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Abstract

Behavioral researchers are increasingly conducting their studies online, to gain access to large and diverse samples that would be

difficult to get in a laboratory environment. However, there are technical access barriers to building experiments online, and web

browsers can present problems for consistent timing—an important issuewith reaction-time-sensitivemeasures. For example, to ensure

accuracy and test–retest reliability in presentation and response recording, experimenters need a working knowledge of programming

languages such as JavaScript.We review some of the previous and current tools for online behavioral research, as well as howwell they

address the issues of usability and timing. We then present the Gorilla Experiment Builder (gorilla.sc), a fully tooled experiment

authoring and deployment platform, designed to resolve many timing issues and make reliable online experimentation open and

accessible to a wider range of technical abilities. To demonstrate the platform’s aptitude for accessible, reliable, and scalable research,

we administered a task with a range of participant groups (primary school children and adults), settings (without supervision, at home,

and under supervision, in both schools and public engagement events), equipment (participant’s own computer, computer supplied by

the researcher), and connection types (personal internet connection, mobile phone 3G/4G). We used a simplified flanker task taken

from the attentional network task (Rueda, Posner, & Rothbart, 2004). We replicated the Bconflict network^ effect in all these

populations, demonstrating the platform’s capability to run reaction-time-sensitive experiments. Unresolved limitations of running

experiments online are then discussed, along with potential solutions and some future features of the platform.
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Introduction

Behavioral research and experimental psychology are increas-

ing their use of web browsers and the internet to reach larger

(Adjerid & Kelley, 2018) and more diverse (Casler, Bickel, &

Hackett, 2013) populations than has previously been feasible

with lab-based methods. However, unique variables are intro-

duced when working within an online environment. The ex-

perience of the user is the result of a large number of connect-

ed technologies, including the server (which hosts the exper-

iment), the internet service provider (which delivers the data),

the browser (which presents the experiment to the par-

ticipant and measures their responses), and the content

itself—which is determined by a mixture of media (e.g.,

audio/pictures/video) and code in different programming

languages (e.g., JavaScript, HTML, CSS, PHP, Java).

Linking these technologies is technically difficult,

time-consuming, and costly. Consequently, until recent-

ly, online research was generally carried out—and scru-

tinized—by those with the resources to overcome these

barriers.

The purpose of this article is threefold: first, to explore the

problems inherent to running behavioral experiments online

with web programming languages, the issues this can create

for timing accuracy, and recent improvements that can miti-

gate these issues; second, to introduce Gorilla, an online ex-

periment builder that uses best practices to overcome these

timing issues and makes reliable online experimentation
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accessible and transparent to the majority of researchers; third,

to demonstrate the timing accuracy and reliability provided by

Gorilla. We achieved this last goal using data from a flanker

task—which requires high timing fidelity—collected from a

wide range of participants, settings, equipment, and internet

connection types.

JavaScript

The primary consideration for online experimenters in

the present time is JavaScript, the language that is most

commonly used to generate dynamic content on the

web (such as an experiment). Its quirks (which are

discussed later) can lead to problems with presentation

time, and understanding it forms a large part of an

access barrier.

JavaScript is at the more dynamic end of the program-

ming language spectrum. It is weakly typed and allows

core functionality to be easily modified. Weak typing

means that variables do not have declared types; the user

simply declares a variable and then uses it in their code.

This is in contrast to strongly typed languages, in which

the user must specify whether a variable they declare

should be an integer, a string, or some other structure.

This can lead to unnoticed idiosyncrasies—if a user

writes code that attempts to divide a string by a number,

or assign a number to a variable that was previously

assigned to an array, JavaScript allows this to proceed.

Similarly, JavaScript allows users to call functions with-

out providing all the arguments to that function. This

dynamic nature gives more flexibility, but at the cost of

allowing mistakes or unintended consequences to creep

in. By contrast, in a strongly typed language, incorrect assign-

ments or missing function arguments would be marked as

errors that the user should correct. This results in a more brit-

tle, but safer, editing environment. JavaScript also allows a

rare degree of modification of core structures—even the most

fundamental building blocks (such as arrays) can have extra

methods added to them. This can prove useful in some cases,

but can easily create confusion as to which parts of the code

are built-in and which parts are user defined. Together, these

various factors create a programming environment that is very

flexible, but one in which mistakes are easy to make and their

consequences can go undetected by the designer (Richards,

Lebresne, Burg, & Vitek, 2010). This is clearly not ideal for

new users attempting to create controlled scientific experi-

ments. Below we discuss two significant hurdles when build-

ing web experiments: inaccuracies in the timing of various

experiment components in the browser, and the technical

complexities involved in implementing an online study,

including JavaScript’s contributions. These complexities

present an access barrier to controlled online experiments for

the average behavioral researcher.

History of timing concerns

Timing concerns have been expressed regarding online stud-

ies (for an overview, see Woods, Velasco, Levitan, Wan, &

Spence, 2015), and although many of these concerns are now

historic for informed users—because solutions exist—they

are still an issue for new users who may not be aware of them.

These concerns can be divided into the timing of stimuli—that

is, an image or sound is not presented for the duration you

want—and the timing of response recording—that is, the par-

ticipant did not press a button at the time they are recorded

doing so. These inaccuracies have obvious implications for

behavioral research, especially those using time-based mea-

sures such as reaction time (RT).

Several things might be driving these timing issues: First,

in JavaScript programs, most processes within a single web-

app or browser window pass through an event loop1—a single

thread that decides what parts of the JavaScript code to run,

and when. This loop comprises different types of queues.

Queues that are managed synchronously wait until one task

is complete before moving on. One example of a synchro-

nously managed queue is the event queue, which stores an

ordered list of things waiting to be run. Queues that are man-

aged asynchronously will start new tasks instead of waiting

for the preceding tasks to finish, such as the queue that man-

ages loading resources (e.g., images). Most presentation

changes are processed through the event loop in an asynchro-

nous queue. This could be an animation frame updating, an

image being rendered, or an object being dragged around.

Variance in the order in which computations are in the queue,

due to any experiment’s code competing with other code, can

lead to inconsistent timing. When a synchronous call to the

event loop requires a lot of time, it can Bblock^ the loop—

preventing everything else in the queue from passing through.

For instance, you may try and present auditory and visual

stimuli at the same time, but they could end up out of synchro-

nization if blocking occurs—a common manifestation of this

in web videos is unsynchronized audio and video.

Second, the computational load on the current browser

window will slow the event loop down; variance in timing

is, therefore, dependent on different computers, browsers,

and computational loads (Jia, Guo, Wang, & Zhang, 2018).

For a best-practices overview, see Garaizar and Reips (2018).

Given the need for online research to make use of onsite com-

puters such as those in homes or schools, the potential vari-

ance mentioned above is an important issue. A laptop with a

single processor, a small amount of memory, and an out-of-

1 Note that recent developments in web browsers have introduced different

application programming interfaces (APIs)—for example, the audio API in

Chrome—that allow access to audio devices; calls can be made to these APIs

from JavaScript that are outside the event loop and are executed asynchro-

nously. For a list of examples, see www.developer.mozilla.org/en-US/docs/

Web/API.
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date web browser is likely to struggle to present stimuli to the

same accuracy as a multicore desktop with the most recent

version of Google Chrome installed. These variances can rep-

resent variance of over 100 ms in presentation timing

(Reimers & Stewart, 2016).

Third, by default, web browsers load external resources

(such as images or videos) progressively as soon as the

HTML elements that use them are added to the page. This

results in the familiar effect of images Bpopping in^ as the

page loads incrementally. If each trial in an online task is

treated as a normal web page, this Bpopping in^ will lead to

inaccurate timing. Clearly, such a variance in display times

would be unsuitable for online research, but the effect can be

mitigated by loading resources in advance. A direct solution is

to simply load all the required resources, for all the trials, in

advance of starting the task (Garaizar & Reips, 2018). This

can be adequate for shorter tasks or tasks that use a small

number of stimuli, but as the loading time increases, partici-

pants can become more likely to drop out, resulting in an

increase in attrition.

The same concerns (with the exception of connection

speed) can be applied to the recording of RTs, which are de-

pendent on a JavaScript system called the Bevent system.^

When a participant presses a mouse or keyboard button, re-

cording of these responses (often through a piece of code

called an BEvent Listener^) gets added to the event loop. To

give a concrete example, two computers could record different

times of an identical mouse response based on their individual

processing loads. It must be noted that this issue is

independent of the browser receiving an event (such as a

mouse click being polled by the operating system), for which

there is a relatively fixed delay, which has been shown to be

equivalent in nonbrowser software (de Leeuw & Motz,

2016)—this receiving delay is discussed later in the article.

Timing of event recording using the browser system clock

(which some JavaScript functions do) is also another source

of variance—because different machines and operating sys-

tems will have different clock accuracies and update rates.

Current state of the art

Presently, the improved processing capabilities in common

browsers and computers, in concert with improvements in

web-language standards—such as HTML5 and ECMAScript

6—offer the potential to overcome some concerns about pre-

sentation and response timings (Garaizar, Vadillo, & López-de

Ipiña, 2012, 2014; Reimers & Stewart, 2015, 2016; Schmidt,

2001). This is because, in addition to standardized libraries

(which improve the consistency of any potential web experi-

ment between devices), these technologies use much more

efficient interpreters, which are the elements of the browser

that execute the code and implements computations. An ex-

ample of this is Google’s V8, which improves processing

speed—and therefore the speed of the event loop—

significantly (Severance, 2012). In fact, several researchers

have provided evidence that response times are comparable

between browser-based applications and local applications

(Barnhoorn, Haasnoot, Bocanegra, & van Steenbergen,

2015 ) , e v en i n poo r l y s t a nda r d i z ed domes t i c

environments— that is, at home (Miller, Schmidt,

Kirschbaum, & Enge, 2018).

A secondary benefit of recent browser improvements is

scalability. If behavioral research continues to take advantage

of the capacity for big data provided by the internet, it needs to

produce scalable methods of data collection. Browsers are

becoming more and more consistent in the technology they

adopt—meaning that codewill be interpreted more consistent-

ly across your experimental participants. At the time of writ-

ing, the standard for browser-based web apps is HTML5 (the

WorldWideWeb Consortium, 2019, provides the current web

standards) and the ECMAScript JavaScript (Zaytsev, 2019,

shows that most browsers currently support ECMAScript 5

and above). ECMAScript (ES) is a set of standards that are

implemented in JavaScript (but, can also be implemented in

other environments—e.g., ActionScript in Flash), and

browsers currently support a number of versions of this stan-

dard (see Zaytsev, 2019, for details). The combination of ES

and HTML5, in addition to having improved timing, is also

the most scalable. They reach the greatest number of users—

with most browsers supporting them, which is in contrast with

other technologies, such as Java plugins and Flash that are

becoming inconsistently supported—in fact, Flash support

has recently begun a departure from all major browsers.

Access barriers

Often, to gain accurate timing and presentation, youmust have

a good understanding of key browser technologies. As in any

application in computer science, there are multiple methods

for achieving the same goal, and these may vary in the quality

and reliability of the data they produce. One of the key re-

sources for tutorials on web-based apps—the web itself—may

lead users to use out-of-date or unsupported methods; with the

fast-changing and exponentially expanding browser ecosys-

tem, this is a problem for the average behavioral researcher

(Ferdman,Minkov, Bekkerman, &Gefen, 2017). This level of

complexity imposes an access barrier to creating a reliable

web experiment—the researcher must have an understanding

of the web ecosystem they operate in and know how to nav-

igate its problems with appropriate tools.

However, tools are available that lower these barriers in

various ways. Libraries, such as jsPsych (de Leeuw, 2015),

give a toolbox of JavaScript commands that are implemented

at a higher level of abstraction—therefore relieving the user of

some implementation-level JavaScript knowledge. Hosting

tools such as BJust Another Tool for Online Studies^

Behav Res (2020) 52:388–407390



(JATOS) allow users to host JavaScript and HTML studies

(Lange, Kühn, & Filevich, 2015) and present the studies to

their participants—this enables a research-specific server to be

set up. However, with JATOS you still need to know how to

set it up and manage your server, which requires a consider-

able level of technical knowledge. The user will also need to

consider putting safeguards in place to manage unexpected

server downtime caused by a whole range of issues. This

may require setting up a back-up system or back-up server.

A common issue is too many participants accessing the server

at the same time, which can cause it to overload and likely

prevent access to current users midexperiment—which can

lead to data loss (Schmidt, 2000).

The solutions above function as Bpackaged software,^ in

which the user is responsible for all levels of implementation

(i.e., browser, networking, hosting, data processing, legal

compliance, regulatory compliance and insurance)—in the

behavioral research use-case, this requires multiple tools to

be stitched together (e.g., jsPsych in the browser and JATOS

for hosting). This itself presents another access barrier, as the

user then must understand—to some extent—details of the

web server (e.g., how many concurrent connections their

hosted experiment will be able to take), hosting (the

download/upload speeds), the database (where and how data

will be stored; e.g., in JavaScript object notation format, or in a

relational database), and how the participants are accessing

their experiment and how they are connected (e.g., through

Prolific.ac or Mechanical Turk).

One way to lower these barriers is to provide a platform to

manage all of this for the user, commonly known as software

as a service (SaaS; Turner, Budgen, & Brereton, 2003). All of

the above can be set up, monitored, and updated for the ex-

perimenter, while also providing as consistent and reproduc-

ible an environment as possible—something that is often a

concern for web research. One recent example is the online

implementation of PsyToolkit (Stoet, 2017), through which

users can create, host, and run experiments on a managed

web server and interface; however, there is still a requirement

to write out the experiment in code, which represents another

access limitation.

Some other tools exist in the space between SaaS and pack-

aged software. PsychoPy3 (Peirce & MacAskill, 2018) is an

open-source local application offering a graphical task builder

and a Python programming library. It offers the ability to ex-

port experiments built in the task builder (but currently not

those built using their Python library) to JavaScript, and then

to a closed-source web platform based on GitLab (an reposi-

tory -based b version control system) called Pavlovia.org,

where users can host that particular task for data collection.

Lab.js (Henninger, Mertens, Shevchenko, & Hilbig, 2017) is

another task builder, which provides a web-based GUI, in

which users can build a task and download a package contain-

ing the HTML, CSS, and JavaScript needed to run a study.

Users are then able to export this for hosting on their own or

on third-party servers. Neither of these tools functions fully as

SaaS, since they do not offer a fully integrated platform that

allows you to build, host, distribute tasks for, and manage

complex experimental designs (e.g., a multiday training study)

without programming, in the same environment. A full com-

parison of packaged software, libraries, and hosting solutions

can be found in Table 1.

The Gorilla Experiment Builder

Gorilla (www.gorilla.sc) is an online experiment builder

whose aim is to lower the barrier to access, enabling all

researchers and students to run online experiments

(regardless of programming and networking knowledge). As

well as giving greater access to web-based experiments, it

reduces the risk of introducing higher noise in data (e.g., due

to misuse of browser-based technology). By lowering the bar-

rier, Gorilla aims to make online experiments available and

transparent at all levels of ability. Currently, experiments have

been conducted in Gorilla on a wide variety of topics, includ-

ing cross-lingual priming (Poort & Rodd, 2017), the provision

of lifestyle advice for cancer prevention (Usher-Smith et al.,

2018), semantic variables and list memory (Pollock, 2018),

narrative engagement (Richardson et al., 2018), trust and rep-

utation in the sharing economy (Zloteanu, Harvey, Tuckett, &

Livan, 2018), how individuals’ voice identities are formed

(Lavan, Knight, & McGettigan, 2018), and auditory percep-

tion with degenerated music and speech (Jasmin, Dick, Holt,

& Tierney, 2018). Also, several studies have preregistered

reports, including explorations of object size and mental sim-

ulation of orientation (Chen, de Koning, & Zwaan, 2018) and

the use of face regression models to study social perception

(Jones, 2018). Additionally, Gorilla has also been mentioned

in an article on the gamification of cognitive tests (Lumsden,

Skinner, Coyle, Lawrence, & Munafò, 2017). Gorilla was

launched in September 2016, and as of January 2019 over

5,000 users have signed up to Gorilla, across more than 400

academic institutions. In the last three months of 2018, data

were collected from over 28,000 participants—an average of

around 300 participants per day.

One of the greatest differences between Gorilla and the

other tools mentioned above (a comprehensive comparison

of these can be found in Table 1) is that it is an experiment

design tool, not just a task-building or questionnaire tool. At

the core of this is the Experiment Builder, a graphical tool that

allows you to creatively reconfigure task and questionnaires

into a wide number of different experiment designs without

having to code. The interface is built around dragging and

dropping nodes (which represent what the participant sees at

that point, or modifications to their path through the experi-

ment) and connecting them together with arrow lines. This

modular approach makes it much easier for labs to reuse
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elements that have been created before, by themselves or by

others. For instance, this allows any user to construct complex,

counterbalanced, randomized, between-subjects designs with

multiday delays and email reminders, with absolutely no pro-

gramming needed. Examples of this can be seen in Table 2.

Gorilla provides researchers with a managed environ-

ment in which to design, host, and run experiments. It is

fully compliant with the EU General Data Protection

Regulation and with NIHR and BPS guidelines, and it

has backup communication methods for data in the event

of server problems (to avoid data loss). A graphical user

interface (GUI) is available for building questionnaires

(called the BQuestionnaire Builder^), experimental tasks

(the BTask Builder^), and running the logic of experi-

ments (BExperiment Builder^). For instance, a series of

different attention and memory tasks could be constructed

with the Task Builder, and their order of presentation

would be controlled with the Experiment Builder. Both

are fully implemented within a web browser and are illus-

trated in Fig. 1. This allows users with little or no pro-

gramming experience to run online experiments, whilst

controlling and monitoring presentation and response

timing.

At the Experiment Builder level (Fig. 1B), users can create

logic for the experiment through its nodes, which manage capa-

bilities such as randomization, counterbalancing, branching,

task switching, repeating, and delay functions. This range of

functions makes it as easy to create longitudinal studies with

complex behavior. An example could be a four-week training

study with email reminders, in which participants would receive

different tasks based on prior performance, or the experiment

tree could just as easily enable a one-shot, between-subjects

experiment. Additionally, Gorilla includes a redirect node that

allows users to redirect participants to another hosted service

Table 1 Comparison of tools available for the collection of behavioral data, both online and offline

Type Examples $* OS* Description

Hosted experiment
builder

Gorilla $ CS Gorilla contains a questionnaire builder, GUI task builder, Java Script
code editor and an experiment design tool.

Secure and reliable experiment hosting and data collection are part of the
service provided.

You can also host files from other task builders and libraries (i.e., jsPsych,
Lab.js) that export to JavaScript with minor modification to connect to
the Gorilla Server.

Participants can be directed to an external resource (i.e., Qualtrics) and then
return them to Gorilla.

Hosted survey tools Qualtrics
SurveyMonkey
Lime Survey

$
$
$

CS
CS
OS

These allows users to collect questionnaire-type data and present media to participants.
They are not designed for collecting reaction time data, for running behavioral

science tasks or creating complex experimental designs.

Coding libraries PsychoPy (Python)
jsPsych (JavaScript)
PsychToolBox (Matlab)
PyGaze (Python)

F
F
F

OS
OS
OS

These help behavioral and neuroimaging researchers create tasks.
These are built using programming languages. If web-compatible a server and

database will be needed to host these online for data collection.

Task builders E-Prime
Presentation
PsychoPy Builder
Open Sesame
PsyToolKit
Lab.js

$
$
F
F
F
F

CS
CS
OS
OS
OS
OS

These are task creation tools. Many of these interface with neuroimaging
equipment and eyetrackers.

Some are more code based (i.e., PsyToolKit), whereas others provide
pre-built tools (i.e., PsychoPy Builder).

Some provide the ability to export JavaScript files (e.g., PsychoPy Builder
and Lab.js) for online hosting via a 3rd party hosting solution.

Free tools are often supported by community forums, whereas the paid
solutions have help desks.

Hosted task builders Inquisit
Testable
PsyToolKit

on the web

$
$
F

CS
CS
OS

These are online task creation tools allowing you to build a task for use
online, and also provide integrated hosting for that task.

Some are more code based (i.e., Inquisit), whereas others are more tooled
(i.e., Testable). The platform provides the hosting and data collection service for you.

Hosting solution Pavlovia F CS This is a grant funded and integrated hosting solution for PsychoPy Builder.
You can also host files from other task builders and libraries that export to
JavaScript.

Hosting libraries JATOS
TATOOL
The Experiment

Factory

F
F
F

OS
OS
OS

Hosting these libraries requires procuring and installing the source code on
your own server that you may need to pay for. You will have to manage any
updates to the library and implement any missing functionality that you need
(e.g., integration with recruitment services). Additionally, you will need to maintain
the server itself, and perform your own system administration, security and backups.

*Key: $, Paid for; F, Free to the user, often department or grant funded; OS, Open source; CS, Closed source
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Table 2 Examples of experimental designs possible to construct within Gorilla’s Experiment Builder interface

Experiment Design Example in the Experiment Builder

Simple experiment

This is the simplest structure in the Experiment Builder, the start and finish “nodes,”

indicate where the participant enters the experiment, and when they end. The green 

nodes are two sequential questionnaires (for gaining consent and demographics), and 

the blue node represents a task built in the Task Editor or Code Editor. The (vX) in the 

brackets of the task node indicates the version of the task, as the builder implements a 

version control system allowing you to roll-back your task to any previous saved 

version.

Within-subjects design

Expanding on the simple experiment structure above, this represents a typical within-

subject design. After consent and demographic questionnaires, each participant 

completes two sustained attention tasks—one using a stimulus set based on animals, 

and one with letters. The dependent variable is performance, and the independent 

variable is the stimulus set used. 

Within-subjects design with order control

This is a slightly more complex version of a within-subjects design, it makes use of the 

order node, which allows the experimenter to control for the order of the tasks between 

participants. The order node allows for a standard “Latin Square” design—in which all 

orders in a square are shown equally, or a “Balanced” design—in which all possible 

permutations are shown (Note: There is only a difference between these choices with 

three or more tasks).

Between-subjects design with randomizer

Between-subjects designs are also made possible in the Experiment Builder, utilizing 

the “Randomiser” node. This node will assign each participant to one of n number of 

branches (in this case two, named control and treatment), whilst enabling the user to set 

the likelihood/weighting of each branch via a ratio field (in this case, there is a 10:10 

ratio, so for every 20 participants, 10 will end up in each branch). The node also has a 

choice of randomization mode, which can be “Balanced” so that each node will get a 

fixed proportion of participants (i.e., random without replacement), or “Random,”

where the ratio acts as a probability and equal proportions are not guaranteed (i.e., 

random with replacement).
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and then send them back again. This allows users to use the

powerful Experiment Builder functionality (i.e., multiday test-

ing) while using a different service (such as Qualtrics) at the task

or questionnaire level. Table 2 provides a more detailed expla-

nation of several example experiments made in the builder.

The Task Builder (Fig. 1A) provides functionality at the

task level. Each experimental task is separated into Bdisplays^

that are made of sequences of Bscreens.^ Each screen can be

configured by the user to contain an element of a trial, be that

text, images, videos, audio, buttons, sliders, keyboard

Table 2 (continued)

Intervention design with pre- and posttest

This example illustrates an intervention design with a pre- and posttest. The design is 

similar to the between-subjects design above, which pseudo-randomizes allocation to 

control and treatment conditions between participants. The same test is given before and 

after completing the assigned task, to ensure this test is not the same, two stimulus sets 

are assigned (“Stimulus Set A” & “Stimulus Set B”), and the order of these pre- and 

posttests are counterbalanced between participants using the order node.

Intervention design with screening question

This example is the same as above, but utilizes a “branch” node, which allows 

screening out participants before they complete an aspect of your experiment. A 

participant’ s response to a question about smoking in the demographic questionnaire is 

preserved using a function called “embedded data” and is used in the “branch” node to 

ensure only smokers complete the tasks. Nonsmokers are taken to a finish node, 

meaning they end the study there. Embedded data can be anything, from a survey 

response to an accuracy rate in a task—permitting complex response dependent 

experiment design.

Multiday training protocol design

The “Repeat” and “Delay” nodes allow the user to create a multi-day training protocol. 

This example demonstrates how this could be done. After completing the consent and 

demographics questionnaires, participants enter a repeat loop (the dotted line between 

the two “Repeat” nodes). At the end of each iteration, a “Delay” node is configured to 

send a message to the participant asking them to come back in 24 hours, and it is also 

configured to send a custom email at that time to the participant with a link to continue 

the experiment. This iterated three times, so each participant is able to complete the 

same task three times before finishing the experiment.
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responses, progress bars, feedback, or a wide range of other

stimuli and response options. See the full list here: https://

gorilla.sc/support/articles/features. The content of these areas

either can be static (such as instructions text) or can change on

a per-trial basis (when the content is set using a spreadsheet).

The presentation order of these screens is dependent on se-

quences defined in this same spreadsheet, in which blocked or

complete randomization can take place on the trial level.

Additionally, the Task Builder also has a BScript^ tab, which

allows the user to augment the functionality provided by

Gorilla with JavaScript. This allows users to use the GUI

and JavaScript side by side. There is also a separate BCode

Editor,^ which provides a developmental environment to

make experiments purely in code. This allows users to include

external libraries, such as jsPsych. The purpose of the Code

Editor is to provide a secure and reliable service for hosting,

data storage, and participant management for tasks written in

code.

Using tools like the Code Editor, users can extend the func-

tionality of Gorilla through use of the scripting tools, in which

custom JavaScript commands, HTML templates, and an ap-

plication programming interface (API) are available—an API

is a set of functions that gives access to the platform’s func-

tionality in the Code Editor, and also allows users to integrate

third-party libraries into their experiments (e.g., tasks pro-

grammed in jsPsych). Therefore, Gorilla also can function as

a learning platform through which users progress on to

programming—while providing an API that manages more

complex issues (such as timing and data management) that

might cause a beginner to make errors. The Code Editor al-

lows the inclusion of any external libraries (e.g., pixi.js for

animation, OpenCV.js for image processing, or WebGazer.js

for eyetracking). A full list of features is available at www.

gorilla.sc/tools, and a tutorial is included in the supplementary

materials.

Timing control

A few techniques are utilized within Gorilla to control timing.

To minimize any potential delays due to network speed (men-

tioned above), the resources from several trials are loaded in

advance of presentation, a process called caching. Gorilla

loads the assets required for the next few trials, begins the

task, and then continues to load assets required for future trials

while the participant completes the task. This strikes an opti-

mal balance between ensuring that trials are ready to be

displayed when they are reached, while preventing a lengthy

load at the beginning of the task. This means that fluctuations

in connection speed will not lead to erroneous presentation

times. The presentation of stimuli are achieved using the

requestAnimationFrame() function, which allows the software

to count frames and run code when the screen is about to be

refreshed, ensuring that screen-refreshing in the animation

loop does not cause hugely inconsistent presentation. This

method has previously been implemented to achieve accurate

audio presentation (Reimers & Stewart, 2016) and accurate

visual presentation (Yung, Cardoso-Leite, Dale, Bavelier, &

Green, 2015). Rather than assuming that each frame is going

to be presented for 16.667 ms, and presenting a stimulus for

the nearest number of frames (something that commonly hap-

pens), Gorilla times each frame’s actual duration—using

requestAnimationFrame(). The number of frames a stimulus

is presented for can, therefore, be adjusted depending on the

duration of each frame—so that most of the time a longer

Fig. 1 Example of the two main GUI elements of Gorilla. (A) The Task
Builder, with a screen selected showing how a trial is laid out. (B) The
Experiment Builder, showing a check for the participant, followed by a

randomizer node that allocates the participant to one of two conditions,
before sending them to a Finish node
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frame refresh (due to lag) will not lead to a longer stimulus

duration. This method was used in the (now defunct)

QRTEngine (Barnhoorn et al., 2015), and to our knowledge

is not used in other experiment builders (for a detailed discus-

sion of this particular issue, see the following GitHub issue,

www.github.com/jspsych/jsPsych/issues/75, and the

following blog post on the QRTEngine’s website, www.

qrtengine.com/comparing-qrtengine-and-jspsych/).

RT is measured and presentation time is recorded using the

performance.now() function, which is independent of the

browser’s system clock, and therefore not impacted by chang-

es to this over time. This is the same method used by

QRTEngine, validated using a photodiode (Barnhoorn et al.,

2015). Although performance.now() and its associated high-

resolution timestamps offer the greatest accuracy, resolution

has been reduced intentionally by all major browsers, in order

to mitigate certain security threats (Kocher et al., 2018;

Schwarz, Maurice, Gruss, & Mangard, 2017). In most

browsers, the adjusted resolution is rounded to the nearest

1–5 ms, with 1 ms being the most common value (Mozilla,

2019). This is unlikely to be a permanent change, and will be

improved when the vulnerabilities are better understood

(Mozilla, 2019; Ritter & Mozilla, 2018).

Additionally, to maximize data quality, the user can restrict

through the GUI which devices, browsers, and connection

speeds participants will be allowed to have, and all these data

are then recorded. This method allows for restriction of the

participant’s environment, where onlymodern browser/device

combinations are permitted, so that the above techniques—

and timing accuracy—are enforced. The user is able to make

their own call, in a trade-off between potential populations of

participants and restrictions on them to promote accurate

timing, dependent on the particulars of the task or study.

Case study

As a case study, a flanker experiment was chosen to illustrate

the platform’s capability for accurate presentation and re-

sponse timing. To demonstrate Gorilla’s ability to work within

varied setups, different participant groups (primary school

children and adults in both the UK and France), settings (with-

out supervision, at home, and under supervision, in schools

and in public engagement events), equipment (own com-

puters, computer supplied by researcher), and connection

types (personal internet connection, mobile phone 3G/4G)

were selected.

We ran a simplified flanker task taken from the attentional

network task (ANT; Fan, McCandliss, Sommer, Raz, &

Posner, 2002; Rueda, Posner, & Rothbart, 2004). This task

measures attentional skills, following attentional network the-

ory. In the original ANT studies, three attentional networks

were characterized: alerting (a global increase in attention,

delimited in time but not in space), orienting (the capacity to

spatially shift attention to an external cue), and executive con-

trol (the resolution of conflicts between different stimuli). For

the purpose of this article, and for the sake of simplicity, we

will focus on the executive control component. This contrast

was chosen because MacLeod et al. (2010) found that it was

highly powered and reliable, relative to the other conditions in

the ANT. Participants responded as quickly as possible to a

central stimulus that was pointing either in the same direction

as identical flanking stimuli or in the opposite direction. Thus,

there were both congruent (same direction) and incongruent

(opposite direction) trials.

Research with this paradigm has robustly shows that RTs to

congruent trials are faster than those to incongruent trials—

Rueda et al. (2004) have termed this the Bconflict network.^

This RT difference, although significant, is often less that 100

ms, and thus very accurately timed visual presentation and

accurate recording of responses are necessary. Crump,

McDonnell, and Gureckis (2013) successfully replicated the

results of a similar flanker task online, using Amazon

Mechanical Turk, with letters as the targets and flankers, so

we know this can be an RT-sensitive task that works online.

Crump et al. coded this task in JavaScript and HTML and

managed the hosting and data storage themselves; however,

the present versions of the experiment were created and run

entirely using Gorilla’s GUI. We hypothesized that the previ-

ously recorded conflict RT difference would be replicated on

this platform.

Experiment 1

Method

Participants Data were drawn from three independent groups.

Group Awas in Corsica, France, across six different primary

classrooms. Group B was in three primary schools in London,

UK. Group C was at a public engagement event carried out at

a university in London.

Table 3 Sample size, age, and gender of the participants for each of the
three groups

Size Gender (% female) Age

Min Max Mean SD

Group A 116 49.1 7.98 11.38 9.95 0.69

Group B 43 60.5 8.82 11.19 9.85 0.55

Group C 109 56.0 4.38 12.14 8.18 1.93

Age range is represented by the Min and Max columns. Group A was
children in school in Corsica, France, Group B consisted of children in
schools in London, UK, Group C consisted of children attending a uni-
versity public engagement event in London
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In total, 270 elementary school children were recruited.

Two participants were excluded for not performing above

chance (< 60% accuracy) in the task. The final sample includ-

ed 268 children (53.7% of females), between 4.38 and 12.14

years of age (M = 9.21, SD = 1.58). Details about the demo-

graphics for each group are provided in Table 3. Informed

written parental consent was obtained for each participant, in

accordance with the university’s Ethics Committee.

Procedure In all three groups, participants were tested in indi-

vidual sessions, supervised by a trained experimenter.

Although great care was taken to perform the task in a quiet

place, noise from adjacent rooms sometimes occurred in the

school groups (A and B). To prevent children from getting

distracted, they were provided with noise-cancelling head-

phones (noise reduction rating of 34dB; ANSI S3.19 and CE

EN352-1 approved).

The task was carried out using the Safari web browser on a

Mac OS X operating system. Because a stable internet con-

nection was often lacking in schools, in Groups A and B, a

mobile-phone internet connection was used—this could vary

from 3G to 4G.

Flanker task The flanker task was adapted from that created by

Rueda et al. (2004). A horizontal row of five cartoon fish were

presented in the center of the screen (see Fig. 2), and partici-

pants had to indicate the direction the middle fish was pointing

(either to the left, or right), by pressing the BX^ or BM^ but-

tons on the keyboard. These buttons were selected so that

children could put one hand on each response key. Buttons

were covered by arrows stickers (left arrow for BX^; right

arrow for BM^) to avoid memory load. The task has two trial

types: congruent and incongruent. In congruent trials, the

middle fish was pointing in the same direction as the flanking

fish. In the incongruent trials, the middle fish was pointing in

the opposite direction. Participants were asked to answer as

quickly and accurately as possible. The materials used in this

experiment can be previewed and cloned on Gorilla Open

Materials at https://gorilla.sc/openmaterials/36172.

After the experimenter had introduced the task, there were

12 practice trials, with immediate feedback on the screen. A

red cross was displayed if children answered incorrectly, and a

green tick was shown if they answered correctly. Instructions

were clarified by the experimenter if necessary. After the prac-

tice trials, four blocks of 24 trials each were presented. Self-

paced breaks were provided between the blocks. For each

participant, 50% of the trials were congruent, and the direction

of the middle fish varied randomly between left and right.

Four types of trials were therefore presented (see Fig. 2): all

the fish pointing to the right (25%), all the fish pointing to the

left (25%), middle fish pointing to the right and flanking fish

to the left (25%), and middle fish pointing to the left and

flanking fish to the right (25%).

As is shown in Fig. 3, for each trial, a fixation cross was

displayed for 1,700 ms. The cross was followed by the pre-

sentation of the fish stimuli, which stayed on screen until a

valid response (either BX^ or BM^) was provided. A blank

screen was then displayed before the next trial. The duration

of the blank screen varied randomly between 400, 600, 800,

and 1,000 ms. Overall, the task took no more than 10 min.

Power calculations The main flanker effect reported in Rueda

et al.’s (2004) ANTanalysis of variance (ANOVA) results (Exp.

1) was F(2, 88) = 61.92, p < .001. They did not report the effect

size, so this permits us only to estimate the effect size using

partial eta squared. This was calculated using the calculator

Fig. 2 Trial types for Experiment 1: Different conditions used in the flanker task
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provided by Lakens (2013), as ηp
2 = .58 (95% CI = .44–.67).

Using G*Power (Faul, Erdfelder, Buchner, & Lang, 2009), an a

priori power calculation was computed for a mixed-factor anal-

ysis of covariance (ANCOVA) with three groups, and a mea-

surement correlation (congruent*incongruent) of .81 (taken

from internal correlation of this measure reported in MacLeod

et al., 2010). To reach a power above .95, a sample of 15 would

be needed for each of our groups—we included in excess of this

number, to increase sensitivity and provide power of > .99.

Results

Data preprocessing RTs for correct answers were computed.

RTs under 200 ms were excluded, since they were too short to

follow the perception and generation of response to the stim-

ulus, and therefore are likely to be the result of anticipatory

guesses, and do not relate to the process of interest (Whelan,

2008; see also the studies on visual awareness from Koivisto

& Grassini, 2016, and Rutiku, Aru, & Bachmann, 2016).

Furthermore, RTs more than three standard deviations from

the mean of each participant were excluded, in order to pre-

vent extreme values from influencing the results (in some

instances, children were asking a question in the middle of

the trial; Whelan, 2008).

The accuracy score (number of correct answers/total number

of trials) was calculated after trials were excluded for having RTs

greater than three standard deviations from the mean, and/or less

than 200 ms.

Accuracy A mixed-factor ANCOVAwas performed, with con-

gruency as a within-subjects factor (two levels: accuracy for

congruent trials, accuracy for incongruent trials), group as a

between-subjects factor (three levels: Group A, Group B,

Group C), and age as a covariate. We found a significant main

effect of congruency on participants’ accuracy [F(1, 264) = 9.02,

p = .003, ηp
2 = .033]. Although performance was at ceiling for

both types of trials, participants were more accurate for congru-

ent than for incongruent trials (see Table 4). This effect signifi-

cantly interacted with participants’ age, F(1, 264) = 6.80, p =

.010, ηp
2 = .025], but not with participants’ group [F(2, 264) =

.501, p = .607, ηp
2 = .004]. To shed light on this interaction

effect, the difference in accuracy scores between congruent trials

and incongruent trials was computed for each participant. This

difference diminished with age (r = – .22, p < .001).

The results from the ANCOVA should, however, be

interpreted with caution, since two assumptions were violated

in the present data. First, the distributions of accuracy scores in

each of the three groups were skewed and did not follow a

normal distribution (for Group A, Shapiro–WilkW = .896, p <

.001; for Group B,W = .943, p = .034; for Group C,W = .694, p

< .001). Second, Levene’s test for equality of variances between

groups was significant [for congruent trials: F(2, 265) = 5.75, p

= .004; for incongruent trials: F(2, 265) = 13.90, p < .001]. The

distribution of the data is represented in Fig. 4.

Due to these violations, the nonparametric Friedman test

was carried out, which is tolerant of nonnormality. It also

revealed a significant effect of congruency on accuracy scores

[χ2(1) = 5.17, p < .023]. Further nonparametric tests were also

carried out, to test whether the congruency effects differed

Fig. 3 Time course of a typical trial in Experiment 1. These screens represent what the participant was seeing within the web browser

Table 4 Accuracy and reaction times of participants, averaged (mean)
over all groups, split by congruency

Accuracy (%) RT (ms)

Congruent 97.79 (0.18) 887.79 (17.10)

Incongruent 96.88 (0.31) 950.12 (23.71)

Standard errors of the means are shown in parentheses
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between the three groups of participants. A Welch test for

independent samples, tolerant of the nonequal variances be-

tween groups, indicated that the differences in accuracy be-

tween congruent and incongruent trials were not similar across

groups [F(2, 108.53) = 3.25, p = .042]. Games–Howell post-

hoc comparisons indicated that this effect was driven by the

difference between Group A and Group C (p = .032). Groups

A and B did not significantly differ from each other (p = .80),

and neither did Groups B and C (p = .21). Descriptive statistics

are reported in Table 5.

However, aswereported inTable3, theparticipants inGroupC

wereyoungerthanthoseinGroupA,andthedifferenceinaccuracy

between congruent and incongruent trials is generally larger for

youngerchildren.Tocheckwhetherthegroupdifferencesrevealed

by theWelch testweredrivenby this agedifference, theBaccuracy

difference^ scores (congruent – incongruent accuracy) were

regressed on age, and theWelch test was performed on the resid-

uals. The difference between participants’ groups was then non-

significant [F(2, 108.48) = .396, p = .674], indicating that the

previousWelch test results were likely driven by age.

Reaction time A mixed-factor ANCOVAwas performed, with

congruency as a within-subjects factor (two levels: RT for con-

gruent trials, RT for incongruent trials), group as a between-

subjects factor (three levels: Group A, Group B, Group C), and

age as a covariate. We found a main effect of congruency on

participants’ RTs [F(1, 264) = 18.92, p < .001, ηp
2 = .067].

Participants took longer to provide the correct answers for in-

congruent than for congruent trials (see Table 4). This effect

significantly interacted with age, F(1, 264) = 11.36, p = .001,

ηp
2 = .041], but not with group type [F(2, 264) = .594, p = .553,

ηp
2 = .004]. To better understand this interaction effect, RTs

costs were calculated by subtracting the mean RTs to the con-

gruent trials from the mean RTs to incongruent trials. Higher

values indicate poorer inhibitory control, in that it took longer

to give the correct answer for incongruent trials. RT costs de-

creased with age, indicating an improvement in inhibitory con-

trol over development (r = – .20, p = .001).

Similarly to the analyses for accuracy scores, the RTs in

each of the three groups were skewed and do not follow a

normal distribution (for Group A, Shapiro–Wilk W = .476, p

< .001; for Group B, W = .888, p = .034; for Group C, W =

.649, p < .001). Second, Levene’s test for equality of variances

between groupswas significant [for congruent trials,F(2, 265)

= 9.36, p < .001; for incongruent trials, F(2, 265) = 7.28, p <

.001]. The distribution of the data is represented in Fig. 5. The

nonparametric Friedman test, which is tolerant of nonnormal

data, also revealed a significant effect of congruency on RTs

for correct answers [χ2(1) = 55.37, p < .001]. A nonparametric

Welch test for independent samples—tolerant of the nonequal

distributions between groups—was carried out, indicating that

Fig. 4 Distribution of accuracy differences between congruent and
incongruent trials, for each group in Experiment 1. Group Awas children
in school in Corsica, France; Group B consisted of children in schools in

London, UK; and Group C consisted of children attending a university
public engagement event in London

Table 5 Average differences in accuracy between congruent and
incongruent trials, per participants’ group

Accuracy difference (accuracy
congruent – accuracy incongruent)

Group A 0.18 (0.23)

Group B 0.52 (0.47)

Group C 1.82 (0.60)

Standard errors of the means are shown in parentheses
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RT costs (difference between congruent and incongruent tri-

als) did not differ significantly between the three groups of

participants [F(2, 165.22) = 0.335, p = .716], indicating that

the main effect in the ANCOVAwas unlikely to be driven by

the group’s differences.

Discussion

The flanker effect was successfully replicated in a sample of

268 children tested using Gorilla. This characterized the

Bconflict network,^ with children taking longer to provide

correct answers to incongruent than to congruent trials. This

effect was lower than 100 ms (being 62.33 ms, on average).

As we mentioned in the introduction, this small magnitude of

difference requires both accurate visual timing and response

recording to detect. Crucially, there was no interaction be-

tween the flanker effect and participants’ groups, even though

their testing conditions differed greatly: Two groups were tak-

en from schools, over a mobile-phone internet connection, and

the third group was taken from a university setting, over a

communal internet connection. In the case of accuracy, we

did find a group difference in running nonparametric tests;

however, it was shown that after accounting for the age dif-

ference between groups, this disappeared—which suggests

this was not caused by the testing environment.

In each group, however, the pupils were supervised by a

trained experimenter who guided them through the task and

checked the quality of the internet connection. One of the

potential benefits of web-based research is in reaching partic-

ipants in various places (e.g., their own house), allowing for

broad and unsupervised testing. Therefore, in Experiment 2

we tested whether the flanker effect would hold under such

conditions, recruiting adult participants over Prolific and with-

out supervision.

Experiment 2

Method

Participants A total of 104 adults were recruited, five partici-

pants were excluded for not performing above chance (< 60%

accuracy) in the task (these individuals also had accuracy in

excess of three standard deviations from the mean). This left a

sample of 99 adults (57.57% female), with a mean age of

30.32 years (SD = 6.64), ranging from 19 to 40 years old.

All participants were recruited online, through the

Prolific.ac website, which allows the recruitment and

administration of online tasks and questionnaires (Palan

& Schitter, 2018). All participants were based in the

United Kingdom and indicated normal or corrected-to-

normal vision, English as a first language, and no his-

tory of mental illness or cognitive impairment. This ex-

periment was conducted in line with Cauldron Science’s

ethics code—which complies with the Declaration of

Helsinki (World Medical Association, 2013). Informed

consent was obtained through an online form, partici-

pants were informed they could opt out during the ex-

periment without loss of payment.

Compensation for the task was £0.60 GBP, which on aver-

age translated to a rate of £8.70 per hour, as participants took

an average of 4 min 8.36 s to complete the task.

Fig. 5 Distribution of RT differences between congruent and incongruent trials for each group in Experiment 1
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In addition, the software recorded the operating system,

web browser, and browser viewpoint size (the number of

pixels that were displayed in the browser) of the users. The

breakdown of these characteristics is shown in Tables 6 and 7.

Procedure Participants completed the task on their own com-

puters at home and were not permitted to access the task on a

tablet or smartphone. Before starting the task, participants read a

description and instructions for taking part in the study, which

asked them to open the experiment in a new window and note

that the task would take around 5 min to complete (with an

upper limit of 10 min). When the participants had consented to

take part in the study on Prolific.ac, they were given a person-

alized link to the Gorilla website, in which the experimental task

was presented. First, a check was loaded to ensure they had not

opened the task embedded in the Prolific website (an option that

was available at the time of writing), which would minimize

distraction. Then the main section was administered in the

browser; on completion of this they returned to Prolific.ac with

a link including a verification code to receive payment.

Flanker taskAn adult version of the Bconflict network^ flank-

er task, adapted from the ANT used by Rueda et al. (2004).

The mechanics, trial numbers, and conditions of this task were

identical to those in Experiment 1; however, the stimuli were

altered. The fish were replaced with arrows, as is typi-

cally done in adult studies (Fan et al., 2002; see Rueda

et al., 2004, for a comparison of the child and adult

versions). This is illustrated in Fig. 6, and the time course is

illustrated in Fig. 7. The materials used in this experiment can

be previewed and cloned on Gorilla Open Materials at www.

gorilla.sc/openmaterials/36172.

Similarly to the children in Experiment 1, the adults were

given written instructions and then completed 12 practice

trials with immediate feedback. They moved on to complete

four blocks of 24 trials (25% congruent–left, 25% congruent–

right, 25% incongruent–left, 25% incongruent–right).

Power calculations The main flanker effect reported in Rueda

et al.’s (2004) adult arrow ANOVA results (Exp. 3) was F(2,

44) = 142.82, p = .0019. They did not report the effect size, so

this permitted us only to estimate the effect size using partial

eta-squared. This was calculated using the calculator provided

by Lakens (2013), as ηp
2 = .87 (95% CI: .78–.90).

However, since our planned comparisons for this group were

simple (a t test for mean RT and accuracy for incongruent vs.

congruent trials), we calculated power using the reported mean

and standard deviation values from Fan et al. (2002); Rueda

et al. (2004) did not report the standard deviation, so this was

not possible using their data. The mean RTs were 530 ms (SD =

49) for congruent trials and 605 ms (SD = 59) for incongruent

trials. Using an a priori calculation from the G*Power software,

this gave us a calculated effect size of d = 1.38 and a sample size

of 26 to reach a power of .96. However, this assumed that we

were working in a comparable environment, which was not the

case, due to increased potential noise. Our sample size was

therefore much larger than the original article to account for

increased noise, giving us a calculated power of > .99.

Results

Data preprocessing As in Experiment 1, trials with RTs more

than three standard deviations from the mean and/or less than

200 ms were excluded from both the accuracy and RTanalyses.

Accuracy The accuracy scores were computed over the total

number of trials for each condition (congruent and incongru-

ent). These means are shown in Table 8. As we mentioned

above, five participants were excluded for accuracy scores that

were not above chance. Accuracy was distributed

nonnormally (Shapiro–Wilk W = .819, p < .001), so a

Wilcoxon signed-rank test was used to compare the mean

accuracies across the two types of trials. This provided evi-

dence for a significant difference between the two means

(1.72% difference, W = 1,242, p < .001) with a rank-biserial

correlation of rrb = .49 (an estimation of effect size for

nonparametric data; Hentschke & Stüttgen, 2011).

Table 6 Breakdown of browsers and operating systems within the
sample

Count (Percentage)

Browser

Chrome 75 (75.76%)

Safari 9 (9.09%)

Firefox 9 (9.09%)

Edge 3 (3.03%)

Other 3 (3.03%)

Operating system

Windows 10 57 (57.58%)

Windows 7 17 (17.17%)

macOS 16 (16.16%)

Chromium 5 (5.05%)

Windows 8 4 (4.04%)

Total percentages of the sample are included in parentheses

Table 7 Viewport characteristics of the adult sample’s web browsers

Mean (Pixels) Std. deviation (Pixels) Range (Pixels)

Horizontal 1,496.13 218.85 1,051–1,920

Vertical 759.40 141.66 582–1,266

The viewport is the area of a browser containing the information from a
site
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Reaction time The average RT was calculated for the two

trial types—congruent and incongruent. Means and stan-

dard errors are reported in Table 8. RTs were only cal-

culated for correct trials, since the accuracy rates were

at ceiling. As above, the Shapiro–Wilk test suggested

that the data were distributed nonnormally (W = .748

p < .001), so a Wilcoxon signed-rank test was used to

compare the differences in mean RTs. This test sug-

gested a significant difference between the two means

(29.1-ms difference, W = .414, p < .001) with a rank-

biserial correlation of rrb = .83.

Discussion

The Bconflict network^ effect was observed and replicated.

This was encouraging, given the decrease in signal to noise

that variance in operating system, web-browser, and screen

size (shown above) would contribute toward this type of task.

Fig. 7 Time course of a typical trial in Experiment 2. These screens represent what the participant was seeing within the web browser

Fig. 6 Trial types for Experiment 2: Different conditions used in the flanker task
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However, the effect of 29.1 ms was smaller than that observed

in the original lab-based study (120 ms), and still smaller than

the average effect of 109 ms reported in a meta-analysis of lab

studies by MacLeod et al. (2010). This is likely due to vari-

ance in a remote environment, which may not be surprising, as

MacLeod et al. (2010) found that there was large variance in

the RT differences (congruent vs. incongruent) between and

within participants over multiple studies—1,655 and 305 ms,

respectively. Our smaller observed difference is also potential-

ly driven by reduced RT variance. The average standard error

in Experiment 1 was 20 ms, whereas it was around 10 ms in

Experiment 2—possibly leading to the lower than expected

difference in RT. We are unable to compare our variance with

the original article’s child ANT results, as standard error or

deviations were not reported. As a nearest online comparison,

Crump et al.’s (2013) letter flankers’ difference between con-

gruent and incongruent trials was 70ms, which is closer to our

observed difference, suggesting that online studies tend to find

a smaller RT difference; however, the stimuli and task struc-

ture differed significantly between our implementation and

Crump et al.’s.

One potential explanation for the faster RTs and decreased

variance in the Prolific sample that we tested could be their

unique setting—the framing and task goals of these partici-

pants were different from those of typical volunteers.

Research investigating users on the Amazon Mechanical

Turk platform found that they were more attentive than panel

participants (Hauser & Schwarz, 2016), suggesting that inter-

net populations are measurably different in their responses.

Increased attentiveness could potentially lead to less within-

subjects variance—this might be an avenue of research for a

future study.

General discussion

Gorrilla.sc is an experiment builder: a platform for the creation

and administration of online behavioral experiments. It goes

beyond an API, toolbox, or JavaScript engine and provides a

full interface for task design and administration of experi-

ments. It manages presentation time and response recording

for the user, building on previous advances in browser-based

research software without the requirement for programming

or browser technology understanding. Utilizing these tools,

measurement of the Bconflict network^ was successfully rep-

licated online. The replication persisted across several differ-

ent groups, children in primary schools in two countries, chil-

dren at a public engagement event, and adults taking part on

their own machines at home. This demonstrates that tasks

built using this platform can be used in a wide range of

situations—which have the potential to introduce unwanted

variance in timing through software, hardware and internet

connection speed—and still be robust enough to detect RT

differences, even in a task containing a relatively low number

of trials (< 100).

Results such as these provide evidence that could enable

more researchers to undertake behavioral research on the web,

whilst also offering the maintained back end that can be kept

up to date with changes in user’s browsers—that otherwise

would require a much higher level of technical involvement.

Building on these advantages, Gorilla is currently being

used to teach research methods to undergraduate students in

London at University College London and Birkbeck,

University of London. In comparison with other software,

requiring specific programming skills, the teaching teams not-

ed a lower need to provide technical assistance to students,

allowing them to better focus on research design per se.

Limitations

While technical involvement is lowered with Gorilla, there are

still some limitations with presenting a task in a browser that

the user should be aware of. These are mainly limited to

timing issues, which Gorilla minimizes but does not

eliminate—there will always be room for timing errors, even

though it is decreased. The specific reasons for these errors,

and how they may be quantified or overcome in the future, are

discussed below.

As with any software running on a user’s device, Gorilla’s

response time is limited by the sampling/polling rate of input

devices—a keyboard, for example. Unfortunately, short of

installing intrusive software on the user’s device, the web

browser has no mechanism for directly accessing polling

rate—or controlling for polling rate. Often this sits at around

125 Hz, so this can be used to inform conclusions based on RT

data gathered online. Future developments may at some point

allow programs running in the browser to access hardware

information and adjust for this—however, this will only be

important for research that aims to model individual trials on

an accuracy of less than 8 ms (the default USB polling rate for

input devices is 125 Hz, so a sample every 8 ms).

Alternatively, developments in recruitment platforms (such

as Prolific and Mechanical Turk) may enable screening of

participant’s hardware, allowing researchers to specify partic-

ipants with high refresh monitors and high-polling-rate input

devices (most likely to be video gamers). This would reduce

the online research benefit of a larger available participant

Table 8 Average accuracy and correct trials reaction times for
congruent and incongruent trials

Accuracy (%) RT (ms)

Congruent 99.28 (0.11) 498.72 (9.38)

Incongruent 97.56 (0.33) 527.81 (10.80)

Standard errors are in parentheses
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pool, but there are still many large and diverse groups of

participants who meet such requirements, including the PC

gaming community. Online research specifically targeting

the gaming community has successfully gathered large

amounts of data in the past (Ipeirotis & Paritosh, 2011;

Ross, Irani, Silberman, Zaldivar, & Tomlinson, 2010).

One unique problem in remote testing is the potential pro-

cessing load any given participant may have running on their

computer may vary dramatically. High processing loads will

impact the consistency of stimulus presentation and the record-

ing of responses. Fortunately, the platform records the actual

time each frame is presented for, against the desired time—so

the impact on timing can be recorded andmonitored. A potential

future tool would be a processing load check—this could either

work by performing computations in the browser and timing

them as a proxy for load. Or, it may potentially become possible

to measure this using methods already available in Node.js (an

off-browser JavaScript runtime engine) for profiling CPU

performance—something that is likely to become possible if

performance.now() timing is—at least partially—reinstated in

browsers (for examples of how this could work, see Nakibly,

Shelef, & Yudilevich, 2015; Saito et al., 2016).

The use of modern browser features , such as

requestAnimationFrame(), gives the best possible timing fi-

delity in the browser environment, and also allows for incon-

sistencies in frame refresh rates to be measured and accounted

for. Online research will always be limited by the hardware

that participants have, and despite the availability of modern

monitors offering higher frame rates, most users’ systems op-

erate a refresh rate of 60 Hz (Nakibly et al., 2015; Zotos &

Herpers, 2012, 2013), therefore most stimulus presentation

times are limited to multiples of 16.667 ms. Giving some

insight into online participant’s device usage, a Mechanical

Turk survey showed that over 60% of users were using a

laptop, phone, or tablet—the vast majority of which have a

60-Hz refresh rate (Jacques & Kristensson, 2017). It is there-

fore advisable for users on any online platform to restrict pre-

sentation times to multiples of 16.667 ms. This is spoken

about in Gorilla’s documentation; however, a future feature

might be to include a warning to users when they try to enter

nonmultiples of the standard frame rate.

New and Future features

Some potential improvements to the platform would make it a

more powerful tool for researchers. These fall into two camps:

tools for widening the range of experiments you can run, and

tools for improving the quality of data you can collect.

In the authors’ experience, tools for researchers to run on-

line visual perception, attention and cognition research are

limited. This is perhaps a product of reluctance to use online

methods, due to concerns regarding timing—which we hope

to have moved toward addressing. To provide a greater range

of tools a JavaScript-based Gabor patch generator has been

developed, which can be viewed using this link: www.bit.ly/

GorillaGabor documentation for this tool is avaible at: www.

gorilla.sc/support/reference/task-builder-zones#gabor-patch.

This first asks participants to calibrate their presentation size

to a credit card, and measure the distance to the

screen—calculating visual degrees per pixel—and then allows

presentation of a Gabor patch with size, frequency, window

size in degrees. Experimenters can also set animations that

change the phase and angle of these patches over time.

These animations are fast (40 Hz), because the patch and

window are pregenerated and manipulated to produce the an-

imation, rather than a frame-by-frame new patch generation.

Another tool that widens online research capabilities is re-

mote, webcam-based eyetracking. An implementation of the

WebGazer.js library (Papoutsaki et al., 2016) for eyetracking

has also been integrated into the platform. This permits rough

eyetracking, and head position tracking, using the user’s web-

cam. Recent research has provided evidence that this can be

used for behavioral research, with reasonable accuracy—about

18% of screen size (Semmelmann & Weigelt, 2018). This also

includes a calibration tool, which can be run as frequently as

needed, which allows for the quantification of eyetracking ac-

curacy, and offers the ability to end the experiment if the web-

cam cannot be calibrated to the desired level. A demo of the

calibration is available here: www.bit.ly/EyeDemo, and

documentation is available at www.gorilla.sc/support/

reference/task-builder-zones#eye-tracking. Additionally,

WebGazer.js allows the experimenter to track the presence

and changes in distance, of a user’s face. This can help with

data quality, as you can assess when a user is looking at the

screen, and prompt them to remain attentive to the task. The

impact of this type of monitoring may be particularly

interesting to investigate in a task such as the one presented in

this article—perhaps participants would show a different flank-

er effect if they were more attentive in the task.

Another feature Gorilla has introduced is Gorilla Open

Mate r i a l s , which i s an open-acces s r epos i to ry

where experiments, tasks and questionnaires can be published.

This will enable other users to: experience study protocols,

inspect the configuration settings of tasks and questionnaires,

and clone study protocol, tasks and questionnaires for their

own research. This increases the transparency, accessibility

and reproducibility of published research. As the repository

grows, we hope it will also allow researchers to build on what

has gone before without needing to reinvent the wheel. A

summary is availble here: www.gorilla.sc/open-materials.

Conclusion

We have described Gorilla as a tool that significantly lowers

the access barriers to running online experiments—for in-

stance, understanding web development languages, servers,
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and programming APIs—by managing all levels of imple-

mentation for the user and keeping up to date with changes

in the browser ecosystem. We presented a case study, to dem-

onstrate Gorilla’s capacity to be robust to environmental var-

iance (from software, hardware, and setting) during a timing

task. An RT-sensitive flanker effect—Rueda et al.’s (2004)

Bconflict network^—was replicated in several populations

and situations. Some constraints in running studies online re-

main, but there may be future ways of tackling some of these

(i.e., with specialist hardware). Future improvements to the

platform will include a Gabor generator, webcam eyetracking,

and movement monitoring.
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