an artin algebra and let a be an idempotent element of Λ.
Then the following inequalities hold :

(i) pdaΛa e(P ) ≤ pdaΛa aΛ, for every P ∈ proj Λ.
(ii) idaΛa e(I) ≤ pd(aΛa)op Λa, for every I ∈ inj Λ.

The following is a consequence of Theorem 3.4 and Theorem 3.5 for artin alge-
bras.

Corollary 3.11. Let Λ be an artin algebra, let a be an idempotent element in Λ
and let m and n be integers.

(i) Let M be a Λ-module such that ExtjΛ
(

M, (Λ/〈a〉)/(radΛ/〈a〉)
)

= 0 for
every j ≥ m. Assume that pdaΛa aΛ ≤ n. Then the map

ejM,N : ExtjΛ(M,N)
∼= �� ExtjaΛa(e(M), e(N))

is an isomorphism for every Λ-module N , and for every integer j > m+n.
(ii) Let M be a Λ-module such that ExtjΛ

(

(Λ/〈a〉)/(radΛ/〈a〉),M
)

= 0 for
every j ≥ m. Assume that pd(aΛa)op Λa ≤ n. Then the map

ejN,M : ExtjΛ(N,M)
∼= �� ExtjaΛa(e(N), e(M))

is an isomorphism for every Λ-module N , and for every integer j > m+n.

Proof. (i) Consider the recollement (modΛ/〈a〉,modΛ,mod aΛa) of Example 2.3.
Since every simple Λ/〈a〉-module is also simple as a Λ-module it follows from
Lemma 3.9 that

HomΛ

(

Ωm(M), (Λ/〈a〉)/(radΛ/〈a〉)
)

= 0.

This implies that HomΛ(Ω
m(M), N) = 0 for every Λ/〈a〉-module N since every

module has a finite composition series. Then the result is a consequence of Theo-
rem 3.4.

(ii) The result follows similarly as in (i), using Theorem 3.5 and the second
isomorphism of Lemma 3.9. �

As an immediate consequence of the above results we have the following charac-
terization of when the functor e : modΛ −→ mod aΛa is an eventually homological
isomorphism. This constitutes the first part of the Main Theorem presented in the
Introduction.

Corollary 3.12. Let Λ be an artin algebra and let a be an idempotent element in
Λ. The following are equivalent:

(i) There is an integer s such that for every pair of Λ-modules M and N , and
every j > s, the map

ejM,N : ExtjΛ(M,N)
∼= �� ExtjaΛa(e(M), e(N))

is an isomorphism.
(ii) The functor e is an eventually homological isomorphism.
(iii) (α) idΛ

(

(Λ/〈a〉)/(radΛ/〈a〉)
)

< ∞ and (β) pdaΛa aΛ < ∞.

(iv) (γ) pdΛ
(

(Λ/〈a〉)/(radΛ/〈a〉)
)

< ∞ and (δ) pd(aΛa)op Λa < ∞.
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In particular, if the functor e is a t-homological isomorphism, then each of the
dimensions in (iii) and (iv) are at most t. The bound s in (i) is bounded by the sum
of the dimensions occurring in (iii), and also bounded by the sum of the dimensions
occurring in (iv).

Proof. The implications (ii) =⇒ (iii) and (ii) =⇒ (iv) follow from Proposition 3.7.
The implications (iii) =⇒ (i) and (iv) =⇒ (i) follow from Corollary 3.11. �

The above corollary shows that e being an eventually homological isomorphism
is equivalent to the two conditions (α) and (β), and also equivalent to the two
conditions (γ) and (δ). In Subsection 8.1, we give examples showing that no other
pair of the four conditions (α)–(δ) implies that e is an eventually homological
isomorphism.

4. Gorenstein categories and eventually homological isomorphisms

Our aim in this section is to study Gorenstein categories, introduced by Beligi-
annis–Reiten [9]. The main objective is to study when a functor f : D −→ F

between abelian categories preserves Gorensteinness. A central property here is
whether the functor f is an eventually homological isomorphism. We prove that
for an essentially surjective eventually homological isomorphism f : D −→ F , then
D is Gorenstein if and only if F is. The results are applied to recollements of
abelian categories, and recollements of module categories.

We start by briefly recalling the notion of Gorenstein categories introduced in
[9]. Let A be an abelian category with enough projective and injective objects.
We consider the following invariants associated to A :

spliA = sup{pdA I | I ∈ InjA } and silpA = sup{idA P | P ∈ ProjA }.

Then we have the following notion of Gorensteinness for abelian categories.

Definition 4.1 ([9]). An abelian category A with enough projective and injective
objects is called Gorenstein if spliA < ∞ and silpA < ∞.

Note that the above notion is a common generalization of Gorensteinness in the
commutative and in the noncommutative setting. We refer to [9, Chapter VII]
for a thorough discussion on Gorenstein categories and connections with Cohen–
Macaulay objects and cotorsion pairs.

We start with the following useful observation whose direct proof is left to the
reader.

Lemma 4.2. Let A be an abelian category with enough projective and injective
objects and let X be an object of A .

(i) If pdA X < ∞, then idA X ≤ silpA .
(ii) If idA X < ∞, then pdA X ≤ spliA .

In the main result of this section we study eventually homological isomorphisms
between abelian categories with enough projective and injective objects. In par-
ticular we show that an essentially surjective eventually homological isomorphism
preserves Gorensteinness. This is a general version of the third part of the Main
Theorem presented in the Introduction.



GORENSTEINNESS, SINGULARITIES AND COHOMOLOGY 61

Theorem 4.3. Let f : D −→ F be a functor, where D and F are abelian categories
with enough projective and injective objects, and let t be a nonnegative integer.
Consider the following four statements :

(a) For every D in D :

{

pdD D ≤ sup{pdF f(D), t}

idD D ≤ sup{idF f(D), t}
(c)

{

spliD ≤ sup{spliF , t}

silpD ≤ sup{silpF , t}

(b) For every D in D :

{

pdF f(D) ≤ sup{pdD D, t}

idF f(D) ≤ sup{idD D, t}
(d)

{

spliF ≤ sup{spliD , t}

silpF ≤ sup{silpD , t}

We have the following.

(i) If f is a t-homological isomorphism, then (a) holds.
(ii) If f is an essentially surjective t-homological isomorphism, then (a) and

(b) hold.
(iii) If (a) and (b) hold, then (c) holds.
(iv) If (a) and (b) hold and f is essentially surjective, then (c) and (d) hold.

In particular, we obtain the following.

(v) If f is an essentially surjective eventually homological isomorphism, then
D is Gorenstein if and only if F is Gorenstein.

(vi) If f is an eventually homological isomorphism and (b) holds, then F being
Gorenstein implies that D is Gorenstein.

Proof. We first assume that f is an essentially surjective t-homological isomorphism
and show the inequality pdF f(D) ≤ sup{pdD D, t}; the other inequalities in parts
(i) and (ii) are proved similarly. The inequality clearly holds if D has infinite
projective dimension. Assume that D has finite projective dimension, and let n =
max{pdD D, t} + 1. For any object X in F , there is an object X ′ in D with
f(X ′) ∼= X, since the functor f is essentially surjective. By using that f is a
t-homological isomorphism, we get

ExtnF (f(D), X) ∼= ExtnF (f(D), f(X ′)) ∼= ExtnD(D,X ′) = 0.

This means that we have pdF f(D) < n, and therefore pdF f(D) ≤ sup{pdD D, t}.
We now assume that (a) and (b) hold and f is essentially surjective, and show

the inequality spliF ≤ sup{spliD , t}; the other inequalities in parts (iii) and (iv)
are proved similarly. Let I be an injective object of F . Since f is essentially
surjective, we can choose an object D in D such that f(D) ∼= I. By (a), the object
D has finite injective dimension, and then by Lemma 4.2, its projective dimension
is at most spliD . Using (b), we get

pdF I ≤ sup{pdD D, t} ≤ sup{spliD , t}.

Since this holds for any injective object I in F , we have spliF ≤ sup{spliD , t}.
Parts (v) and (vi) follow by combining parts (i)–(iv). �

Now we return to the setting of a recollement (A ,B,C ). We use Theorem 4.3
to study the functors i : A −→ B and e : B −→ C with respect to Gorensteinness.
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Corollary 4.4. Let (A ,B,C ) be a recollement of abelian categories.

(i) Assume that the categories B and C have enough projective and injective
objects, and that the functor e is an eventually homological isomorphism.
Then B is Gorenstein if and only if C is Gorenstein.

(ii) Assume that the category B has enough projective and injective objects,
and that we have either

sup{pdB i(P ) | P ∈ ProjA } ≤ 1

sup{idB i(I) | I ∈ InjA } < ∞

}

or

{

sup{pdB i(P ) | P ∈ ProjA } < ∞

sup{idB i(I) | I ∈ InjA } ≤ 1

If B is Gorenstein, then A is Gorenstein.

Proof. Part (i) follows directly from Theorem 4.3 (v), noting that e is essentially
surjective by Proposition 2.2.

We now show part (ii). By Proposition 2.2 (iv) and (v), A has enough projective
and injective objects since B does (see [54, Remark 2.5]).

It follows from [54, Proposition 4.15] (or its dual) that the functor i : A −→ B

is a homological embedding, i.e. the map inX,Y is an isomorphism for all objects X
and Y in A and every n ≥ 0. In particular, this means that i is a 0-homological
isomorphism. By Theorem 4.3 (i), we have

(4.1) pdA A ≤ pdB i(A) and idA A ≤ idB i(A)

for every object A in A .
We show that spliA ≤ spliB. Let I be an injective object in A. By assumption,

we have idB i(I) < ∞, and then by the first inequality in (4.1) and Lemma 4.2, we
have

pdA I ≤ pdB i(I) ≤ spliB.

Hence we have spliA ≤ spliB. By a similar argument, we have silpA ≤ silpB.
The result follows. �

In a recollement (A ,B,C ) we have seen that the implications (i) B Gorenstein
if and only if C Gorenstein and (ii) B Gorenstein implies A Gorenstein hold under
various additional assumptions. It is then natural to ask if the categories A and C

being Gorenstein could imply that B is Gorenstein. The next example shows that
this is not true in general.

Example 4.5. Let k be a field and consider the algebra k[x]/〈x2〉. Then from the
triangular matrix algebra

Λ =

(

k k
0 k[x]/〈x2〉

)

we have the recollement of module categories (mod k[x]/〈x2〉,modΛ,mod k), where
mod k[x]/〈x2〉 and mod k are Gorenstein categories but modΛ is not Gorenstein.
We refer to [15, Example 4.3 (2)] for more details about the algebra Λ.

Recall from [9] that a ring R is called left Gorenstein if the category ModR
of left R-modules is a Gorenstein category. Applying Corollary 4.4 to the module
recollement (ModR/〈e〉,ModR,Mod eRe) from Example 2.3, we have the following
result.
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Corollary 4.6. Let R be a ring and e an idempotent element of R.

(i) If the functor e− : ModR −→ Mod eRe is an eventually homological iso-
morphism, then the ring R is left Gorenstein if and only if the ring eRe is
left Gorenstein.

(ii) Assume that we have either

pdR R/〈e〉 ≤ 1

sup{idB i(I) | I ∈ InjR/〈e〉} < ∞

}

or

{

pdR R/〈e〉 < ∞

sup{idB i(I) | I ∈ InjR/〈e〉} ≤ 1

If the ring R is left Gorenstein, then the ring R/〈e〉 is left Gorenstein.

Recall that an artin algebra Λ is called Gorenstein if id ΛΛ < ∞ and idΛΛ < ∞
(see [5,6]). Note that modΛ is a Gorenstein category if and only if Λ is a Gorenstein
algebra. We close this section with the following consequence for artin algebras,
whose first part constitutes the third part of the Main Theorem presented in the
Introduction.

Corollary 4.7. Let Λ be an artin algebra and a an idempotent element of Λ.

(i) Assume that the functor a− : modΛ −→ mod aΛa is an eventually homo-
logical isomorphism. Then the algebra Λ is Gorenstein if and only if the
algebra aΛa is Gorenstein.

(ii) Assume that we have either

pdΛ Λ/〈a〉 ≤ 1

pdΛop Λ/〈a〉 < ∞

}

or

{

pdΛ Λ/〈a〉 < ∞

pdΛop Λ/〈a〉 ≤ 1

If the algebra Λ is Gorenstein, then the algebra Λ/〈a〉 is Gorenstein.

5. Singular equivalences in recollements

Our purpose in this section is to study singularity categories, in the sense of
Buchweitz [12] and Orlov [50], in a recollement of abelian categories (A ,B,C ). In
particular we are interested in finding necessary and sufficient conditions such that
the singularity categories of B and C are triangle equivalent. We start by recalling
some well known facts about singularity categories.

Let B be an abelian category with enough projective objects. We denote
by Db(B) the derived category of bounded complexes of objects of B and by
Kb(ProjB) the homotopy category of bounded complexes of projective objects
of B. Then the singularity category of B ([12, 50]) is defined to be the Verdier
quotient :

Dsg(B) = Db(B)/Kb(ProjB).

See [18] for a discussion of more general quotients of Db(B) by Kb(X), where X is
a selforthogonal subcategory of B.

It is well known that the singularity category Dsg(B) carries a unique triangu-
lated structure such that the quotient functor QB : Db(B) −→ Dsg(B) is triangu-
lated; see [43,49,63]. Recall that the objects of the singularity category Dsg(B) are
the objects of the bounded derived category Db(B), the morphisms between two
objects X• −→ Y • are equivalence classes of fractions (X• ← L• → Y •) such that
the cone of the morphism L• −→ X• belongs to Kb(ProjB) and the exact triangles
in Dsg(B) are all the triangles which are isomorphic to images of exact triangles
of Db(B) via the quotient functor QB. Note that a complex X• is zero in Dsg(B)
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if and only if X• ∈ Kb(ProjB). Following Chen [19, 20], we say that two abelian
categories A and B are singularly equivalent if there is a triangle equivalence
between the singularity categories Dsg(A ) and Dsg(B). This triangle equivalence
is called a singular equivalence between A and B.

To proceed further we need the following well known result for exact triangles
in derived categories. For a complex X• in an abelian category A we denote by

σ>n(X
•) the truncation complex · · · −→ 0 −→ Im dn −→ Xn+1 dn+1

−→ Xn+2 −→
· · · , and by Hn(X•) the n-th homology of X•.

Lemma 5.1. Let A be an abelian category and let X• be a complex in A . Then
we have the following triangle in D(A ) :

Hn(X•)[−n] �� σ>n−1(X
•) �� σ>n(X

•) �� Hn(X•)[1− n].

Now we are ready to prove the main result of this section which gives necessary
and sufficient conditions for the quotient functor e : B −→ C to induce a triangle
equivalence between the singularity categories of B and C . This is a general version
of the second part of the Main Theorem presented in the Introduction.

Theorem 5.2. Let (A ,B,C ) be a recollement of abelian categories. Then the
following statements are equivalent :

(i) We have pdB i(A) < ∞ and pdC e(P ) < ∞ for every A ∈ A and P ∈
ProjB.

(ii) The functor e : B −→ C induces a singular equivalence between B and
C :

Dsg(e) : Dsg(B)
≃ �� Dsg(C ).

Proof. (i) =⇒ (ii) First note that we have a well defined derived functor
Db(e) : Db(B) −→ Db(C ) since the quotient functor e : B −→ C is exact. Also
the recollement situation (A ,B,C ) implies that 0 −→ A −→ B −→ C −→ 0 is
an exact sequence of abelian categories; see Proposition 2.2. Then it follows from
[46, Theorem 3.2] (see also [40]) that 0 −→ Db

A
(B) −→ Db(B) −→ Db(C ) −→ 0

is an exact sequence of triangulated categories, where Db
A
(B) is the full sub-

category of Db(B) consisting of complexes whose homology lie in A . Hence
Db(e) is a quotient functor, i.e. Db(B)/Db

A
(B) ≃ Db(C ). Next we claim that

Db(e)(Kb(ProjB)) ⊆ Kb(ProjC ). Let P • ∈ Kb(ProjB). Suppose first that P •

is concentrated in degree zero, so we deal with a projective object P of B. Since
the object e(P ) has finite projective dimension it follows that there is a quasi-
isomorphism Q• −→ e(P )[0], where Q• ∈ Kb(ProjC ) is a projective resolution
of e(P ). Then the object e(P )[0] is isomorphic with Q• in Db(C ) and therefore
e(P ) ∈ Kb(ProjC ). Now let P • = (0 −→ P0 −→ P1 −→ 0) ∈ Kb(ProjB). Then
we have the triangle P0[0] −→ P1[0] −→ P • −→ P0[1] and if we apply the func-
tor Db(e) we infer that Db(e)(P •) ∈ Kb(ProjC ) since Kb(ProjC ) is a triangulated
subcategory. Continuing inductively on the length of the complex P • we infer
that the object Db(e)(P •) lies in Kb(ProjC ) and so our claim follows. Then since
the triangulated functor Db(e) ◦QC : Db(B) −→ Dsg(C ) annihilates Kb(ProjB) it
follows that Db(e) ◦ QC factors uniquely through QB via a triangulated functor
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Dsg(e) : Dsg(B) −→ Dsg(C ), that is the following diagram is commutative :

Db(B)
QB ��

Db(e)

��

Dsg(B)

Dsg(e)

��

Db(C )
QC �� Dsg(C )

Next we show that Db
A
(B) ⊆ Kb(ProjB) in Db(B). Since the projective dimen-

sion of i(A) is finite for all A in A , it follows that i(A ) ⊆ Kb(ProjB) in Db(B).
Let B• be an object of Db

A
(B). Assume first that B• is concentrated in degree

zero. Hence we deal with an object B ∈ B such that B ∼= i(A) for some A ∈ A ,
and therefore our claim follows. Now consider a complex

B• : 0 �� B0 d0
�� B1 �� 0,

where H0(B•) and H1(B•) lie in A . From Lemma 5.1 we have the triangles

H0(B•) �� σ>−1(B
•) �� σ>0(B

•) �� H0(B•)[1]

and

H1(B•)[−1] �� σ>0(B
•) �� σ>1(B

•) �� H1(B•)

in Db(B). Then from the second triangle it follows that σ>0(B
•) ∈ Kb(ProjB)

and therefore from the first triangle we get that σ>−1(B
•) = B• ∈ Kb(ProjB).

Continuing inductively on the length of the complex B•, we infer that Db
A
(B) ⊆

Kb(ProjB) in Db(B). Using this we can form the quotient Kb(ProjB)/Db
A
(B),

and then we have the following exact commutative diagram:

0 �� Kb(ProjB)/Db
A
(B) ��

��

Db(B)/Db
A
(B)

≃

��

�� Dsg(B) ��

Dsg(e)

��

0

0 �� Kb(ProjC ) �� Db(C ) �� Dsg(C ) �� 0

We show that the functor Kb(ProjB)/Db
A
(B) −→ Kb(ProjC ) is an equivalence,

where we denote it by Kb(e). First from the above commutative diagram and since
there is an equivalence Db(B)/Db

A
(B) ≃ Db(C ), it follows that the functor Kb(e)

is fully faithful. Let P • : 0 −→ Pn −→ · · · −→ P1 −→ P0 −→ 0 be an object of
Kb(ProjC ). Each Pi is a projective object in C and from Proposition 2.2 we have
el(Pi) ∼= Pi with l(Pi) ∈ ProjB. Then the complex l(P •) : 0 −→ l(Pn) −→ · · · −→
l(P1) −→ l(P0) −→ 0 is such that Kb(e)(l(P •)) = P •. This implies that the functor
Kb(e) is essentially surjective. Hence the functor Kb(e) is an equivalence.

In conclusion, from the above exact commutative diagram we infer that the
singularity categories of B and C are triangle equivalent.

(ii) =⇒ (i) Suppose that there is a triangle equivalence Dsg(e) : Dsg(B)
≃
−→

Dsg(C ). Let P be a projective object of B. Then P [0] ∈ Kb(ProjB) and
Db(e)(P [0]) ∈ Kb(ProjC ). Thus the object e(P ) has finite projective dimension.
Let A ∈ A and consider the object i(A) of B. Then from Proposition 2.2 we have
e(i(A)) = 0. Since Dsg(e) is an equivalence, the object i(A) is zero in Dsg(B), and
therefore i(A) ∈ Kb(ProjB). We infer that i(A) has finite projective dimension. �
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Remark 5.3. If the functor e : B −→ C is an eventually homological isomorphism,
then statement (i) in Theorem 5.2 is true by Proposition 3.7. Thus Theorem 5.2
in particular says that if the functor e : B −→ C in a recollement (A ,B,C ) is an
eventually homological isomorphism, then it induces a singular equivalence between
B and C . Example 5.5 below shows that the converse does not hold.

Note that statement (i) in Theorem 5.2 only states that each object of the form
i(A) or e(P ) has finite projective dimension, and not that there exists a finite bound
for the projective dimensions of all such objects. In other words, the supremums

sup{pdB i(A) | A ∈ A } and sup{pdC e(P ) | P ∈ ProjB}

(which are used in other parts of the paper) may be infinite even if statement (i) is
true.

Applying Theorem 5.2 to the recollement of module categories
(modR/〈e〉,modR,mod eRe) (see Example 2.3), we have the following con-
sequence due to Chen; see [15, Theorem 2.1] and [16, Corollary 3.3]. Note that our
version is somewhat stronger; the difference is that Chen takes pdeRe eR < ∞ as an
assumption instead of including it in one of the equivalent statements. This result
constitutes the second part of the Main Theorem presented in the Introduction.

Corollary 5.4. Let R be a left Noetherian ring and e an idempotent element of R.
Then the following statements are equivalent :

(i) For every R/〈e〉-module X we have pdR X < ∞, and pdeRe eR < ∞.
(ii) The functor e(−) : modR −→ mod eRe induces a singular equivalence

between modR and mod eRe :

Dsg(e(−)) : Dsg(modR)
≃ �� Dsg(mod eRe).

Now we give an example where the functor e = a(−) : modΛ → mod aΛa induces
a singular equivalence, but is not an eventually homological isomorphism.

Example 5.5. We recycle the algebra from Example 4.5, that is, let Λ be the
triangular matrix algebra

(

k k
0 k[x]/〈x2〉

)

,

where k is a field. We have the recollement of module categories
(mod k,modΛ,mod k[x]/〈x2〉), with a = ( 0 0

0 1 ) as the chosen idempotent. Then
(Λ/〈a〉)/(radΛ/〈a〉) ∼= Λ/〈a〉 ∼= Λ( 1 0

0 0 ) as Λ-modules, which implies that all Λ/〈a〉-
modules are projective as Λ-modules. Furthermore, aΛ ∼= aΛa as aΛa-modules.
Then it follows from Corollary 5.4 that the functor e = a(−) induces a singular
equivalence between modΛ and mod aΛa. However, condition (α) in Corollary 3.12
is not satisfied, hence e is not an eventually homological isomorphism.

The algebra k[x]/〈x2〉 is a Gorenstein algebra, but the algebra Λ is not Goren-
stein. This example therefore shows that singular equivalences do not in general
preserve Gorensteinness.

We end this section with an application to stable categories of Cohen–Macaulay
modules. Let Λ be a Gorenstein artin algebra. We denote by CM(Λ) the category
of (maximal) Cohen–Macaulay modules defined as follows:

CM(Λ) = {X ∈ modΛ | ExtnΛ(X,Λ) = 0 for all n ≥ 1}.
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Then it is known that the stable category CM(Λ) modulo projectives is a trian-
gulated category (see [38]), and moreover there is a triangle equivalence between
the singularity category Dsg(modΛ) and the stable category CM(Λ); see [12, Theo-
rem 4.4.1] and [37, Theorem 4.6]. As a consequence of Corollary 3.12, Corollary 4.7
and Corollary 5.4 we get the following.

Corollary 5.6. Let Λ be a Gorenstein artin algebra and a an idempotent element of
Λ. Assume that the functor a− : modΛ −→ mod aΛa is an eventually homological
isomorphism. Then there is a triangle equivalence between the stable categories of
Cohen–Macaulay modules of Λ and aΛa :

CM(Λ)
≃ �� CM(aΛa).

6. Finite generation of cohomology rings

In this section, we describe a way to compare the Fg condition (see Definition 2.6)
for two different algebras. This is used in the next section for the algebras Λ and
aΛa, where Λ is a finite dimensional algebra over a field and a is an idempotent in
Λ.

Let Λ and Γ be two artin algebras over a commutative ring k, and assume that
they are flat as k-modules. Let M = Λ/(radΛ) and N = Γ/(radΓ). Assume that
we have graded ring isomorphisms f and g making the diagram

(6.1) HH∗(Λ)
ϕM ��

f ∼=

��

Ext∗Λ(M,M)

g ∼=

��

HH∗(Γ) ϕN

�� Ext∗Γ(N,N)

commute, where the maps ϕM and ϕN are defined in Subsection 2.2. Then it is
clear that Fg for Λ is exactly the same as Fg for Γ, since all the relevant data for
the Fg condition is exactly the same for the two algebras.

However, we can come to the same conclusion even if the homology groups for Λ
and Γ are different in some degrees, as long as they are the same in all but finitely
many degrees. In other words, if the maps f and g above are just graded ring
homomorphisms such that fn and gn are group isomorphisms for almost all degrees
n, then the Fg condition holds for Λ if and only if it holds for Γ. The goal of this
section is to show this.

We first prove the result in a more general setting, where we replace the rings
in (6.1) by arbitrary graded rings satisfying appropriate assumptions. This is done
in Proposition 6.3, after we have shown a part of the result (corresponding to part
(i) of the Fg condition) in Proposition 6.2. Finally, we state the result for Fg in
Proposition 6.4.

We now introduce some terminology and notation which is used in this section
and the next. By graded ring we always mean a ring of the form

R =

∞
⊕

i=0

Ri

graded over the nonnegative integers. We denote the set of nonnegative integers by
N0. If R is a graded ring and n a nonnegative integer, we use the notation R≥n for
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the graded ideal

R≥n =
∞
⊕

i=n

Ri

in R. We use the term rng for a “ring without identity”, that is, an object which
satisfies all the axioms for a ring except having a multiplicative identity element.

We use the following characterization of noetherianness for graded rings.

Theorem 6.1. Let R be a graded ring. Then R is noetherian if and only if it
satisfies the ascending chain condition on graded ideals.

Proof. This follows directly from [48, Theorem 5.4.7]. �

We now begin the main work of this section by showing that an isomorphism in
all but finitely many degrees between two sufficiently nice graded rings preserves
noetherianness. This implies that such a map between Hochschild cohomology rings
preserves part (i) of the Fg condition, and thus gives one half of the result we want.

Proposition 6.2. Let R and S be graded rings. Assume that R0 and S0 are
noetherian, that every Ri is finitely generated as left and as right R0-modules, and
that every Si is finitely generated as left and as right S0-modules. Let n be a
nonnegative integer, and assume that there exists an isomorphism φ : R≥n −→ S≥n

of graded rngs. Then R is noetherian if and only if S is noetherian.

Proof. We prove (by showing the contrapositive) that R is left noetherian if S is
left noetherian. The corresponding result with right noetherian is proved in the
same way. This gives one of the implications we need. The opposite implication is
proved in the same way by interchanging R and S and using φ−1 instead of φ.

Assume that R is not left noetherian. Let

I : I(0) ⊂ I(1) ⊂ · · ·

be an infinite strictly ascending sequence of graded left ideals in R (this is possible
by Theorem 6.1). For every index i in this sequence, we can write the ideal I(i) as
a direct sum

I(i) =
⊕

d∈N0

I
(i)
d

of abelian groups, where I
(i)
d ⊆ Rd is the degree d part of I(i). For any degree d,

we can make an ascending sequence

I
(0)
d ⊆ I

(1)
d ⊆ · · ·

of R0-submodules of Rd by taking the degree d part of each ideal in I. But Rd

is a noetherian R0-module (since R0 is noetherian and Rd is a finitely generated
R0-module), and hence this sequence must stabilize at some point. Let s(d) be the

point where it stabilizes, that is, the smallest integer such that I
(s(d))
d = I

(i)
d for

every i > s(d).
We now define two functions σ : N0 −→ N0 and δ : N0 −→ N0. For d ∈ N0, we

define

σ(d) = max{s(0), s(1), . . . , s(d)}.

For i ∈ N0, we define δ(i) as the smallest number such that

I
(i)
δ(i) �= I

(i+1)
δ(i) .
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These functions have the following interpretation. For a degree d, the number σ(d)
is the index in the sequence I where the ideals in the sequence have stabilized up
to degree d. For an index i, the number δ(i) is the lowest degree at which there is
a difference from the ideal I(i) to the ideal I(i+1).

We now define a sequence (ij)j∈N0
of indices and a sequence (dj)j∈N0

of degrees
by

ij =

{

σ(n) if j = 0,
σ(dj−1 + n) otherwise,

dj = δ(ij).

We observe that for every positive integer j, we have

ij > ij−1 and dj > dj−1 + n.

We now construct a sequence J of graded left ideals in S. For every nonnegative
integer j, we choose an element

xj ∈ I
(ij+1)
dj

− I
(ij)
dj

(this is possible because dj = δ(ij)). Note that the degree of xj is dj , which is

greater than n. We then define J (j) to be the left ideal of S generated by the set

{φ(x0), . . . , φ(xj)}.

We let J be the sequence of these ideals :

J : J (0) ⊆ J (1) ⊆ · · · .

We want to show that each inclusion here is strict. This means that we must show,
for every positive integer j, that φ(xj) is not an element of J (j−1).

We show this by contradiction. Assume that there is a j such that φ(xj) ∈ J (j−1).
Then we can write φ(xj) as a sum

φ(xj) =

j−1
∑

m=0

sm · φ(xm),

where each sm is an element of S. Since φ(xj) and every φ(xm) are homogeneous
elements, we can choose every sm to be homogeneous. For each m, we have that if
sm is nonzero, then its degree is

|sm| = |φ(xj)| − |φ(xm)| = |xj | − |xm| = dj − dm > n.

Thus sm is either zero or in the image of φ. We use this to find corresponding
elements in R. Let, for each m ∈ {1, . . . , j − 1},

rm =

{

0 if sm = 0,
φ−1(sm) otherwise.

Now we have

φ(xj) =

j−1
∑

m=0

sm · φ(xm) = φ

(

j−1
∑

m=0

rm · xm

)

.

Applying φ−1 gives

xj =

j−1
∑

m=0

rm · xm.
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Since we have xm ∈ I(im+1) ⊆ I(ij) for every m, this means that xj ∈ I(ij). This is

a contradiction, since xj is chosen so that it does not lie in I(ij).
We have shown that the sequence J is a strictly ascending sequence of graded

left ideals in S. Thus S is not left noetherian. �

We now complete the picture by considering two graded rings and a graded
module over each ring, and showing that isomorphisms in all but finitely many de-
grees preserve both noetherianness of the rings and finite generation of the modules
(given that certain assumptions are satisfied).

Proposition 6.3. Let R and M be graded rings, and θ : R −→ M a graded ring
homomorphism. View M as a graded left R-module with scalar multiplication given
by θ. Assume that R0 is noetherian, that every Ri is finitely generated as left and
as right R0-modules, and that every Mi is finitely generated as a left R0-module.

Similarly, let R′ and M ′ be graded rings, and θ′ : R′ −→ M ′ a graded ring
homomorphism. View M ′ as a graded left R′-module with scalar multiplication
given by θ′. Assume that R′

0 is noetherian, that every R′
i is finitely generated as left

and as right R′
0-modules, and that every M ′

i is finitely generated as a left R′
0-module.

Assume that there are graded rng isomorphisms φ : R≥n −→ R′
≥n and

ψ : M≥n −→ M ′
≥n (for some nonnegative integer n) such that the diagram

R≥n

θ≥n
��

φ

��

M≥n

ψ

��

R′
≥n θ′

≥n

�� M ′
≥n

commutes. Then the following two conditions are equivalent.

(i) R is noetherian and M is finitely generated as a left R-module.
(ii) R′ is noetherian and M ′ is finitely generated as a left R′-module.

Proof. We prove that condition (i) implies condition (ii). The opposite implication
is proved in exactly the same way by using φ−1 and ψ−1 instead of φ and ψ.

Assume that condition (i) holds. Then by Proposition 6.2, R′ is noetherian. We
need to show that M ′ is finitely generated as a left R′-module.

We begin with choosing generating sets for things we know to be finitely gener-
ated. Note that the ideal R≥n of R is finitely generated, since R is noetherian. Let
A be a finite homogeneous generating set for R≥n. Let G be a finite homogeneous
generating set for M as a left R-module. For every i, let Bi be a finite generating
set for M ′

i as a left R′
0-module.

Let

bR = max
{

|a|
∣

∣ a ∈ A
}

and bM = max
{

|g|
∣

∣ g ∈ G
}

be the maximal degrees of elements in our chosen generating sets for R and M ,
respectively. Let

b = bR + bM + n.

Define the set G′ to be

G′ =

b
⋃

i=0

Bi.

We want to show that G′ generates M ′ as a left R′-module.
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Let N ′ be the R′-submodule of M ′ generated by G′. It is clear that N ′ contains
every homogeneous element of M ′ with degree at most b. Let m′ ∈ M ′ be a
homogeneous element with |m′| > b. Let m = ψ−1(m′). We can write m as a sum

m =
∑

i

θ(ri) · gi,

where every ri is a homogeneous nonzero element of R and every gi is an element
of the generating set G for M . For every ri, we have

|ri| = |m| − |gi| = |m′| − |gi| > b− bM = bR + n.

Thus ri lies in the ideal R≥n, so we can write it as a sum

ri =
∑

j

ui,j · ai,j ,

where every ui,j is a homogeneous nonzero element of R, and every ai,j is an element
of the generating set A for R≥n. For every ui,j , we have

|ui,j | = |ri| − |ai,j | > (bR + n)− bR = n.

Now we can write the element m as

m =
∑

i,j

θ(ui,j · ai,j) · gi =
∑

i,j

θ(ui,j) · θ(ai,j) · gi =
∑

i,j

θ(ui,j) · (ai,j · gi).

If we have ai,j · gi = 0 for some terms in the sum, we ignore these terms. For every
pair (i, j), we have

|θ(ui,j)| = |ui,j | > n and |ai,j · gi| ≥ |ai,j | ≥ n.

This means that when applying ψ to a term in the above sum for m, we have

ψ(θ(ui,j) · (ai,j · gi)) = ψ(θ(ui,j)) · ψ(ai,j · gi).

Using this, we can write our element m′ of M ′ in the following way:

m′ = ψ(m) = ψ
(

∑

i,j

θ(ui,j) · (ai,j · gi)
)

=
∑

i,j

ψ(θ(ui,j)) · ψ(ai,j · gi)

=
∑

i,j

θ′(φ(ui,j)) · ψ(ai,j · gi).

For every pair (i, j), we have

|ψ(ai,j · gi)| = |ai,j · gi| = |ai,j |+ |gi| ≤ bR + bM ≤ b,

so ψ(ai,j · gi) lies in the module N ′ generated by G′. Thus m′ also lies in N ′. Since
every homogeneous element of M ′ lies in N ′, we have M ′ = N ′, and hence M ′ is
finitely generated. �

Finally, we apply the above result to the rings which are involved in the Fg

condition, and obtain the main result of this section.
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Proposition 6.4. Let Λ and Γ be artin algebras over a commutative ring k, and
assume that they are flat as k-modules. Let M and M ′ be Λ-modules, and let N
and N ′ be Γ-modules, such that M ∼= Λ/(radΛ) and N ′ ∼= Γ/(radΓ). Let n be some
nonnegative integer, and assume that there are graded rng isomorphisms f , g, f ′

and g′ making the following two diagrams commute :

HH≥n(Λ)
ϕ

≥n

M ��

f ∼=

��

Ext≥n
Λ (M,M)

g ∼=
��

HH≥n(Γ)
ϕ≥n

N

�� Ext≥n
Γ (N,N)

and

HH≥n(Λ)
ϕ

≥n

M′
��

f ′ ∼=

��

Ext≥n
Λ (M ′,M ′)

g′ ∼=
��

HH≥n(Γ)
ϕ≥n

N′

�� Ext≥n
Γ (N ′, N ′)

Then Λ satisfies Fg if and only if Γ satisfies Fg.

Proof. We first check that the conditions on the graded rings in Proposition 6.3 are
satisfied in this case. For every degree i, we have that HHi(Λ), ExtiΛ(M,M) and
ExtiΛ(M

′,M ′) are finitely generated as k-modules. Therefore, they are also finitely
generated as HH0(Λ)-modules. The ring HH0(Λ) is noetherian since it is an artin

algebra. Similarly, we see that HHi(Γ), ExtiΓ(N,N) and ExtiΓ(N
′, N ′) are finitely

generated HH0(Γ)-modules, and that the ring HH0(Γ) is noetherian.
Assume that Λ satisfies Fg. Then HH∗(Λ) is noetherian, and by Theorem 2.7,

Ext∗Λ(M
′,M ′) is a finitely generated HH∗(Λ)-module. By applying Proposition 6.3

to the commutative diagram with f ′ and g′, we see that Γ satisfies Fg.
The opposite inclusion is proved in the same way by using the other commutative

diagram. �

7. Finite generation of cohomology rings in module recollements

We now investigate the relationship between the Fg condition (see Definition 2.6)
for an algebra Λ and the algebra aΛa, where a is an idempotent of Λ. We show
that, given some conditions on the idempotent a, the algebra Λ satisfies Fg if and
only if the algebra aΛa satisfies Fg. We prove this result only for finite dimensional
algebras over a field, and not more general artin algebras.

Throughout this section, we let k be a field, Λ a finite dimensional k-algebra and
a an idempotent in Λ. We denote by e and E the exact functors

e = (a−) : modΛ −→ mod aΛa,

E = (a− a) : modΛe −→ mod(aΛa)e.

These functors fit into the recollements described in Example 2.3.
For a Λ-module M , we can construct the diagram

HH∗(Λ)
ϕM ��

E∗
Λ,Λ

��

Ext∗Λ(M,M)

e∗M,M

��

HH∗(aΛa) ϕe(M)

�� Ext∗aΛa(e(M), e(M))

where the maps ϕM and ϕe(M) are defined in Subsection 2.2, and the maps E∗
Λ,Λ

and e∗M,M are defined in Section 3. We show that this diagram commutes, and
that under certain conditions on a, the vertical maps are isomorphisms in almost
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all degrees. We then use Proposition 6.4 to show that Λ satisfies Fg if and only if
aΛa satisfies Fg.

Let us consider what kind of conditions we need to put on the choice of the
idempotent a. From Corollary 3.12, we know that the map e∗M,M in the above
diagram is an isomorphism in all but finitely many degrees if the two dimensions

idΛ

( Λ/〈a〉

radΛ/〈a〉

)

and pdaΛa(aΛ)

are finite, or, equivalently, that the two dimensions

pdΛ

( Λ/〈a〉

radΛ/〈a〉

)

and pd(aΛa)op(Λa)

are finite. We show (given an additional technical assumption about the algebra
Λ) that this is in fact also sufficient for the map E∗

Λ,Λ to be an isomorphism in all
but finitely many degrees.

This section is structured as follows. The first part considers the commutativity
of the above diagram, concluding with Proposition 7.2. The second part considers
when the map E∗

Λ,Λ is an isomorphism in high degrees, concluding with Proposi-
tion 7.9. Finally, the main result of this section is stated as Theorem 7.10.

We now show that the above diagram is commutative. The maps ϕM and ϕe(M)

are defined by using tensor functors. It is convenient to have short names for these
functors. For every Λ-module M , we define tM and TM to be the tensor functors

tM = (−⊗Λ M) : modΛe −→ modΛ,

TM = (−⊗aΛa aM) : mod(aΛa)e −→ mod aΛa.

Together with the functors e and E from above, these functors fit into the following
diagram of categories and functors:

modΛe tM ��

E

��

modΛ

e

��

mod(aΛa)e
TM

�� mod aΛa

We begin by showing that the two possible compositions of maps from upper left
to lower right in this diagram are related by a natural transformation.

Lemma 7.1. For every Λ-module M , there is a natural transformation τM : TM ◦
E −→ e ◦ tM .

Proof. Note that we have

TME(N) = aNa⊗aΛa aM and etM (N) = aN ⊗Λ M

for every Λe-module N . We define the maps τMN of the natural transformation τM

by

τMN (n⊗m) = n⊗m

for an element n⊗m of TME(N). This gives well defined maps since aΛa ⊆ Λ. It is
easy to check that the compositions etM (f) ◦ τMN and τMN ′ ◦TME(f) are equal for a
homomorphism f : N −→ N ′ of Λe-modules, so τM is a natural transformation. �

We are now able to show that the diagrams we consider are commutative.
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Proposition 7.2. For any Λ-module M , the following diagram of graded rings
commutes :

HH∗(Λ)
ϕM ��

E∗
Λ,Λ

��

Ext∗Λ(M,M)

e∗M,M

��

HH∗(aΛa) ϕe(M)

�� Ext∗aΛa(e(M), e(M))

Proof. We show that the result holds in the positive degrees of the graded rings and
graded ring homomorphisms in the diagram. Showing that it also holds in degree
zero can be done in a similar way, by looking at elements given by homomorphisms
instead of extensions.

Let μ and ν be the natural isomorphisms

μ : Λ⊗Λ M −→ M and ν : aΛa⊗aΛa e(M) −→ e(M)

given by multiplication.
Consider, for some positive integer i, an element [η] ∈ ExtiΛe(Λ,Λ) which is

represented by the exact sequence

η : 0 −→ Λ −→ X −→ Pi−2 −→ · · · −→ P0 −→ Λ −→ 0,

where each Pj is a projective Λe-module. We apply the compositions of maps
ϕe(M) ◦ E

∗
Λ,Λ and e∗M,M ◦ ϕM to [η], and show that we get the same result in both

cases.
We first consider the map ϕe(M) ◦E

∗
Λ,Λ. If we apply the functor E to η, then we

get the exact sequence

E(η) : 0 −→ E(Λ) −→ E(X) −→ E(Pi−2) −→ · · · −→ E(P0) −→ E(Λ) −→ 0

of (aΛa)e-modules, and we have that E∗
Λ,Λ([η]) = [E(η)]. Since the objects E(Pj)

are not necessarily projective, we may need to find a different representative of
the element [E(η)] in order to apply the map ϕe(M). We construct the following
commutative diagram with exact rows, where each Qj is a projective (aΛa)

e-module
and the bottom row is E(η):

0 �� aΛa �� Y ��

fi−1

��

Qi−2
��

fi−2

��

· · · �� Q0
��

f0

��

aΛa �� 0

0 �� E(Λ) �� E(X) �� E(Pi−2) �� · · · �� E(P0) �� E(Λ) �� 0

Note that both rows represent the same element in Exti(aΛa)e(aΛa, aΛa). Applying
the functor TM to this diagram gives the two lower rows in the following commu-
tative diagram of aΛa-modules, where the two upper rows are exact:

0 �� e(M) ��

ν−1 ∼=

��

TM (Y ) �� TM (Qi−2) �� · · · �� TM (Q0) �� e(M) ��

ν−1 ∼=

��

0

0 �� TM (aΛa) �� TM (Y ) ��

TM (fi−1)

��

TM (Qi−2) ��

TM (fi−2)

��

· · · �� TM (Q0) ��

TM (f0)

��

TM (aΛa) �� 0

TME(Λ) �� TME(X) �� TME(Pi−2) �� · · · �� TME(P0) �� TME(Λ)

The top row in this diagram is a representative for the element (ϕe(M) ◦E
∗
Λ,Λ)([η]).
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We now consider the map e∗M,M ◦ ϕM . Applying the functor e ◦ tM to the
exact sequence η gives the top row in the following commutative diagram of aΛa-
modules with exact rows, where the bottom row is a representative of the element
(e∗M,M ◦ ϕM )([η]):

0 �� etM (Λ) ��

e(µ) ∼=

��

etM (X) �� etM (Pi−2) �� · · · �� etM (P0) �� etM (Λ) ��

e(µ) ∼=

��

0

0 �� e(M) �� etM (X) �� etM (Pi−2) �� · · · �� etM (P0) �� e(M) �� 0

Finally, we use the natural transformation τM from Lemma 7.1 to combine the
two above diagrams into the following commutative diagram of aΛa-modules :

0 �� e(M) ��

ν−1 ∼=

��

TM (Y ) �� TM (Qi−2) �� · · · �� TM (Q0) �� e(M) ��

ν−1 ∼=

��

0

0 �� TM (aΛa) �� TM (Y ) ��

TM (fi−1)

��

TM (Qi−2) ��

TM (fi−2)

��

· · · �� TM (Q0) ��

TM (f0)

��

TM (aΛa) �� 0

TME(Λ) ��

τM
Λ

��

TME(X) ��

τM
X

��

TME(Pi−2) ��

τM
Pi−2

��

· · · �� TME(P0) ��

τM
P0

��

TME(Λ)

τM
Λ

��

0 �� etM (Λ) ��

e(µ) ∼=

��

etM (X) �� etM (Pi−2) �� · · · �� etM (P0) �� etM (Λ) ��

e(µ) ∼=

��

0

0 �� e(M) �� etM (X) �� etM (Pi−2) �� · · · �� etM (P0) �� e(M) �� 0

It is easy to check that the composition of maps along the leftmost column is the
identity map on e(M), and the same holds for the composition of maps along the
rightmost column. Thus the top and bottom rows in this diagram represent the
same element in ExtiaΛa(e(M), e(M)). Since the top row is a representative of the
element (ϕe(M) ◦ E

∗
Λ,Λ)([η]) and the bottom row is a representative of the element

(e∗M,M ◦ ϕM )([η]), this means that ϕe(M) ◦ E
∗
Λ,Λ = e∗M,M ◦ ϕM . �

We thank the referee for pointing out an alternative proof of Proposition 7.2,
which we sketch next.

Alternative proof of Proposition 7.2. Consider the following diagram of functors
between derived categories:

D−(modΛe)
−⊗L

ΛM ��

(a⊗a)Λe⊗Λe−

��

D−(modΛ)

aΛ⊗Λ−

��

D−(mod aΛae)
−⊗L

aΛaaM �� D−(mod aΛa)

Proposition 7.2 really amounts, starting with a morphism η : Λ → Λ[n] in

HomD−(modΛe)(Λ,Λ[n]) ∼= HHn(Λ)
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with n � 0, to showing that the images with the two different compositions in the
above diagram coincide in

HomD−(mod aΛa)(e(M), e(M)[n]) ∼= ExtnaΛa(e(M), e(M)).

Let η : Λ → Λ[n] be a morphism in D−(modΛe), which we represent as

P
s



��
��
�� f

��▼
▼▼

▼▼
▼

Λ Λ[n]

where s : P → Λ is a projective resolution of Λ over Λe.
The image of the composition via the upper right corner is

aΛ⊗Λ P⊗Λ M
1⊗s⊗1

��❣❣❣
❣❣❣

❣❣❣ 1⊗f⊗1

��❲❲
❲❲❲

❲❲❲
❲

aΛ⊗Λ Λ⊗Λ M aΛ⊗Λ Λ[n]⊗Λ Λ

since P → Λ → 0 as a sequence of right Λ-modules splits.
The image of the composition via the lower left corner we compute in two steps.

The image of the first functor is:

aΛa aΛ[n]a

aPa
asa

��◆◆◆◆◆◆
afa

��♥♥♥♥♥♥

Let π : PaΛa → aΛa → 0 be a projective resolution of aΛa as a aΛae-module. Since
asa : aPa → aΛa is a quasi-isomorphism, there exists a homomorphism of chain
complexes ϕ : PaΛa → aPa such that we have the following commutative diagram:

aΛa aPa
asa��

afa
�� aΛ[n]a

PaΛa

π

		❍❍❍❍❍❍❍❍❍❍ afaϕ

�����������

ϕ

��

The image of the functor −⊗L

aΛa aM is computed applying −⊗aΛa aM to the lower
roof in the above diagram, and we obtain the following diagram:

aΛa⊗aΛa aM aPa⊗aΛa aM
asa⊗1

��
afa⊗1

�� aΛ[n]a⊗aΛa aM

PaΛa ⊗aΛa aM

π⊗1

��❙❙❙❙❙❙❙❙❙❙❙❙❙❙ afaϕ⊗1

��❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

ϕ⊗1

��
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From this we can construct the following commutative diagram:

aΛ⊗Λ P⊗Λ M

1⊗s⊗1

��❦❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦

1⊗f⊗1

��❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚

aΛ⊗Λ Λ⊗Λ M aΛ⊗Λ Λ[n]⊗Λ M

aΛa⊗aΛa aM

τM
Λ

��

aPa⊗aΛa aM
asa⊗1

��
afa⊗1

��

τM
P[n]

��

aΛ[n]a⊗aΛa aM

τM
Λ[n]

��

PaΛa ⊗aΛa aM

π⊗1

��❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙ afaϕ⊗1

��❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

ϕ⊗1

��

where the extreme vertical morphisms are isomorphisms and asa ⊗ 1: aPa ⊗aΛa

aM → aΛa⊗aΛa aM is a quasi-isomorphism (since aΛ⊗Λ P → aΛ ⊗Λ Λ → 0 as a
sequence of right Λ-modules splits). This shows that the two images of η : Λ → Λ[n]
in HomD−(modΛe)(Λ,Λ[n]) are the same. �

Having shown that our diagrams are commutative, we now move on to describ-
ing when the map E∗

Λ,Λ is an isomorphism in almost all degrees. For this, we use

Corollary 3.11 (i) on the algebras Λe and (a⊗ aop)Λe(a⊗ aop) and the Λe-module
Λ. We let ε denote the element a ⊗ aop of Λe, so that we can write the algebra
(a⊗ aop)Λe(a⊗ aop) more simply as εΛeε. Note that Corollary 3.11 uses a recolle-
ment situation; in this case, the recollement is like the one in Example 2.3 (ii).

In order to use Corollary 3.11 (i) in this situation, we need to show the following:

pdεΛeε εΛ
e < ∞ and ExtjΛe

(

Λ,
Λe/〈ε〉

radΛe/〈ε〉

)

= 0 for j ≫ 0.

We show the first of these conditions in Lemma 7.4, and the second one in
Lemma 7.8 (here we need an additional technical assumption on Λ to be able to
describe the simple modules over Λe), and finally tie it together in Proposition 7.9,
where we show that E∗

Λ,Λ is an isomorphism in sufficiently high degrees.
First, we show how the projective dimension of the tensor product M ⊗k N is

related to the projective dimensions of M and N , when M and N are modules
over k-algebras. In particular, the following result implies that if a left and a right
Λ-module ΛM and NΛ both have finite projective dimension, then their tensor
product M ⊗k N has finite projective dimension as a Λe-module.

Lemma 7.3. Let Σ and Γ be k-algebras, and let M be a Σ-module and N a Γ-
module. If M has finite projective dimension as a Σ-module and N has finite
projective dimension as a Γ-module, then M ⊗k N has finite projective dimension
as a (Σ⊗k Γ)-module, and

pdΣ⊗kΓ
(M ⊗k N) ≤ pdΣ M + pdΓ N.

Proof. Assume that pdΣM = m and pdΓ N = n. Then we have finite projective
resolutions

0 → Pm −→ · · · −→ P0 → M → 0 and 0 → Qn −→ · · · −→ Q0 → N → 0
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of M and N , respectively. Let P and Q denote the corresponding deleted resolu-
tions. Consider the tensor product

P ⊗k Q : · · · −→ (P0 ⊗k Q2)⊕ (P1 ⊗k Q1)⊕ (P2 ⊗k Q0)

−→ (P0 ⊗k Q1)⊕ (P1 ⊗k Q0) −→ P0 ⊗k Q0 → 0

of the complexes P and Q. This is a bounded complex of projective (Σ ⊗k Γ)-
modules. We want to show that it is in fact a deleted projective resolution of the
(Σ⊗k Γ)-module M ⊗k N , which completes the proof.

We need to show that the complex P ⊗k Q is exact in all positive degrees and
has homology M ⊗k N in degree zero. Let us temporarily forget the Σ- and Γ-
structures, and view P as a complex of right k-modules, Q as a complex of left
k-modules, and P ⊗k Q as a complex of abelian groups. Then by the Künneth
formula for homology (see [57, Corollary 11.29]), we have an isomorphism

α :
⊕

i+j=n

Hi(P )⊗k Hj(Q)
∼=
−→ Hn(P ⊗k Q)

of abelian groups, given by α([p]⊗[q]) = [p⊗q], for p ∈ Pi and q ∈ Qj . Observe that
α preserves a (Σ⊗kΓ)-module structure. Thus, α is a (Σ⊗kΓ)-module isomorphism,
and we get

Hn(P ⊗k Q) ∼=
⊕

i+j=n

Hi(P )⊗k Hj(Q) ∼=

{

M ⊗k N if n = 0,
0 if n > 0.

This means that the complex P ⊗k Q is a deleted projective resolution of the
(Σ⊗k Γ)-module M ⊗k N . Since the complex P ⊗k Q is zero in all degrees above
m+ n, we get

pdΣ⊗kΓ
(M ⊗k N) ≤ m+ n = pdΣ M + pdΓ N,

and the proof is complete. �

Using the above result, we find that the assumptions we make about the left and
right aΛa-modules aΛ and Λa having finite projective dimension imply the first
condition we need for applying Corollary 3.11 (i), namely that the εΛeε-module
εΛe has finite projective dimension. We state this as the following result.

Lemma 7.4. We have the following inequality :

pdεΛeε εΛ
e ≤ pdaΛa aΛ + pd(aΛa)op Λa.

Proof. Note that εΛe is isomorphic to (aΛ ⊗k Λa) as left (aΛa)e-modules and
that the rings (aΛa)e and εΛeε are isomorphic. By using these isomorphisms and
Lemma 7.3, we get that

pdεΛeε εΛ
e = pd(aΛa)e εΛ

e = pd(aΛa)e(aΛ⊗k Λa) ≤ pdaΛa aΛ + pd(aΛa)op Λa. �

Now we show how we get the second condition needed for applying Corol-
lary 3.11 (i). We begin with a general result which relates extension groups over
Λe to extension groups over Λ.

Lemma 7.5. Let M and N be Λ-modules. Let D be the duality
Homk(−, k) : modΛ −→ modΛop. Then

ExtjΛe(Λ,M ⊗k D(N)) ∼= ExtjΛ(N,M)

for every nonnegative integer j.
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Proof. This follows from [14, Corollary 4.4, Chapter IX] by using the isomorphism
M ⊗k D(N) ∼= Homk(N,M) of Λe-modules. �

Furthermore, we need to be able to describe the simple Λe-modules in terms of
simple Λ-modules. It is reasonable to expect that taking the tensor product

(Λ/ radΛ)⊗k (Λop/ radΛop)

should produce all the simple Λe-modules. This is, however, not true for all finite
dimensional algebras, as Example 7.7 shows. The following result describes when
it is true.

Lemma 7.6. We have an isomorphism

Λe/ radΛe ∼= (Λ/ radΛ)⊗k (Λop/ radΛop)

of Λe-modules if and only if the Λe-module

(Λ/ radΛ)⊗k (Λop/ radΛop)

is semisimple.

Proof. It is easy to show that

(Λ/ radΛ)⊗k (Λop/ radΛop) ∼=
Λe

Λ⊗k (radΛop) + (radΛ)⊗k Λop

as Λe-modules, and that the ideal Λ⊗k (radΛ
op)+(radΛ)⊗kΛ

op of Λe is nilpotent.
This means that if (Λ/ radΛ)⊗k (Λ

op/ radΛop) is a semisimple Λe-module, then it
is isomorphic to Λe/ radΛe. The opposite implication is obvious. �

Now we give an example showing that (Λ/ radΛ) ⊗k (Λop/ radΛop) is not nec-
essarily semisimple for a finite dimensional algebra Λ over a field k.

Example 7.7. Let k = Z2(x) be the field of rational functions in one indeterminant
x over Z2, and let Λ be the 2-dimensional k-algebra k[y]/〈y2−x〉. Then Λ is a field,
so that radΛ = (0). The element α = y⊗ 1+ 1⊗ y satisfies α2 = 0. Hence 〈α〉 is a
nilpotent nonzero ideal in Λe, and therefore Λe is not semisimple.

We assume that (Λ/ radΛ) ⊗k (Λop/ radΛop) is semisimple whenever we need
it. In particular, this assumption is included in the main result at the end of this
section. Note that this assumption is satisfied in many cases, for example if Λ/ radΛ
is separable as a k-algebra (by [25, Corollary 7.8 (i)]), if k is algebraically closed
(this can be shown by using the Wedderburn–Artin Theorem), or if Λ is a quotient
of a path algebra by an admissible ideal.

Now we can show how to get the second condition we need for applying Corol-
lary 3.11 (i).

Lemma 7.8. Assume that (Λ/ radΛ)⊗k (Λ
op/ radΛop) is a semisimple Λe-module,

and that we have

(α) idΛ

( Λ/〈a〉

radΛ/〈a〉

)

< ∞ and (γ) pdΛ

( Λ/〈a〉

radΛ/〈a〉

)

< ∞.

Then

ExtjΛe

(

Λ,
Λe/〈ε〉

radΛe/〈ε〉

)

= 0 for j > max
{

pdΛ

( Λ/〈a〉

radΛ/〈a〉

)

, idΛ

( Λ/〈a〉

radΛ/〈a〉

)}

.
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Proof. By Lemma 7.6, every simple Λe-module is a direct summand of a module of
the form S ⊗k D(T ) for some simple Λ-modules S and T , where D is the duality
Homk(−, k) : modΛ −→ modΛop. If neither of the modules S or T is annihilated
by the ideal 〈a〉, then we have

〈ε〉(S ⊗k D(T )) = 〈a⊗ aop〉(S ⊗k D(T )) = (〈a〉S)⊗k D(〈a〉T ) = S ⊗k D(T ),

which means that no nonzero direct summand of the Λe-module S ⊗k D(T ) is a
Λe/〈ε〉-module.

Let j be an integer such that

j > max
{

pdΛ

( Λ/〈a〉

radΛ/〈a〉

)

, idΛ

( Λ/〈a〉

radΛ/〈a〉

)}

.

In order to prove the result, it is sufficient to show that ExtjΛe(Λ, U) = 0 for every
simple Λe/〈ε〉-module U . By the above reasoning, every such U is a direct summand
of a module S⊗kD(T ) for some simple Λ-modules S and T , where at least one of S
and T is annihilated by 〈a〉 and is thus a simple Λ/〈a〉-module. Using Lemma 7.5,
we get

ExtjΛe(Λ, S ⊗k D(T )) ∼= ExtjΛ(T, S) = 0,

since we have pdΛ T < j or idΛ S < j. It follows that ExtjΛe(Λ, U) = 0. �

The following result summarizes the above work and shows that, with the as-
sumptions we have indicated for the algebra Λ and the idempotent a, the functor
E gives isomorphisms Ej

Λ,Λ : HHj(Λ) −→ HHj(aΛa) in almost all degrees j.

Proposition 7.9. Assume that (Λ/ radΛ) ⊗k (Λop/ radΛop) is a semisimple Λe-
module, and that the functor e is an eventually homological isomorphism. Then the
map

Ej
Λ,M : ExtjΛe(Λ,M) −→ Extj(aΛa)e(E(Λ), E(M))

is an isomorphism for every Λe-module M and every integer j such that

j > max
{

pdΛ

( Λ/〈a〉

radΛ/〈a〉

)

, idΛ

( Λ/〈a〉

radΛ/〈a〉

)}

+ pdaΛa aΛ+ pd(aΛa)op Λa+1 < ∞.

In particular, we have isomorphisms

HHj(Λ) ∼= HHj(aΛa)

for almost all degrees j.

Proof. We use Corollary 3.11 (i) on the algebra Λe, the idempotent ε = a⊗aop and
the Λe-module Λ. Let m and n be the integers

m = max
{

pdΛ

( Λ/〈a〉

radΛ/〈a〉

)

, idΛ

( Λ/〈a〉

radΛ/〈a〉

)}

+ 1

and

n = pdaΛa aΛ + pd(aΛa)op Λa.

Note that m and n are finite by Corollary 3.12. By Lemma 7.8, we have

ExtjΛe

(

Λ,
Λe/〈ε〉

radΛe/〈ε〉

)

= 0 for j ≥ m,

and by Lemma 7.4, we have

pdεΛeε εΛ
e ≤ n.
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Now the result follows from Corollary 3.11 (i) by noting that (aΛa)e is the same
algebra as εΛeε and that our functor E = a−a is the same as the functor ε− given
by left multiplication with the idempotent ε. �

Finally, we conclude this section by showing that the assumptions we have in-
dicated imply that Fg holds for Λ if and only if Fg holds for aΛa. The following
theorem is the main result of this section and constitutes the fourth part of the
Main Theorem presented in the Introduction.

Theorem 7.10. Let Λ be a finite dimensional algebra over a field k, and let a be
an idempotent in Λ. Assume that (Λ/ radΛ)⊗k (Λ

op/ radΛop) is a semisimple Λe-
module, and that the functor a− : modΛ −→ mod aΛa is an eventually homological
isomorphism. Then Λ satisfies Fg if and only if aΛa satisfies Fg.

Proof. For every Λ-module M , we can make a diagram

HH∗(Λ)
ϕM ��

E∗
Λ,Λ

��

Ext∗Λ(M,M)

e∗M,M

��

HH∗(aΛa) ϕe(M)

�� Ext∗aΛa(e(M), e(M))

of graded rings and graded ring homomorphisms. This diagram commutes by
Proposition 7.2, and the maps E∗

Λ,Λ and e∗M,M are isomorphisms in almost all
degrees by Proposition 7.9 and Corollary 3.12, respectively.

Since we have such diagrams for every Λ-module M and the functor e is essen-
tially surjective (see Proposition 2.2), we can make one diagram with M = Λ/ radΛ
and another with e(M) ∼= aΛa/ rad aΛa. Then, by Proposition 6.4, it follows that
Λ satisfies Fg if and only if aΛa satisfies Fg. �

8. Applications and examples

In this section we provide applications of our Main Theorem (stated in the
Introduction), and examples illustrating its use. For ease of reference, we restate
the Main Theorem here.

Theorem 8.1. Let Λ be an artin algebra over a commutative ring k and let a be
an idempotent element of Λ. Let e be the functor a− : modΛ −→ mod aΛa given
by multiplication by a. Consider the following conditions :

(α) idΛ

( Λ/〈a〉

radΛ/〈a〉

)

< ∞ (β) pdaΛa aΛ < ∞

(γ) pdΛ

( Λ/〈a〉

radΛ/〈a〉

)

< ∞ (δ) pd(aΛa)op Λa < ∞

Then the following hold.

(i) The following are equivalent :
(a) (α) and (β) hold.
(b) (γ) and (δ) hold.
(c) The functor e is an eventually homological isomorphism.

(ii) The functor a− : modΛ −→ mod aΛa induces a singular equivalence be-
tween Λ and aΛa if and only if conditions (β) and (γ) hold.

(iii) Assume that e is an eventually homological isomorphism. Then Λ is
Gorenstein if and only if aΛa is Gorenstein.
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(iv) Assume that e is an eventually homological isomorphism, that k is a field
and that (Λ/ radΛ)⊗k (Λ

op/ radΛop) is a semisimple Λe-module. Then Λ
satisfies Fg if and only if aΛa satisfies Fg.

This section is divided into four subsections. In the first subsection, we discuss
dependencies between conditions (α)–(δ) in Theorem 8.1. In the second subsection,
we consider some cases where these conditions are related. As a consequence, we
find sufficient conditions, stated in terms of the quiver and relations, for applying
Theorem 8.1 to a quotient of a path algebra. In the third subsection, we apply
Theorem 8.1 to the class of triangular matrix algebras. In the last subsection, we
compare our work to that of Nagase in [47].

8.1. Conditions in the Main Theorem. The first part of Theorem 8.1 says that
if conditions (α) and (β) hold, or conditions (γ) and (δ) hold, then all four of these
conditions hold, and the functor e is an essentially homological isomorphism. We
now give examples which show that assuming any other combination of two of the
conditions is not sufficient to get the same conclusion.

Our first example shows that conditions (α) and (δ) do not imply conditions (β)
and (γ).

Example 8.2. Let k be a field. Let the k-algebra Λ = kQ/〈ρ〉 be given by the
following quiver and relations:

Q : 1
α �� 2 β		 ρ = {β2, βα}.

Let a = e2. Then (Λ/〈a〉)/(radΛ/〈a〉) ∼= S1 as Λ-modules. We have idΛ S1 = 0 and
pdΛ S1 = ∞, which means that (α) holds and (γ) does not hold. Furthermore, we
have aΛa ∼= k[x]/〈x2〉 as algebras, aΛ ∼= aΛa ⊕ S as left aΛa-modules, where S is
the simple aΛa-module, and Λa ∼= aΛa as right aΛa-modules. We therefore have
pdaΛa aΛ = ∞ and pd(aΛa)op Λa = 0, which means that (β) does not hold, while

(δ) holds.

By considering the opposite algebra of the algebra in the above example, we see
that conditions (β) and (γ) do not imply conditions (α) and (δ).

The next example shows that conditions (α) and (γ) do not imply conditions
(β) and (δ).

Example 8.3. Let k be a field. Let the k-algebra Λ = kQ/〈ρ〉 be given by the
following quiver and relations:

Q : 1
α

��
2

β

�� ρ = {αβ}.

Let a = e1. Let S2 be the simple Λ-module associated to the vertex 2. Conditions
(α) and (γ) are satisfied since idΛ S2 = 2 and pdΛ S2 = 2, respectively. Conditions
(β) and (δ) are not satisfied, since pdaΛa aΛ = ∞ and pd(aΛa)op Λa = ∞.

Finally, the next example shows that conditions (β) and (δ) do not imply con-
ditions (α) and (γ).

Example 8.4. Let Λ = k( 1α ��

β
��
2

γ
�� )/〈α2−γβ, βγ, αγ, βα〉, which is Exam-

ple 2.3 from [37]. Let a = e2. Then aΛa ∼= k, so both (β) and (δ) are satisfied.
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However idΛ Λ/〈a〉 = idΛ S1 = ∞ and pdΛ Λ/〈a〉 = pdΛ S1 = ∞. Hence (α) and (γ)
are not satisfied.

We have now seen that in general, there are no more relations between conditions
(α)–(δ) than that described in Theorem 8.1. In the next subsection, we consider
some special cases where there are more relations between the conditions.

8.2. Algebras with ordered simples. In this subsection, we apply Theorem 8.1
to cases where there exists a total order � of the simple Λ/〈a〉-modules with the
property that

(8.1) S � S′ =⇒ Ext>0
Λ (S, S′) = 0

for every pair S and S′ of simple Λ/〈a〉-modules. With this assumption, we show
that we have the implications (α) =⇒ (δ) and (γ) =⇒ (β) between the conditions
in Theorem 8.1. We then consider some special cases where such orderings appear.

We need the following preliminary results.

Lemma 8.5. Let Λ be an artin algebra, let M be a Λ-module with minimal pro-
jective resolution · · · −→ P1 −→ P0 −→ M −→ 0, and let S be a simple Λ-module.
Then, for every nonnegative integer n, we have ExtnΛ(M,S) = 0 if and only if the
projective cover of S is not a direct summand of Pn.

Lemma 8.6. Let Λ be an artin algebra, and let a be an idempotent in Λ. Let S
be a simple Λ-module which is not annihilated by the ideal 〈a〉, and let P be the
projective cover of S. Then aP is a projective aΛa-module.

Proof. We have

HomΛ(Λa, S) ∼= aS �= 0,

so there exists a nonzero morphism f : Λa −→ S. Decomposing the idempotent a
into a sum a = a1 + · · · + at of orthogonal primitive idempotents gives a decom-
position Λa ∼= Λa1 ⊕ · · · ⊕ Λat of Λa into indecomposable projective modules. For
some i, we must then have a nonzero morphism fi : Λai −→ S. Since S is simple,
this means that Λai is its projective cover. Since a · ai = ai, we get

aP ∼= aΛai = (aΛa)ai.

Therefore aP is a projective aΛa-module. �

Now we show that the conditions of Theorem 8.1 are related when we have an
ordering of the simple Λ/〈a〉-modules.

Proposition 8.7. Let Λ be an artin algebra, and let a be an idempotent in Λ.
Assume that there is a total order � on the simple Λ/〈a〉-modules satisfying con-
dition (8.1). Then we have the following implications between the conditions of
Theorem 8.1 :

(i) (α) =⇒ (δ).
(ii) (γ) =⇒ (β).

In particular, we have that the functor a− : modΛ −→ mod aΛa is an eventually
homological isomorphism if and only if conditions (α) and (γ) hold.

Proof. We show the second implication; the first can be shown in a similar way.
The last claim follows directly from these two implications by Theorem 8.1 (i).
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Assume that (γ) holds, that is, every Λ/〈a〉-module has finite projective dimen-
sion as a Λ-module. We want to show that (β) holds, that is, the aΛa-module aΛ
has finite projective dimension.

As in Section 7, we let e be the exact functor e = (a−) : modΛ −→ mod aΛa
given by multiplication with a. Then what we need to show is that e(Λ) has finite
projective dimension as a aΛa-module.

Let S1 � · · · � Ss be all the simple Λ/〈a〉-modules (up to isomorphism), ordered
by the total order �. Let T1, . . . , Tt be all the other simple Λ-modules (up to
isomorphism). Let Qi be the projective cover of Si (considered as a Λ-module) and
Q′

j the projective cover of Tj , for every i and j. These are all the indecomposable
projective Λ-modules up to isomorphism, so it is sufficient to show that e(Qi) and
e(Q′

j) have finite projective dimension as aΛa-modules for every i and j.
For each of the modules Q′

j , we have that e(Q′
j) is a projective aΛa-module by

Lemma 8.6. We need to check that e(Qi) has finite projective dimension for every
i.

Consider the module S1. By our assumptions, every simple Λ/〈a〉-module has
finite projective dimension over Λ. Let

0 �� P
(1)
n1

�� · · · �� P
(1)
2

�� P
(1)
1

�� Q1
�� S1

�� 0

be a minimal projective resolution of S1. Applying the functor e to this sequence
gives the exact sequence

(8.2) 0 �� e(P
(1)
n1 ) �� · · · �� e(P

(1)
2 ) �� e(P

(1)
1 ) �� e(Q1) �� 0

of aΛa-modules, since e(S1) = 0. Since we have Ext>0
Λ (S1, Si) = 0 for every i, it

follows from Lemma 8.5 that the only indecomposable projective Λ-modules which

can occur as direct summands of the modules P
(1)
1 , . . . , P

(1)
n1 are the modules Q′

j .
Since we know that these are mapped to projective modules by e, the sequence (8.2)
is a projective resolution of the aΛa-module e(Q1).

We continue inductively. For every i, we apply the functor e to a minimal
projective resolution

0 �� P
(i)
ni

�� · · · �� P
(i)
2

�� P
(i)
1

�� Qi
�� Si

�� 0

and obtain the sequence

0 �� e(P
(i)
ni ) �� · · · �� e(P

(i)
2 ) �� e(P

(i)
1 ) �� e(Qi) �� 0

of aΛa-modules. Each of the modules P
(i)
1 , . . . , P

(i)
ni has only the indecomposable

projective modules Q′
1, . . . , Q

′
t, Q1, . . . , Qi−1 as direct summands. Therefore (by the

induction assumption), all the modules e(P
(i)
1 ), . . . , e(P

(i)
ni ) have finite projective

dimension, and thus the module e(Qi) has finite projective dimension. �

By combining Theorem 8.1 with Proposition 8.7, we get the following result.

Corollary 8.8. Let Λ be an artin algebra over a commutative ring k, and let a
be an idempotent in Λ. Assume that there is a total order � on the simple Λ/〈a〉-
modules satisfying condition (8.1). Then the following hold, where (α), (β), (γ)
and (δ) refer to the conditions in Theorem 8.1.

(i) The functor a− : modΛ −→ mod aΛa induces a singular equivalence be-
tween Λ and aΛa if and only if (γ) holds.
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(ii) Assume that (α) and (γ) hold. Then Λ is Gorenstein if and only if aΛa is
Gorenstein.

(iii) Assume that (α) and (γ) hold, that k is a field and (Λ/ radΛ) ⊗k

(Λop/ radΛop) is a semisimple Λe-module. Then Λ satisfies Fg if and
only if aΛa satisfies Fg.

We now consider special cases of conditions (α) and (γ) where the dimensions
are not only finite, but at most one. We show that if one of these dimensions is
at most one, then we have an ordering of the simple Λ/〈a〉-modules as assumed in
Proposition 8.7 and Corollary 8.8.

Lemma 8.9. Let Λ be an artin algebra, and let a be an idempotent in Λ. Assume
that we have either

(α1) idΛ

( Λ/〈a〉

radΛ/〈a〉

)

≤ 1 or (γ1) pdΛ

( Λ/〈a〉

radΛ/〈a〉

)

≤ 1.

Then there exists a total order � on the simple Λ/〈a〉-modules satisfying condi-
tion (8.1).

Proof. Assume that (γ1) holds (the proof using (α1) is similar). Let S1, . . . , Ss

be all the simple Λ/〈a〉-modules (up to isomorphism), and let P1, . . . , Ps be their
projective covers as Λ-modules, such that Pi/((radΛ)Pi) ∼= Si for every i. Assume
that we have ordered these by increasing length of the projective covers, that is,

length(P1) ≤ length(P2) ≤ · · · ≤ length(Ps).

For any i, the module Si has a projective resolution of the form

0 �� Q �� Pi
�� Si

�� 0.

Since the module Q has shorter length than the module Pi, it cannot have any
of the modules Pi, . . . , Ps as direct summands. Then Lemma 8.5 implies that
Ext>0

Λ (Si, Sj) = 0 for i ≤ j. �

By using Proposition 8.7, Lemma 8.9 and Theorem 8.1, we have the following.

Corollary 8.10. Let Λ be an artin algebra over a commutative ring k, and let
a be an idempotent in Λ. Then the following hold, where (α), (β), (γ) and (δ)
refer to the conditions in Theorem 8.1, and (α1) and (γ1) refer to the conditions
in Lemma 8.9.

(i) If (γ1) holds, then the functor a− : modΛ −→ mod aΛa induces a singular
equivalence between Λ and aΛa.

(ii) Assume either that (α1) and (γ) hold, or that (α) and (γ1) hold. Then Λ
is Gorenstein if and only if aΛa is Gorenstein.

(iii) Assume either that (α1) and (γ) hold, or that (α) and (γ1) hold. Fur-
thermore, assume that k is a field and (Λ/ radΛ) ⊗k (Λop/ radΛop) is a
semisimple Λe-module. Then Λ satisfies Fg if and only if aΛa satisfies Fg.

For the following results, we let Λ = kQ/〈ρ〉 be a quotient of a path algebra,
where k is a field, Q is a quiver, and ρ is a minimal set of relations in kQ generating
an admissible ideal 〈ρ〉.

First we describe how conditions (α1) and (γ1) can be interpreted for quotients
of path algebras. The result follows directly from [10, Corollary, Section 1.1].
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Lemma 8.11. Let S be the simple Λ-module corresponding to a vertex v in the
quiver Q.

(i) We have pdΛ S ≤ 1 if and only if no relation starts in the vertex v.
(ii) We have idΛ S ≤ 1 if and only if no relation ends in the vertex v.

As a consequence of Lemma 8.11 and Corollary 8.10, we get the following results
for path algebras.

Corollary 8.12. Let Λ = kQ/〈ρ〉 be a quotient of a path algebra as above. Choose
some vertices in Q where no relations start, and let a be the sum of all vertices except
these. Then the functor a− : modΛ −→ mod aΛa induces a singular equivalence
between Λ and aΛa :

Dsg(a−) : Dsg(modΛ)
≃
−→ Dsg(mod aΛa).

Corollary 8.13. Let Λ = kQ/〈ρ〉 be a quotient of a path algebra as above. Choose
some vertices in Q where no relations start and no relations end, and let a be the
sum of all vertices except these. Then the following hold :

(i) Λ is Gorenstein if and only if aΛa is Gorenstein.
(ii) Λ satisfies Fg if and only if aΛa satisfies Fg.

We apply the above result in the following example.

Example 8.14. Let Q be the quiver with relations ρ given by

Q : 1
α1 �� 2

α2 �� · · ·
αm−1

�� m

αm

		 and ρ = {(αm · · ·α1)
n},

for some integers m ≥ 2 and n ≥ 2. Let Λ = kQ/〈ρ〉, and let a = e1 (the only vertex
where a relation starts and ends). Then aΛa ∼= k[x]/〈xn〉, so aΛa satisfies Fg by
[27, 28]. By Corollary 8.13, the algebra Λ also satisfies Fg. By Corollary 8.12, the
algebras Λ and k[x]/〈xn〉 are singularly equivalent. See [59] for a general discussion
of the Hochschild cohomology ring of the path algebra kQ modulo one relation.

8.3. Triangular matrix algebras. Let Σ and Γ be two artin algebras over a com-
mutative ring k, and let ΓMΣ be a Γ-Σ-bimodule such that M is finitely generated
over k, and k acts centrally on M . Then we have the artin triangular matrix algebra

Λ =

(

Σ 0

ΓMΣ Γ

)

,

where the addition and the multiplication are given by the ordinary operations on
matrices.

The module category of Λ has a well known description; see [7, 30]. In fact, a
module over Λ is described as a triple (X,Y, f), where X is a Σ-module, Y is a
Γ-module and f : M ⊗Σ X −→ Y is a Γ-homomorphism. A morphism between
two triples (X,Y, f) and (X ′, Y ′, f ′) is a pair of homomorphisms (a, b), where a ∈
HomΣ(X,X ′) and b ∈ HomΓ(Y, Y

′), such that the following diagram commutes:

M ⊗Σ X
f

��

IdM ⊗a

��

Y

b

��

M ⊗Σ X ′ f ′

�� Y ′
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We define the following functors :

(i) The functor TΣ : modΣ −→ modΛ is defined on Σ-modulesX by TΣ(X) =
(X,M ⊗Σ X, IdM⊗X) and given a Σ-homomorphism a : X −→ X ′ then
TΣ(a) = (a, IdM ⊗a).

(ii) The functor UΣ : modΛ −→ modΣ is defined on Λ-modules (X,Y, f)
by UΣ(X,Y, f) = X and given a Λ-homomorphism (a, b) : (X,Y, f) −→
(X ′, Y ′, f ′) then UΣ(a, b) = a. Similarly we define the functor
UΓ : modΛ −→ modΓ.

(iii) The functor ZΣ : modΣ −→ modΛ is defined on Σ-modules X by
ZΣ(X) = (X, 0, 0) and given a Σ-homomorphism a : X −→ X ′ then
ZΣ(a) = (a, 0). Similarly we define the functor ZΓ : modΓ −→ modΛ.

(iv) The functor HΓ : modΓ −→ modΛ is defined by HΓ(Y ) =
(HomΓ(M,Y ), Y, ǫX) on Γ-modules Y and given a Γ-homomorphism
b : Y −→ Y ′ then HΓ(b) = (HomΓ(M, b), b).

Then from Example 2.3 (see also [54, Example 2.12]), using the idempotent ele-
ments e1 =

(

1Σ 0
0 0

)

and e2 =
(

0 0
0 1Γ

)

, we have the following recollements of abelian
categories :

(8.3) modΓ
ZΓ �� modΛ

UΣ ��

q

��

UΓ

		 modΣ

TΣ

��

ZΣ

		

and

(8.4) modΣ
ZΣ �� modΛ

UΓ ��

UΣ

��

p

		 modΓ

ZΓ

��

HΓ

		

The functors q and p are induced from the adjoint pairs (TΣ, UΣ) and (UΓ, HΓ),
respectively; see [54, Remark 2.3] for more details.

We want to use Theorem 8.1 to compare the triangular matrix algebra Λ with
the algebras Σ and Γ. First consider the case where we compare Λ with Σ. We then
take the idempotent a in the theorem to be e1, and we can reformulate conditions
(α), (β), (γ) and (δ) as follows:

(α) The functor ZΓ sends every Γ-module to a Λ-module with finite injective
dimension.

(β) The functor UΣ sends every projective Λ-module to a Σ-module with finite
projective dimension.

(γ) The functor ZΓ sends every Γ-module to a Λ-module with finite projective
dimension.

(δ) The functor UΣ sends every injective Λ-module to a Σ-module with finite
injective dimension.

By interchanging Σ and Γ, we get a similar reformulation of the conditions for the
case where we compare Λ with Γ.

The next result clarifies when the above hold for the recollement (8.4) of a
triangular matrix algebra Λ.
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Lemma 8.15. Let Λ =
(

Σ 0
ΓMΣ Γ

)

be a triangular matrix algebra. The following
hold.

(i) If pdΓ M < ∞, then the functor UΓ sends projective Λ-modules to Γ-
modules of finite projective dimension.

(ii) The functor UΓ preserves injectives.
(iii) Assume that gl. dimΣ < ∞. Then idΛ ZΣ(X) < ∞ for every Σ-module X.
(iv) Assume that gl. dimΣ < ∞ and pdΓ M < ∞. Then we have pdΛ ZΣ(X) <

∞ for all Σ-modules X.

Proof. (i) It is known (see [7]) that the indecomposable projective Λ-modules are of
the forms TΣ(P ), where P is an indecomposable projective Σ-module, and ZΓ(Q),
where Q is an indecomposable projective Γ-module. Hence it is enough to consider
modules of these forms. We have UΓZΓ(Q) = Q, and since pdΓ M < ∞ it follows
that pdΓ UΓTΣ(P ) = pdΓ(M ⊗Σ P ) < ∞.

(ii) Since (ZΓ, UΓ) is an adjoint pair and ZΓ is exact it follows that the functor
UΓ preserves injectives.

(iii) Let 0 −→ X −→ I0 −→ · · · −→ In −→ 0 be a finite injective resolution
of a Σ-module X. Then applying the functor ZΣ we get the exact sequence 0 −→
ZΣ(X) −→ ZΣ(I

0) −→ · · · −→ ZΣ(I
n) −→ 0, where every ZΣ(I

i) is an injective
Λ-module since we have the adjoint pair (UΣ, ZΣ) and UΣ is exact. Hence the
injective dimension of ZΣ(X) is finite.

(iv) This follows from [58, Lemma 2.4], which says that, if pdΓ M < ∞, then
a Λ-module (X,Y, f) has finite projective dimension if and only if the projective
dimensions of X and Y are finite. �

Using now the recollement (8.3) we have the following dual result of Lemma 8.15.
The proof is left to the reader.

Lemma 8.16. Let Λ =
(

Σ 0
ΓMΣ Γ

)

be a triangular matrix algebra. The following
hold.

(i) The functor UΣ preserves projectives.
(ii) If pdΣ MΣ < ∞, then the functor UΣ sends injective Λ-modules to Σ-

modules of finite injective dimension.
(iii) Assume that gl. dimΓ < ∞. Then pdΛ ZΓ(Y ) < ∞ for every Γ-module Y .
(iv) Assume that gl. dimΓ < ∞ and pdΣ MΣ < ∞. Then for every Γ-module

Y we have idΛ ZΓ(Y ) < ∞.

As a consequence of Lemma 8.15 and Theorem 8.1 we have the following result.
For similar characterizations with (ii) see [64].

Corollary 8.17. Let Λ =
(

Σ 0
ΓMΣ Γ

)

be an artin triangular matrix algebra over a
commutative ring k such that gl. dimΣ < ∞ and pdΓ M < ∞. Then the following
hold.

(i) The singularity categories of Λ and Γ are triangle equivalent :

Dsg(UΓ) : Dsg(modΛ)
≃ �� Dsg(modΓ).

(ii) Λ is Gorenstein if and only if Γ is Gorenstein.
(iii) Assume that k is a field and that (Λ/ radΛ)⊗k (Λ

op/ radΛop) is a semisim-
ple Λe-module. Then Λ satisfies Fg if and only if Γ satisfies Fg.
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Remark 8.18. The algebra (Λ/ radΛ) ⊗k (Λop/ radΛop) being semisimple (as re-
quired in part (iii) above) can be shown to be equivalent to the following three al-
gebras being semisimple: (Σ/ radΣ)⊗k (Σ

op/ radΣop), (Σ/ radΣ)⊗k (Γ
op/ radΓop)

and (Γ/ radΓ)⊗k (Γ
op/ radΓop).

We also have the following consequence, obtained now from Lemma 8.16 and
Theorem 8.1. Note that in the first statement we recover a theorem by Chen [15].

Corollary 8.19. Let Λ =
(

Σ 0
ΓMΣ Γ

)

be an artin triangular matrix algebra over a
commutative ring k.

(i) [15, Theorem 4.1] Assume that gl. dimΓ < ∞. Then there is a triangle
equivalence :

Dsg(modΛ)
≃

Dsg(UΣ)
�� Dsg(modΣ).

(ii) Assume that gl. dimΓ < ∞ and pdΣ MΣ < ∞. Then the following hold.
(a) Λ is Gorenstein if and only if Σ is Gorenstein.
(b) Assume that k is a field and that (Λ/ radΛ) ⊗k (Λop/ radΛop) is a

semisimple Λe-module. Then Λ satisfies Fg if and only if Σ satisfies
Fg.

From the above corollaries and the classical result of Buchweitz–Happel (see
the text before Corollary 5.6) we have the following result for stable categories of
Cohen–Macaulay modules.

Corollary 8.20. Let Λ =
(

Σ 0
ΓMΣ Γ

)

be an artin triangular matrix algebra.

(i) [15, Corollary 4.2] Assume that gl. dimΓ < ∞ and Σ is Gorenstein. Then
there is a triangle equivalence :

Dsg(modΛ)
≃ �� CM(Σ).

(ii) Assume that gl. dimΓ < ∞ and pdΣMΣ < ∞. If Σ is Gorenstein, then
there is a triangle equivalence between the stable categories of Cohen–
Macaulay modules of Λ and Σ:

CM(Λ)
≃ �� CM(Σ).

(iii) Assume that gl. dimΣ < ∞ and pdΓ M < ∞. If Γ is Gorenstein, then there
is a triangle equivalence between the stable categories of Cohen–Macaulay
modules of Λ and Γ:

CM(Λ)
≃ �� CM(Γ).

8.4. Comparison to work by Nagase. In this subsection we recall a result of
Hiroshi Nagase [47] and relate his set of assumptions to ours.

In [47] Hiroshi Nagase proves the following result.

Proposition 8.21. Let Λ be a finite dimensional algebra over an algebraically
closed field with a stratifying ideal 〈a〉 for an idempotent a in Λ. Suppose
pdΛe Λ/〈a〉 < ∞. Then we have

(1) HH≥n(Λ) ∼= HH≥n(aΛa) as graded algebras, where n = pdΛe Λ/〈a〉+ 1.
(2) Λ satisfies Fg if and only if so does aΛa.
(3) Λ is Gorenstein if and only if so is aΛa.
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This work is based on the paper [41], where stratifying ideals 〈a〉 in a finite
dimensional algebra Λ were used to show that the Hochschild cohomology groups
of Λ and aΛa are isomorphic in almost all degrees.

We start by giving an example of a recollement (modΛ/〈a〉,modΛ,mod aΛa),
where the ideal 〈a〉 is not a stratifying ideal but it satisfies our conditions from
Theorem 7.10.

Example 8.22. Let Q be the quiver with relations ρ given by

2

γ

��
1α ��

β ��♦♦♦♦♦♦

3δ

��❖❖❖❖❖❖

and ρ = {α2, γβ, βαδ}. Let Λ = kQ/〈ρ〉 for some field k, and let a = e1. We want
to study the relationship between Λ and aΛa. Let Si denote the simple Λ-module
associated to the vertex i for i = 1, 2, 3. Then pdΛ S2 = 1, pdΛ S3 = 3, idΛ S2 = 2
and idΛ S3 = 3. Furthermore, the left and right aΛa-modules aΛ and Λa have finite
projective dimension (they are projective) as aΛa-modules. Hence, according to
Theorem 7.10 Λ satisfies Fg if and only if aΛa ∼= k[x]/〈x2〉 does. We infer from this
that Λ satisfies Fg. Moreover, the Hochschild cohomology groups of Λ and aΛa are
isomorphic in almost all degrees by Proposition 7.9.

We claim that 〈a〉 is not a stratifying ideal. Recall that 〈a〉 is stratifying
if (i) the multiplication map Λa ⊗aΛa aΛ −→ ΛaΛ is an isomorphism and (ii)

ToraΛa
i (Λa, aΛ) = (0) for i > 0. Using that (1 − a)Λa ∼= aΛa as a right aΛa-

module, direct computations show that Λa ⊗aΛa aΛ has dimension 12, while 〈a〉
has dimension 10. Consequently 〈a〉 is not a stratifying ideal in Λ. However, the
condition (ii) is satisfied since Λa is a projective aΛa-module.

Next we show that, when 〈a〉 is a stratifying ideal, then the property
pdΛe Λ/〈a〉 < ∞ is equivalent to the functor e : modΛ −→ mod aΛa being an
eventually homological isomorphism. We thank Hiroshi Nagase for pointing out
that (a) implies (b) in the second part of the following result. This led to a much
better understanding of the conditions occurring in the main results.

Lemma 8.23. Let Λ be a finite dimensional algebra over an algebraically closed
field k.

(i) Assume that (α) idΛ

(

Λ/〈a〉
radΛ/〈a〉

)

< ∞ and (γ) pdΛ

(

Λ/〈a〉
radΛ/〈a〉

)

< ∞. Then

pdΛe Λ/〈a〉 < ∞.
(ii) Assume that 〈a〉 is a stratifying ideal in Λ. Then the following are equiv-

alent.
(a) pdΛe Λ/〈a〉 < ∞.
(b) The functor e : modΛ −→ mod aΛa is an eventually homological iso-

morphism.

Proof. (i) For two primitive idempotents u and v in Λ, we have that

HomΛe(Λe(u⊗ v),Λ/〈a〉) ∼= u(Λ/〈a〉)v.

Then, if u or v occurs in a, then this homomorphism set is zero. Consequently we
infer that the composition factors of Λ/〈a〉 are direct summands of the semisimple
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module
(

Λ/〈a〉
rad Λ/〈a〉

)

⊗k

(

Λop/〈a〉
radΛop/〈a〉

)

. By Lemma 7.3 pdΛe

(

Λ/〈a〉
radΛ/〈a〉

)

⊗k

(

Λop/〈a〉
radΛop/〈a〉

)

is finite, hence the claim follows.
(ii) By Corollary 3.12 and part (i), statement (b) implies (a).
Conversely, assume (a). For j > pdΛe Λ/〈a〉 and any Λ-modules M and N we

have that

ExtjΛe(Λ,Homk(M,N)) ∼= ExtjΛe(〈a〉,Homk(M,N)).

Using the isomorphism in the proof of Proposition 3.3 in [41],

ExtiΛe(〈a〉, X) ∼= ExtiaΛae(aΛa, aXa),

we obtain that

ExtiΛe(〈a〉,Homk(M,N)) ∼= ExtiaΛae(aΛa, aHomk(M,N)a)

∼= ExtiaΛae(aΛa,Homk(aM, aN))

∼= ExtiaΛa(aM, aN))

for all Λ-modules M and N . Since ExtiΛe(Λ,Homk(M,N)) ∼= ExtiΛ(M,N), we
obtain the isomorphism

ExtjΛ(M,N) ∼= ExtjaΛa(aM, aN)

for all j > pdΛe Λ/〈a〉 and all Λ-modules M and N . Hence e is an eventually
homological isomorphism. �

The following result gives a characterization of condition (γ) when 〈a〉 is a strat-
ifying ideal.

Lemma 8.24. Let Λ be an artin algebra and a an idempotent in Λ. Assume that

〈a〉 is a stratifying ideal in Λ. Then we have (γ) pdΛ

(

Λ/〈a〉
rad Λ/〈a〉

)

< ∞ if and only

if gl. dimΛ/〈a〉 < ∞ and pdΛ〈a〉 < ∞. Moreover, if (γ) holds, then (β) holds.

Proof. Assume that (γ) pdΛ

(

Λ/〈a〉
radΛ/〈a〉

)

< ∞. It is clear that pdΛ〈a〉 < ∞ if and

only if pdΛ Λ/〈a〉 < ∞. Since Λ/〈a〉 as a Λ-module is filtered in simple modules
occurring as direct summands in (Λ/〈a〉)/(radΛ/〈a〉), we infer that pdΛ Λ/〈a〉 < ∞
by the property (γ). Since 〈a〉 is a stratifying ideal in Λ, we have that

ExtjΛ/〈a〉(X,Y ) ∼= ExtjΛ(X,Y )

for all j ≥ 0 and all modules X and Y in modΛ/〈a〉. Using the above isomorphism
and property (γ) again, we obtain that idΛ/〈a〉 Y ≤ pdΛ(Λ/〈a〉)/(radΛ/〈a〉) for all
Y in modΛ/〈a〉. Hence gl. dimΛ/〈a〉 < ∞.

Assume conversely that gl. dimΛ/〈a〉 < ∞ and pdΛ〈a〉 < ∞. From [54, Theorem
3.9] we have a finite projective resolution 0 −→ Λa ⊗aΛa Qn −→ · · · −→ Λa ⊗aΛa

Q0 −→ 〈a〉 −→ 0, where Qi are projective aΛa-modules. Then applying the exact
functor e = a−, it follows from Proposition 2.2 that the sequence 0 −→ Qn −→
· · · −→ Q0 −→ a(〈a〉) −→ 0 is exact. We infer that (β) pdaΛa aΛ < ∞, since
a〈a〉 ∼= aΛ. Since gl. dimΛ/〈a〉 < ∞ and pdΛ Λ/〈a〉 < ∞, we have that pdΛX ≤

pdΛ/〈a〉X + pdΛ Λ/〈a〉. We infer that (γ) pdΛ

(

Λ/〈a〉
radΛ/〈a〉

)

< ∞ holds.

The last claim follows immediately from the above. �



92 C. PSAROUDAKIS, Ø. SKARTSÆTERHAGEN, AND Ø. SOLBERG

Acknowledgments

This paper was written during a postdoc period of the first author at the Nor-
wegian University of Science and Technology (NTNU, Trondheim) funded by NFR
Storforsk grant no. 167130. The first author would like to thank his co-authors,
Idun Reiten and all the members of the Algebra group for the warm hospitality
and the excellent working conditions. The authors are grateful for the comments
from Hiroshi Nagase on a preliminary version of this paper, which led to a much
better understanding of the conditions occurring in the Main Theorem. We also
thank the referee for her/his useful comments and remarks.

References
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[4] Lidia Angeleri Hügel, Steffen Koenig, Qunhua Liu, and Dong Yang, Derived simple algebras

and restrictions of recollements of derived module categories, arXiv:1310.3479 (2013).
[5] Maurice Auslander and Idun Reiten, Applications of contravariantly finite subcategories,

Adv. Math. 86 (1991), no. 1, 111–152, DOI 10.1016/0001-8708(91)90037-8. MR1097029
(92e:16009)

[6] Maurice Auslander and Idun Reiten, Cohen-Macaulay and Gorenstein Artin algebras, Rep-
resentation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991), Progr.
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pp. 389–404. MR1112170 (92k:16022)

[38] Dieter Happel, Triangulated categories in the representation theory of finite-dimensional

algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University
Press, Cambridge, 1988. MR935124 (89e:16035)

[39] G. Hochschild, On the cohomology groups of an associative algebra, Ann. of Math. (2) 46
(1945), 58–67. MR0011076 (6,114f)

[40] Bernhard Keller, On the cyclic homology of exact categories, J. Pure Appl. Algebra 136
(1999), no. 1, 1–56, DOI 10.1016/S0022-4049(97)00152-7. MR1667558 (99m:18012)

http://www.ams.org/mathscinet-getitem?mr=2880676
http://www.ams.org/mathscinet-getitem?mr=2790881
http://www.ams.org/mathscinet-getitem?mr=2790881
http://www.ams.org/mathscinet-getitem?mr=3209319
http://www.ams.org/mathscinet-getitem?mr=2928333
http://www.ams.org/mathscinet-getitem?mr=961165
http://www.ams.org/mathscinet-getitem?mr=961165
http://www.ams.org/mathscinet-getitem?mr=632548
http://www.ams.org/mathscinet-getitem?mr=632548
http://www.ams.org/mathscinet-getitem?mr=2199789
http://www.ams.org/mathscinet-getitem?mr=2199789
http://www.ams.org/mathscinet-getitem?mr=1680594
http://www.ams.org/mathscinet-getitem?mr=1680594
http://www.ams.org/mathscinet-getitem?mr=1935856
http://www.ams.org/mathscinet-getitem?mr=1935856
http://www.ams.org/mathscinet-getitem?mr=0137742
http://www.ams.org/mathscinet-getitem?mr=0137742
http://www.ams.org/mathscinet-getitem?mr=0389981
http://www.ams.org/mathscinet-getitem?mr=0389981
http://www.ams.org/mathscinet-getitem?mr=0104720
http://www.ams.org/mathscinet-getitem?mr=0104720
http://www.ams.org/mathscinet-getitem?mr=2054979
http://www.ams.org/mathscinet-getitem?mr=2054979
http://www.ams.org/mathscinet-getitem?mr=0161898
http://www.ams.org/mathscinet-getitem?mr=0161898
http://www.ams.org/mathscinet-getitem?mr=3119237
http://www.ams.org/mathscinet-getitem?mr=1175843
http://www.ams.org/mathscinet-getitem?mr=1175843
http://www.ams.org/mathscinet-getitem?mr=1112170
http://www.ams.org/mathscinet-getitem?mr=1112170
http://www.ams.org/mathscinet-getitem?mr=935124
http://www.ams.org/mathscinet-getitem?mr=935124
http://www.ams.org/mathscinet-getitem?mr=0011076
http://www.ams.org/mathscinet-getitem?mr=0011076
http://www.ams.org/mathscinet-getitem?mr=1667558
http://www.ams.org/mathscinet-getitem?mr=1667558


94 C. PSAROUDAKIS, Ø. SKARTSÆTERHAGEN, AND Ø. SOLBERG

[41] Steffen Koenig and Hiroshi Nagase, Hochschild cohomology and stratifying ideals, J. Pure
Appl. Algebra 213 (2009), no. 5, 886–891, DOI 10.1016/j.jpaa.2008.10.012. MR2494378
(2009m:16020)

[42] Maxim Kontsevich, Homological algebra of mirror symmetry, Proceedings of the International
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