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Abstract— Motivated by applications to sensor, peer-to-
peer and ad hoc petworks, we study distributed asyn-
chronous algorithms, also known as gossip algerithms, for
computation and information exchange in an arbitrarily
connected network of nodes, Nodes in such networks
opcerate under limited computational, communication and
energy resources. These constraints naturally give rise to
“uaossip” algerithms: schemes which distribute the compu-
tational burden and in which a node communicates with
a randomly thosen neighbor.

We anmlyze the averaging problem vnder the gossip con-
straint for arbitrary network, and find that the averaging
time of a gossip algorithm depends nn the second largest
eigenvalue of a doubly stochastic matrix characterizing the
algurithm. Using recent results of Boyd, Diacenis and Xino
{2003), we show that minimizing this quantity to design
the fastest averaging algorithm on the network is a semi-
definite program(SDP}. In general, SDPs cannot be solved
distributedly; however, exploiting problem structure, we
propose a subgradient method that distributedly solves the
oplimization problem over the network.

The relation of averaging time to the second largest
eigenvalue naturally relates it to the mixing time of a
random walk with transition prahabilities that are derived
from the possip algorithm. We use this connection to
study the performance of gossip algorithm en twa popular
networks: Wireless Sensor Networks, which are modeled
as (eometric Random Graphs, and the Internet graph
under the so-called Preferential Connectivity Maodel.

I. INTRODUCTION

The advent of sensor, wireless ad hoc and peer-to-peer
networks has necessitaled the dosign of asynchronous,
distributed and fault-tolerant computation and informa-
tion exchange algorithms. This is mainly becausc such
neiworks are constrained by the following operational
characierisiics: (1) they may not have a cencralized entity
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for facilitating computation, communicadon and time-
synchronization, (ii) the network topology may not be
completely known to the nodes of the network, (iii)
nodes may join or leave the nerwork (even expire),
s¢ that the network topology itsclf may change, and
(ivy in the case of sensor nerworks, the computational
powcer and energy resources may be very limited. These
constraints motivate the design of simple asynchronous
deceniralized algorithms for computation where each
node exchanges information with only a few of it
immediate neighbors in a time instance {or, a round).
The goal in this scuing is to design algorithms so that
the desired computation and communication is done as
quickly and efficiently as possible.

We study the problem of averaging as an instance
of the distributed computation problem. A toy example
to explain the motivation for the averaging problem 1s
sensing temperature of some small region of space by
a network of sensors. For example, in Figure 1, sensors
are deployed to measure the temperature 7 of a source.
Sensor 4, i =1,...,4 measures 1; =T 47, where the
n; are 1D, zero mean (Gaussian sensor noise variables.
The unbiased, minimum can ‘_§quarcd error (MMSE)
estimate is the average T = 5—"-142 Thus, to combat
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Fig. 1. Sensor nodes deployed to measure ambient
temperature,

minor fluciyations in (he ambient wemperature and the
noise in sensor readings, the nodes need to average their
readings.
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Distributed averaging arises in many applications such
as coordination of autonomous agents, estimation and
distributed data fusion on ad-hoc networks, and de-
centralized optimization. ' Fast disiributed averaging
algorithms are also important in other contexts; see
Kempe et al [KDGO3], for example. For an extensive
body of related work, sce [KKO2ZLIKKDO1], IHHLES],
[GYRBO1], [KEW02], [MFHHOZ], [vR(], [EGHKY9],
[IEGH02], [KSSV00a), [SMKT01], [RFH01].

This paper undertakes an in-depth study of the design
and analysis of gossip algorithms [or averaging in an
arbitrarily connected network of nodes. (By gossip algo-
rithm, we mean specifically an algorithm in which each
nede conmmunicates with no more than one neighbour in
cach time slot) Thus, given a graph (i, we determine
the averaging time, T,v., which is the lime taken for
the value at each node w0 be closc to the average
value (a more precise definition is given later). We find
that the averaging time depends on the second largest
cigenvalue of a doubly stochastic matrx characterizing
the averaging algorithm: (he smaller this eigenvalue. the
fasicr the averaging algorithm, The fastest averaging
algorithm is obtained by minimizing this cigenvalue over
the set of allowed gossip algonthms on the graph. This
minimization is shown to be a semi-definite program,
which is a convex problem, and therefore can be solved
cfficicntly 1o obtain the global optimum.

The averaging time, Thye, is closely related to the
mixing tme, T, Of the random walk defined by
the matrix that characerizes the algonithm. This means
we can sludy also averaging algorithms by studying
the mixing (me of the corresponding random walk on
the graph, The recent work of Boyd ct al [BDX03]
shows that the ralio of the mixing times of (he natural
random walk to the fastest-mixing random walk can
grow without bound as the number of nodes increases;
correspondingly. therefore, the optimal averaging algo-
rithm can perform arbitrarily betier than the one based
on the natural random watk. Thus, computing the op-
timal averaging algorithm is important: howcver, his
involves solving a semi-definite program, which requircs
a knowledge of the complete topology. Surprisingly, we
find that we can exploit the problem structure to devise a
distributed subgradicnl method o solve the semidefinite

"The theorelical framework developed in this paper is not merely
restricted to averaging alporithms. It casily extwnds o (he computation
of other functions which can be computcd via puir-wise vperations.
e.g.. the maxirmum, minimum or product funchions. It can also be
extended for analyzing information exchange algarithms, although
this extension iz not as direct. For concreteness and for sating
our results as precisely as possible, we shall consider averaging
algorithms in the rest of the paper.

program and obtain a near-optimal averaging algorithn.

Finally, we study the performance of gossip algorithms
on two network graphs which are very important in
practice: Geometric Random Graphs which are used to
model wircless sensor networks, and the Internet gragh
under the preferental connectivity model. We find that
for geometric random graphs, the averaging timc of
the natural is the same order as the optimal averaging
algorithm, which, as remarked earlier, need not be the
case in a general graph.

We shall state our main results after setting out some
notation and definitions in the next section.

A, Problem Formulation and Definitions

Consider a connected graph G = (V, E), where Lhe
vertex set V' contains n nodes and E' is the edge set. The
i component of the vector #(0) — [ (D), ..., 2,(0))7
represents the inittal value at node 4. Let Zave — L’f—(oj

i
be the average of the entries of x(0) and the goal is to
COMPULE Tgye in a distributed and asynchronous manner.

¢ Asynchronous time model: Each node has a
clock which ticks at the imes of a rate 1 Poisson
process. Thus, the inter-tick times at cach node arc
rate 1 exponentials, independent across nodes and
over time. Equivalently, this corresponds (o a single
clock ticking according to a rate n Poisson process
al times Zp, k > 1, where {75, — 4} are ID
exponentials of rate n. Let I € {1,...,n} denote
the node whose clock ticked at time Z;. Clearly,
the I; are TID vadables distributed uniformly
over {1,...,n}. We discretize (imc according
to clock ticks since these are the only times at
which the value of z(:) changes. Therclore, the
interval [4y, Zy.1) denotes the k" time-slot and.
on average, there are n clock ticks per umit of
absolute time, I.emma 1 states a precise translation
of ¢lock ticks into absolute time.

« Synchranous time model: In the synchronous time
model, time is assumed to be slotted commonly
across nodes. In each time slot, each node contacts
onc of its neighbors independentdy and (not neces-
sarilv uniformly) at random. Note that in this model
all nodes communicate simultanecusly, in contrast
to the asynchronous model where only one node
communicaies at a given time. On the other hand,
in both models each node contacls only one other
node at a time.

This paper uses the asvanchronous (ime model
whereas previous work, notably that of [KSSVOOb],
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[KDGO3], considers the synchronous time model.
The qualitative and quantitative conclusions are
mnattecled by the type of model; we choose the
asynchronous time model for convenience.

Algorithm A(F): We consider a class ot algo-
rithms, denoied by .4. An algorithm in this class is
characterized by an n x n matrix P — {F;1 of non-
negative entries with the conditton that Fy; > 0 only
if (4,7} € £. For technical reasons, we assutne that
F is a stochastic matrix with irs farges| eigenvalue
cqual to 1 and all the remaining n — 1 eigenvalues
are strictly less than 1 in magnitude, (Such a matrix
can always be found if the underlying graph G
is connected and non-bipartite. We will assume
that the network graph G’ satisfies these conditions
for the remainder ol (he paper) ‘The algorithm
associated with #, denoted by A(P), is described
as [oliows:

In the &** time-sot, let node i’s clock tick and let
it contact some neighboring node § with probability
F;;. At this tme both nodes sct their values cqual
to the average of their current vahies. Formaliy, let
z(k) denote the vector of values at the end of the
time-slot &. Then,

(k)

= Wkazk-1), (1)
where with probability %ng (% is the probability
that the #* node’s clock ticked and P, is the chance
that it contacted node ) the random matrix W (k)
18

(es —eales —e5)”

e 2

Wiy (2)
where ; — [0--- 6 1 0---0)7 is an » x 1 unit

voctor with the #%* component equal to 1.

Quantity of Interest: Our intcrest is in delermining
the time (number of clock ticks) it takes for «(k)
{0 converge 1O Tavel, where 1 is the vector of all
ones.

Definition 1: For any 0 < ¢ < 1, the e—averaging
time of an algorithm AP} is denoted by To(e, P}

and equals
HIUL) - :L'avel” ) }
k:P‘(—- —Zc)Zep.
{ T @) T =
(3)

where ||| denotes the {» norm of the vector 7.

sup inf
(0}

Thus the e-averaging time is the smatlest number of
clock ticks it takes for z(-) to get within ¢ of Zave1

with high probability. regardless of the initial value
x={0),
The following lemma relates the number of clock ticks
to absolute time,

Lemma I For any & > 1, F[Z;] = k/n. Further, for

any & > 0,
_~. AN |
Ir( 2 — 2oxp 7 ) (4)
Proof By definition, E|Z] = YA EZ; -
Zi ] = EJ‘L-_I 1/n — k/n. Equation {(4) follows directly
from Cramer’s Theorem (see [DZ99], pp. 31t & 315). =

Bl

2

<

As a consequence of the Lemma 1, for k> n,

[2logn
{ =)
(1721

with high probability {7.e.probability at least 1 — 1/n?),
In this paper, all the results about e-averaging times
are at least n. Hence, dividing the quanuties measured
in terms of the number of clock ticks by n gives the
corresponding quantities when measured in absolute time
(for an example, see Corollary 2).

k

T

Zn

B. Previous Results

A general lower bound for any graph (/ and any
averaging alporithm was obtained in [KSSVO00a] in the
synchronous setting, Their resule is:

Theorem }; For any gossip algorithm on any graph
G and for 0 < ¢ < 0.5, the c-averaging time (in
synchronous steps) is lower bounded by Q{log n).

I'or a complete graph and a synchronous averaging
algorithm, [KIMG03] obtain the following result.

Theorem 2: For a complete graph, there exists a gos-
sip algorithm such that the 1/n-averaging time of the
algorithm is O{logn).

‘The problem of (synchronous) fast distribulcd averag-
ing on an arbitrary graph without the gossip constraint
is studicd in [XBO3]; here, W (4) = W for all &; ie., the
system is completely determinisdc, 1Jistributed averag-
ing has also been studied in the context of distributed
load balancing (|RSW98]), where an analysis based on
Markov chains is used to obtain bounds on the time
required to achicve averaging (upto the intcger con-
straint) upto a certain accuracy. However, each iteration
is governed either by a constant stochastic malrix, or a
fixed scquence of malchings is considered. Some viher
results on distributed averaging can be found in [BS03],
[Mur()3], |L.LBFO4], |OSM{4], [JLS03].
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Not much is known about good randomized gossip
algorithms for averaging on arbitrary graphs. The algo-
rithm of |[KDGO3] is quiie dependent on the [act thal the
underlying graph is a complete graph, and the general
result of [KSSV(00a] is 4 non-constructive lower bound.

C. Onr Results

In this paper, we design and characlerize the perfor-
mance of averaging algorithms for arhitrary graphs, Qur
main result is the following theorem. which we shall
later (in Section IV) apply to specific types of graphs
that are of interest in applications.

Theorem 3; The averaging time, Tyve(c, P), of the
algorithm A(#) is bounded as follows:

. Sloge™!

T, P —_— 5
0.3loge™! .

- - : _
Toweles F) 2 log Ao (W)~ 4

where
LA 1 p, pT
W = [ —wi{+ . N
2n 2n '

and £) is the diagonal matrix with entrics

D; =) |P;+ Pa).
i=1 ,
Theorem 3 is proved in Section II.

In Section TIT we show that the problem of finding
the fastesi averaging algorithm can be formulated as a
semidefinite program (SDP). In general, it is not possible
to solve a semidelinile program in a distributed fashion.
However, we exploit the structure of the problem to
propose a compleiely distributed algorithm that solves
the optimization problem on the network, based on a
subgradient methad. The description of the algorithm
and prool of convergence are found in Section III-A,

Section IV relates averaging time of an algorithm on
a graph (3 with the mixing time of an assaciated random
walk on (7, and uses this result to study applications of
our results in the ¢ontext of two networks of praclical
interest: wireless nerworks. and the Internet.

II. PROOF 0F THEQREM 3

We prove bounds (8) and (6) in Lemmas 2 and 3 on
the number of discrete times (or equivalently clock ricks)
reqguired to gel within € of Zhv: 1 (analogous Lo (5) und
(6)).

A. Upper Bound

Lemma 2: For algorithn A(P), for any initial vecior
(D), for B > K*(e),
r:) <6
A dlogc™

Pr (Hﬂ:(ﬁ?) — Tavell .
gy ™ ©®

[0 B
Proof: Recall that under algosithm A{P), trom (1)
and (2),

where

1
K*(¢)

ek +1) — Wk 4+ L=k, {)
where with probability 7}—&}"2'5; the random matrix W{k) is

(e — ei)(e: — o)

2

H"'.g_.,' = Hee {HD

First note that W (k) are doubly stochastic mairices for
all (i, 7). For doubly stochastic matrices, the vector %1
is the eigenvector corresponding 1o the largest eigenvalue
1. With this observation, and with our assumptions on
£, 1t can be shown that (k) — xuvw.1. Qur interest is
in finding out how fast it converges. In particular, we
would like to obtain bounds on the error random vector
y(k),

y(k)y = z(k}— zawel. (11)
Note that, y(k) L 1 since y(k)T1 = 0.
Consider the evolution of (-}
ylk+1) =
@

:E(k + 1) = $ave1-

Wk + Da(k) — wave W (k)1
= W{k+1){x(k) — Tavel)

= Wk+ Dylk). (12)
Here (a) lollows from (he fact thal 1 is an eigenvector
for all W (k + 1). Thus y(-) evolves according to the
same linear system as 2( ).

To obtain probabilistic bounds on y(k), we will first
compute the second moment of y(k} and then apply
Markov's inequality as below.

Computing 1¥:
Let,

|12

W E[W(0)] =

1 .
— H Z f%j””;‘j
."h?'

Then, the eniries of W are as follows:

E[W (k)]
(13)
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) fnrz-f; u‘z--_pjp and
pTE 2R

2) Wi i [_L ! Zu,
This yields the W in (7), that is
P+ pT
2n
where TJ is the diagonal matrix with entries

n
D; = (Z'Hm +J’)ﬁl) :
=1

Note that, if P = P7, then P is doubly stochastic,
This implics that £); = 2, which in tun implics that
W—71(—-1/n) F P/n.

Cumputing Second Moment Z[y(k)7 y(k)):
For each k. W (k) = W;; with probability £, so that

W o= - —D + ‘ (14)

W)W (k) (r_ (& - e;)éez_ G/ ) (15)
- (,__Ez:;z%;ﬂ_eﬁ ) (16)
= W(k). an

Since this is true for each instance of the random matrix

i,

OTWO) = KW
= W,

EW
(18)

Now, from {12),

Efylk+ 1) y(k+1)|
= Elye) "Wk + )T W[k + 1y(k)
= Ely(k)TEIW (k + )T W(k + Lly(Bly(%)]

= Rly(k)TWy(k)], (19)

using (18), and the fact that the W{k + 1) are IID
{independent of y(£)).

The matrix W is symmeiric? positive-semidefinite
(since W — WTW? and hence it has non-negative real
eigenvalues.

As staled earlicr, y(k} L 1, which is the eigenvector
corresponding to the largest eigenvalue Ay = | of W,
S0, from the variational characterization of the second
eigenvalue, we have

y(BRYT Wyik) < (W )y(k) y(k) (20
From (18) and (20},
Elplk i Diyk+ 1) < A(W)EBlypk) y(k)).21)

*The symunetry of ¥ does not depend on £ being symmetric.

Recursive application of (21) yields

Ely(kyTyk) < M)y, @2
Now,
y({]}Ty{O} = D)TI(D] = -Jw:;“_m
< z{0) z(0). (23)

Application of Markov’s Tnequality:
From (22), (23) and an application of Markov’s in-
T
pe (KLU

equalily, we have
(k) ~ Zave 1} X

“( 25) +(0)72(0) ﬁe)

2 By y(k)]

{0}
= (mffs(u)
= Wk

(24)

Aloge!

From (24), it follows that for & > K (c) o (7)1

”-L(‘U J'avel”
Pr( Te@l 26) s«

This proves the Lemma, and gives vs an upper bound
on the e-averdging time. [ |

(25)

B. Lower Bound

Lemmg 3: For algorithm A(47), there exists an initial
vector (0}, such that for k< K.(e),

Pr(”x(k)“xavel” > 6) .

[EACH
where

A O5loge! .

() & 2980 2
Kol = g 1 (26)

Proof:
I'rom (12} and (18), we obtain

Ely(k)) = W y(0). Q7

We have shown thac W
semidefinite doubly stachastic matrix. W
negative real) eigenvalues

is o symmetric positive-
has (non-

T=(W) 2 (W) > ... = A (W) >0,

with corresponding orthonormal eigenvectors
T;l’ﬁl‘ V2, s .., Un. Choose
0) — (1 + ) S y(0) = —
* AN va ] = —=a.
V2 ‘ 4 /2
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For this choice of z{0}, {l={0}}j = 1. Now from (27),

, (-
Ely(k)] = A3 (W .

V2

For this particuiar choice of x{0}, we will lower bound
the e—averaging time by lower bounding F[||y(k)|*] and
using [.emma 4 as stated below.

(28)

By Jenscn’s inequalily and (28),

B[Sy 2 ZEQ[@;(&)]
i=1
- [‘utﬁ)lT y(k)]
1

= E,\ék (I’V)'Ug P

- %/\%’*{W). (29)

Lemmu 4: Let X be a random variable such that (¢ <
X 58.'['11&n,f0rany0<e<:13

I—c

£

Pr(X>e¢ >
Proof:
ETX]

[A

ePr(X <)+ Blr(X > ¢)
= Pr(X > e}(B —¢)+e.
Rearranging terms gives us the lemma. ]

From (28), [|y(R}* < 4y(0)|% < 1/2. Henco Lemma
(4) and (29) imply that for & < K,(¢)

Pr(flg(h) Z¢) > e
This completes the proof of Lemma 3.

(30

2
The following corollaries are inunediate.

Corollary 1: For large n and symmetric P, Tave{t. P}
is bounded as follows:

dnlogst A,
ave € —=_ ={"*(e
Towe(e, P} < L) (e.P) ()
0.5nloge ! A
Taele, P) > — 2 2T/(c.P). @4
avele, P) 2 T =) (e. P). (32
Proaf: By  definition, A (W) =

(1— (1 — Aa(P}))). For large n,
is very small, and hence

log (1 - -(1 - )\g(l"’))) ~ --(1 — ().

'This along with Theorem 3 completes the proof, [ |

10— (P

Corollary 2; For a symmetric 4°, the absolule time,
Zrpa e,y 1t takes tor T (¢, 1) clock ticks to happen is
given by

™. P 2
Zre(ep; = —(Q(iiv—.ﬁ), (33)

n

with probability at least 1 — 2e.
Proof- For § = Y24 ;Q'P“ and k = T(c, P} and
using (31), the right hand side of (d) evaluates to

Zexp («2(1 — ) . dnloge™

1
51 = Az{P))D =2

In

Since —3 < X(F) < 1 for a non-negative doubly
stochastic symmetric matrix F, § — 7‘: is larger than
the above choice of 4. This completes the proof. [ ]

I, OpriMAL AVERAGING ALGORITIIM

From Theorem 5, we see that the averaging time is a
monolonically increasing function of the second largest
eigenvalue of W — 377, ~ L P:W,;. Thus, finding the
fagtest averaging alporithm Lorrespond% to finding F
such that As(V/) is the smallest, while satisfying con-
straints on P. Thus, we have the optimization problem

minimize  Ao(W)

subject o W = S0, LW,

ij=1n
PO B0t i) dB Y
EJPU_J., i.

The objective Tunction, which is the second largest cigen-
value of 4 doubly stochastic matrix, is a convex function
on the set of svmmetric matrices, and therefore we
have a convex optimization problem. This problem can
be reformuiated as the following semidefinite program
(SDP}:

minimize  $
subject to W — 117 /n = sf,
. 3 N
W_z” 1o P H
P=0), Pi=0if {r jt éE,
> by =1, Vi

For general background on SIDPs, eigenvalue aptimiza-
tion, and associated interivr-point methods for solving
these problems, see. for example, |RV03], |[WSVUOU],
[LO9Y6], |Ove?2], and references therein. Interior point
methods can be used to solve problems with a thousand
edges or so; subgradient methods can be used to solve
the problem for larger graphs with upto a hundred thou-
sand edges. The disadvantage of a subgradient method
compared to a primal-dual interior point method is that
the algorithm is relatively slow (in lerms of number of
iterations), and has no simple stopping criterion that can
guaranice a certain level of suboptimalily,

(35)

Thus, given a graph topology, we can solve the
semidefinite program {35) Lo find the P* [or the [astest
averaging algorithm.
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A, Distributed Optimization

Finding the fastcst averaging algorithm is a convex
optmization problem, and can therefore be solved ef-
ficiently to obtain the optimal distribution £2*. Unfor-
tnately, a ' computed via a centralized computation
is not very useful in our setting. It is natural o ask
if in this sctting, the optimization (like the averaging
itself), can also be performed distributedly; f.e., is it
possible for the nodes on the graph, posscssing only
locat information, and with onty local commumication,
W compute the probabilitics £;; that lead (o the lastest
averaging algorithm?

In this section, we oulline a completely distributed
algorithm based on an approximate subgradient method
which vonverges to a neighborhood of the optimal P*.
The algorithm uses distribated averaging to compute
a subgradient; the accuracy w which the averaging is
performed determines the size of the neighbourhood.
The greater the accuracy, the smaller the neighbourhood,
i.e., the better the approximation w0 the optimal £*. The
exact relalion between the accuracy of the distributed
averaging and the size of the neighbourhood is stated in
Theorem 4 at the end of this section. First we start with
some notation.

Notation: It will be easier 1o analyze (he subgradient
methad if we collect the entries of the matrix F;; into a
vector, which we will call p. Since there is no symmetry
requirement on the matrix P, the vector p will need to
have entries corresponding o F;; as well as Py (this
corresponds to replacing each edge in the undirected
graph & by two directed edges, one in each dircetion).

The vector p corresponds to the matrix £ as follows.
Let the total number of {non sclf-loop) edges in 7 be m.
Assign numbers to the edges (4,5) from 1 through m.
If 4+ < § then y = P,;, where { is the number assigned
to (the undirected) edge (4, j) (which we will denote by
L~ (6, il > 4 then p § = P, (Recall that we are
not considering self-loop edges.)

We will also infroduce the notation p; corresponding
{0 the non-zero entries in the éth row of P (we do this (o
make concise the constraint that the sum of elements in
gach row should be 1). That is, we define for 1 < i < n,

pi = |Fy; (4.5} € £]. (36)
Define ne x o matrices Ey, £~ (4, §) as follows: by =

Ly, = +1, F, = Fiy, — —1. and ail other entries of
By are zero. Then, we have that

B =2Wy, - 1)
Finally, denote the degree of node i by m;.

1) Subgradient method: We will describe the subgra-
dient method for the optimization prohlem resiated in
terms of the variable p. We can state (33) in derms of
the variables p = [p_,a,... 91,71, . .. 2] 88 follows:

minimize  Az{/ 4 ﬁ S mRr v p By
subject to 1Tp; €1, Wi
p> 0, 12 <,

37

where p; 18 as defined in (36).

We will usc the subgradient method to solve this
problem distributedly. The use of the subgradient method
to solve eigenvalue problems is well-known; see Lor
example [BDX03), [OWA3], [Lew96], [Lew99] for ma-
terial on non-smoolh analysis of spectral Function, and
{Cla%0], [HUL93], [BLOO] for more general background
o0 non-smooth oplimization.

Recall that a subgradienr of Az at W is a symmetric
matrix G (hat satisfics the inegquality

(W)

IV

oWy + (G, W — W)

Xa( WY+ Tr G(W — W)

for any feasible, £ e, symmetric stochastic martrix W. Let
u be a unit eigenvector associated with Az{W'), then the

matrix & = uu? is a subgradient of Ay(W) (sce, for
example, [BDX03]).

Using
. l T 1 V."l.
Wip) = I+ (mPi—p (B = T+5- (3 pF),
i1 =1

in terms of the probability vector p, we obtain

m

MW (5) 2 (W (p)) + 3 (07 (o= Eo)(di ~ o),

fif=1
(38)
so that the subgradient g(p} is given by
1
90y = 5 (W B 6T Eru), (39)
with components
; 1 . 1 .
gl = —=uT tu = - —(w — ), 1~ (i, ),

2n 2n
where |{| — L,...,m.

Observe that if each node @ knows its own component
u; of the unit eigenvector, then this subgradient can be
computed locatly, using only local information,

The following is the projected subgradient method for
4m:
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« Initialization: Initialize p to some feasible vector,
for example, p corresponding to the natural random
walk, Svt k= 1.

« Repeat for £ > 1,

- Subgradient step, Compulc a subgradient g**)
at p, and set

P p = wegt®

- Projection onto feasible set. At each node 4,
project p; obtained from the subgradient step
onto 1%y < 1,4 = 0. This is achieved as
{ollows:

D I 377 max{0, pjj} < 1, then set p; =
max {0, p; }, stop.

2) If not, then use bisection to find 2 > 0
such that 375, max{0,p;; — 2} = 1; set
pi — max{0, pi; — &}, stop.

In this algorithm, Siep 1 moves p in the direction of
the subgradicnl with siepsize vy we will discuss the
stepsizes a little later in this section. Step 2 projects the
veetor p onlo the feasible set. Since the constraings al
each node are separable, the variables p; corresponding
to nodes i are projected onto the feasible set separately.

The projection method is derived from the optimality
conditions of the projection problem

1T 7 1 - 2
minitnize ZT?_I(qJ - Di;) (am)
subjectto 1fg <1, g=0

as shown.

Introduce Lagrange multipliers A € R for the
inequality ¢ = Q, and v for Y3 — 1 < 0. The
KKT conditions for optimal primal and dual variables
gt X et oare

g =0, 175" <1

A0 v 20

AT -1 =0, Mg =0, 51, my

A¢ —pij) 1 ¥~ A =0, j=1,...,m.
Elifm'naling the slack variables A;, we get the equivalent
optimality conditions

gt =0, 1Tgr <1, (41)
V20, »atet 1) =0, {42)
7;(2(q; —piy) +v) =0, F=1,...,my, (43)
20, —piy) >0, j=1.....m, (44)

If 2% < 2pj;, then from the last condition, necessarily
;i > 0. From (43), this gives us ¢; = pj; — v 2. If
on the other hand ©* > 2p;;, then v* > 2p;; — 2497 as

well since ¢f > 0, and so to satsly (43), we must have
g; = 0. Combining these gives us that

*

i i
g; — maxi0,pi; — -}

The ¢; must salisfy 17¢ < 1, ie, Tomax{0, Gi —
v*/2} < 1, However, we must also satisfv the com-
plementary slackness condition »*(17¢* — 1) = 0.
These iwo conditions combined together lead 1o a unigue
sohution for »*, obtained either at «* = Q, or a the
solution of 3 max{0,¢; ~ »*/2} —= 1; [rom »* the ¢}
can be found as described.

(45)

2) Decentralization: Now consider the issuc of de-
centralization. Observe that 10 the above algorithm, g
can be computed locally at each node if ., the unit
cigenvector corrgspanding 1o Az (P}, 18 known; more
precisely, if each node i 15 aware of its own component
of v and thal of 1t immediate neighbours, The projection
step can be carried out exactly at each nede using local
information alone.

The rest of the section proceeds as follows; first we
will discuss approximate distributed computation of the
eigenvector v of W, and then show that the subgradiont
method converges to a certain neighborhood of the
optimal value in spite of the error incurred during the
distributed computalion of ¢ at each iteration.

The problem of distributedly computing the top-k
gigenvectors of a matrix on a graph is discussed in
[KM04]; a distributed implementarion of and error anal-
ysis for orthogonal iterations is descibed. By distribuled
computation of an eigenvector % of a matrix W, we mean
that each node ¢ is aware of (he ™ row of W, and can
only communicate with its immediate neighbours; given
these constraints, the distributed computation ensures
that each node holds its value #; in the unit eigenvector
.

Since the matrix W is symmetric and stochastic (it
is a convex combination of symmetric stochastic matri-
ces), we know that the first eigenvector is 1. "Therefore
arthogonal iterations takes a particularly simple form (in
particular, we do not need any Cholesky {actorizalion
type of computations at the nodes). We describe orthog-
onal iserations for this prohlem below:

o DecentralOl: Initialize the process with some ran-

domly chosen vector 1g; for & > 1, repeat
— Setw, = Wur_g
— (Orthogonalize) v = v ~ (S0 ; 2, )1
- (Scale to unit norm) vy — ./ )|vi|
Here, the multiplication by W is distributed, since W
respects the graph structure, 2.2, Wi, 3£ 0 only if (4, 7) is
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an edge. So entry i of vy can be found using only values
of ;-1 corresponding Lo neighbours of node 4, i.e., the
compulation s disiributed. The orthogonalize and scale
steps can be carried out diswributedly using the gossip
algorithm outlined in this paper, or just by distributed
averaging as described in [XB03] and used in [KMO4].
Obscrve that the very matrix ¥ can be used for the
distribuied averaging step, since it is also a probability
marix. We state the following result (applied to our
special case) (rom [KMO4], which basically states that it
is possible to compute the eigenvector upto an arbitrary
accuracy:

Lemma 5: Decentral Ol is Tun for
 (treaix log(16/¢))  iterations, producing  orthogonal
vector w, then

t
|t~ url| < O ((%) :rr-) + 31 (46)
2

where ||« — u.| is the Lo distance between » and the
eigenspace of Az u, is the vector in the eigenspace
achieving this distance.

It is therefore clear that an approximatc eigenvector,
and thercfore an approximate subgradient can be com-
puted distributedly.

3} Convergence analvsis: It now remains 1o show that
the subgradient method converges despite approximation
errors in computation of the eigenvector, which spill over
into computation of the subgradient. To show this, we
will usc a result from {Kiw(idl on the convergence of
approximate subgradient methods.

Given an optimization problem with objective function

f and feasible set .S, the approximate subgradient method
gencrates a sequence {-.nk}',i:‘il C & such that

! = I’S(xk — g™y, 5% € 8, Je(2"), 47)

where Fy is a projection: onto the feasible set, #, > 0 is
a stepsize, and

B, fo(2™) = {g: fs(w) = fs(@®)) (g2~ 2") - Va)

(48)
1s the ¢, subdifferential of the ohjective function fs at
¥,

Let v = (1/2){gr]%, and & = v © cx. Then we

have the [ollowing theorem from [Kiw(4d],
Lenuny 6: If Y1y, — oo, then

lir juf J(®y < [ 44,

where 4 = limsup dg, and f* is the optimal value of the
ohjective function,

Consider the &-th iteration of the subgradient method,
with current iterate p(k), and let /e be the error
in the (approximate) eigenvector = corresponding to
X (W (p(k})). (By error in the eigenvector, we mean
the Lo distance between v and the (actual) eigenspace
corresponding to Az). Again, denote by u. the vector in
the ¢igenspace minimizing the dislance to v, and denole
the exact suhgradient computed from u, by g,.

We have {lu — u|? < e, First we {ind ¢ in terms of
¢ as follows:

W

M(W(p)) 2 Aa(W(p(k) + {gr. 0 — p(K))
— AW (plk))+ (g.p — p(kh
—{g- gr.p—p(k}}
This implies,

ee = sup{g—gmp—plk)) = cly~gl°,
r

whete ¢ s 4 scaling conslant.

Next, we will find |y — g-[|* in terms of ¢ as follows:

.
[t — . ]]* <& = Z{uf _w ) <
i=1

= (w—u ) <e 1<i<n

ith

Now, the {** component of g — gr 15

1
? ((ui — .uj)? _ (Ur,- _ “-1-,)2)
= 5 ((m = Up ) — (U ~ u-rj-)\} x

((wi — wg) + (ur, — wr,)) -

(g—g)t =

Combining the facts that {2 — 2, | < /¢, ¥i; and
(since |luf = 1) Jui —ui| £ V2, Vi, j; we get the
following

; - l 3 FAZ . fon P
(9— 0} < W(JVF)"‘(M:Z)" = Ke/n?.

Summing over all 1 cdges gives us [lg—g» | % < 8me /0,
ie., e < 8eme/n® < Bee since m < n? for all graphs.

Now choose v — 1/k. From (39), it can be seen
that ||gx|'? is bounded above by /nz/n, and so = in
Theorem 4 converges to 0. Therefore it in each iteration
i, the eigenvector is computed to within an error of ¢,
and ¢ = liminf¢;, we have the following result:

Theovem 4: The distributed subgradient method de-
scribed above converges to a distribution p tor which
MW {(p)) is within Scme/n?(< 8ce) ol the globally
optimal value Az {H"(p*)).
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IV, APPLICATIONS

In this section, we bricfly discuss applications of our
results in the context of wireless ad-hoc networks und the
Internet. We examine how the perlormance ol averaging
algorithms scales with the size (in terms of the number
of nodes) of the network.

Before we study this, we need (the following result,
relating the averaging time of an algorithm .A4(F) and
the mixing time of the Markov chain on & that evolves
according 1o W — W(F). (Since W is a positive-
scmidefinite doubly stochastic matnx, the Markov chain
with lransition matrix W has uniformn equilibrium distri-
bution.)

Reeall that the mixing time is defined as follows:

Definition 2 (Mixing Time): For a Markov chain
with symmetric transition mawix W, let A;(#) =
7 2oy [WE — LI, Then, the e-mixing time is defined
as

Thix(c) = snp inf{t: A;{t) <e, YU > 1), (49)

We have (he following relation between mixing times
and averaging timcs, the proof of which can be found in
[BGPSO4).

Theorent 5: For a symmgctric matrix F, the e
averaging time (in terms of absolute time) of the gossip
algorithm A(P) iy related w the mixing time of the
Markov chain with transition matrix P as

Tiver (5: P) =€ (108 -+ Tmi_\((!.')) :

Figure 2 is a pictorial description of Theorem 3.
The z-axis denotes mixing time and the y-axis denotes
averaging lime. The scale on the axis is in order notation.
As shown in the figure, for I such that Ty (F) =
o(logn), Lye (1, £) — O(logn); for P such that
T (P) = Qlogn), Tove (2, P) = ©{Twix). Thus.
knowing mixing property of random walk essendally
characterizes the averaging tme in the order sense,

A. Wireless Network

The Geometric Random Graph, ntroduced by Gupta
and Kumar [GK00), has been used successfully (0 model
ad-hoc wireless networks, A d-dimensional Geometric
Random Graph on » nodes, modeling wireless ad-hoc
networks of n nodes with wireless transmission radius
r, 18 denoted as Gd(n‘,'r}, and is ohtained as follows:
place n nodes on a 4 dimensional unit cube uniformly
at random and connect any two nodes that are within dis-
tance 7 of each other. An example of a two dimensional
graph, G*(n,r) is shown in the Figure3.

Towe

Il

li Ig Tr
I S SR |
- T T
loglogn logn n
Fig. 2. Graphical interpretation of Theorem 5.

The following is a well-known resull ahout
the comeetivity of G4(n,r) (for a proof, sce
[GKOD], [GMPS04], |Pen03]):

Lemma 7: For nr® > 2logn, the G{n,7} is con-

nected with probability at least 1 — 1/x2,

Theorem 6: On  the Geometric Random  Graph,
(3*{n, ), the absolute 1/n®-averaging time, ¢ > 0, of
the optimal averaging algorithm is © (lc’—rg.‘,ﬁ i

Proof- In [BGIPS05], the authors show that for € ==
1/n%, a0 > 0 the c-mixing umes for the fastest-mixing
random walk on the geomeltric random graph G(n,v)
is of order El('—‘%—’i). Therefore, using this and the results
of Corollaries | and 2, we have the theorem. [ |

Thus, in wircless sensor networks with a small radius
of communication, distributed computing is necessarily
slow, since Lhe fastest averaging algorithm is itself slow.
However, consider the natural averaging algorithmn, based
on the natral random walk, which ¢an be described
as follows: each node, when 11 hecomes active, chooses
one of its neighbors uniformiy at random and averages
its value with the chosen neighbor, As noted before, in
general, the performance of such an algorithm can bhe
far worse than the optimal algonthm. Intercstingly, in
the case of (7%(n,7), the performances of the natural
averaging algorithm and the optimal averaging algorithm
are comparable (.e. they have averaging times of the
same order). We state the following Theorem, which
is obtained exactly the same way as Theorem 6, using
a result on T for the natural random walk from
[BGPS05]:

Thearem 7: On  the Geometric Random Graph,
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G¥{n,r), the absolute |/n°-averaging lime, o > 0, of
the narural averaging algorithm is of the same order as
the optimal averaging algorithm, i.e., © (“li

2
Implication. It a wircless sensor network, Theorem 6
suggests that for a small radius of transmission, even the
fastest averaging algorithm converges slowly; however,
the good news is that the natural averaging algorithm,
based only on local information, scales just as well ag
the fastest averaging algorithm. Thus, at least in the
order sense, it is not necessary to optimize for the [ustest
averaging algorithm in a wireless sensor network,

B. Internet

The Preferential Connectivity (PC} model (MPS03] is
one of the popular models for the Inernet, In [MPS03],
it is shown that the Internet is an expander under the
preferential connectivity model. This means that there
exists @ positive constant § > 0 (indcpendent of the
siz¢ of the graph), snch that for the transition matrix
comesponding to the natural random walk, call it 2,

(1 - doax(P)) < 1, (50)

where Apax(F) is the second largest eigenvalue of P
in magniwde, fe.. the spectral gap is bounded away
from zcro by a ¢onstant. Let P be the transition matrix
corresponding 1o the fastest mixing random walk on the
Internet graph under the PC model. The random walk
comespording to £ muost mix at least as fast as the
natural one, and therefore,

‘5 _C (l_’xmu*{(P‘” i 1.

S

(31)

It is easy to argue that there exists an optimal £°* that is
symmetric (given any optimal Py, the matrix 1/2(F; +
Pg } is symmetric, and leads o the same E[W] as ).
Thercfore, from (503, (31), Theorem 3 and Corollury 2,
we obtain the following Theoremn.

Theorem 8: Under the PC model, the optimal averag-
ing algorthm on the Intemet has an absolule e-averaging
time Tove(c) = © (loge™') .

Implication. The absolute tdme for distributed compu-
tation on the Internet is independent of the size of the
network, and depends only on the desired accuracy of
the computation’. One implication is (hat cxchanging
information on Internel via peer-to-peer nerwork built
on top of it is extremely fast'

JAlthought the asymmetry of the P matrix for the natoral random
walk on the Internet prevents us from exactly quantifying rbe aver
aging tung, we bulieve that averaging will be fast cven under the
natural randam walk, since the spectrai gap for this random walk is
bounded away from 1 by a constant.

O
e .'{r‘.'“\..%. *
L)

0 | - 1

Fig. 3. An cxample of a Geometric Random Graph in
two-dimensions. A node is connected o all other nodes
that are within distance v of iself,

V. CONCLUSION

We presented a framework for the design and analy-
sis of a randomized asynchronous distributed averaging
algorithrn on an arbitrary connecled network. We charac-
terized the pedformance of the algorithm precisety in the
terms of second largest eigenvalue of an appropriate dou-
bly stochastic matrix. This allowed us to find the fastest
averaging of this class of algorithms, by establishing the
comesponding optimization problem to be convex. We
established a tight relation between the averaging time
of the algorithm and the mixing time of an associaied
random walk, and utilized this comnection 10 design
fast averaging algorithms for two popular and well-
studied networks: Wirelcss Scnsor Networks (modeled
as Geometric Random Graphs), and the Internet graph
(under the so-catled Preferental Connectivity Model), In
these models, we find that the natural algorithm is as fast
as the oplimal algorithm.

In general, solving semidefinite programs in a dis-
tributed manner is not possible. However, we utilized the
structure of the problem in order to solve the semidef-
inite program {carresponding to the optimal averaging
algorithmn) in a distributed fashion wsing the subgradient
method. This allows for self-tuning weights: thar is,
the network can start out with some arbitrary averaging
mtrix, say, one derived from the natural random walk,
and then lacally, without any central coordination, con-
verge to the optimal weights corresponding to the fastest
averaging algorithm.

The [ramework developed in this paper is general and
can be utilized tor the purpose of design and analysis of
distributed algorithms in many other setiings.

ACENOWLEDGMENT

D. Shah thanks Bob Gallager for his suggestions.

1653



[BDX03)

[BGPS04]
[BGPS05]

[BLOO]

| 1353)

[BVO3]

[C1a90)
N799]
[EGHK99]
(KO0
JGMPS04]
[GVREOI]
[HHLER)

[TTULS3]

[IRGHO2)

[1.503]

{KDGO3]
[KEW02]
[Kiwd)4]

\KK02]

REFERENCES

S. Boyd. P. Diaconis, and L. Xiao. PFastest mixing
Markoy chain on a graph. Submitted o SIAM Review.
problems and techniques sectian, Febmary 2003, Avail-
able at www . stanford.edu/ "boyd/Efmnc . html.
S. Buoyd, A, Ghosh. B. Prabhakar. and D, Shah. Apalysis
and nptimization of randomized possip algonithms. In
Proc. 2004 IEEE CDC, 2004,

3. Bovd, A. Ghosh, B, Prabhakar, and D). Shah, Mixing
times of random walks on geomelnc random graphs,
Proc, SIAM ANALCQ, 2005,

I. M. Borwein and A, S, Lewis. Comver Analysis
and Nonlinear Opibmization. Thepry and Examples.
Canadian Matheinatical Scciety Books in Matheimalics.
Springer-Vetlag. New York, 2000.

R. W. Deard and V. Stepanyan. Synchronization of
information in distributed multiple vehicle coordinated
control. In Proceedings of IEEE Confarence on Decision
and Contred, December 2003.

S. Boyd and L. Vandenberghe, Conver Optimization,
Cambridge University Press, 2003 Awvajlable at

htep://www.stanford.edu/ "boyd/cvxbook .kt

F. H. Clarke. Optimization and Nonsmooth Analysis.
STAM, Philadelphia. 1944,

A. Dembo and Q. Zeitouni. Large Deviations Tech-
riques and Applications. Springer, 1999,

D. Estrin. R. Govindan. J. Heidemano, and 8. Kumar.
Next century challenges: 5Scalahle coordination in sensor
networks. In Proc. St Intl. Conf. on Mobile Computing
and Networking, 19499,

P. Gupta and % R. Kumar. The capacity of wireless
networks. (EEE Transactions on Information Theory,
46(23:388—404, March 2000.

A. El Gamal, J. Mammen, 13, Peabhakar, and [). Shah,
Throughput-delay trade-off in wireless networks. [In
Proc. 2004 INFOCOM, 2004,

L Gupta. R. van Rencsse, and K. Birman. Scalable fauli-
Wferant aggregalion in large process groups. In Proe.
Conf. on Degendable Systems und Networks, 2001,

5. Hedewiemi. S. Hedewiemi, and A. Liestman. A
survey of gossiping and broadcasting in communication
netwarks. NMemwaorks, 18:319--34%9, 1988,

I-B. Hiriart-Urruiy and C. Lemaréchal. Corvex Analysis
and Minimizaiion Algeritims, Springer-Verlag, Berlin,
1993,

C. ntanagonwiwat. D. Tistrin, R. Govindan, and 1. Hei-
demann. Impact of netowrk density on data aggregation
in wireless senser nerworks,  In Freee. (il Confl on
Distributed Commaing Systems, 2002,

A. Jadhabaie, 1. lin, and A. S.Marse. Coordination
of groups of wobile autenomous agents using nearest
neighhor rules. TEEE Transactions on Auwtomatic Con-
trel, 48(6).:988-1001, June 2003.

D. Eempe. A. Dobra, and 1. Geluke. Gossip-based com-
putation of aggregate information. Ta Prac. Conferetice
on Foundations of Computer Science. IEEE, 2003,

B. Krishmainachari, I. Estrin, and 5. Wicker. The impact
of data ageregation in wireless sensor networks. In farl.
Warkshop of Distributed Evenr Based Systems, 2002.
K. Kiwiel. Convergzence of approximate and incremental
subgradienl methods: {or convex optimization. SIAM
Journal on Oprimizarion. Y4(3 8078440, 2004,

. Kempe and 1. Kleinberg. Protocols and impossibility
results for possip-based communication mechanisms. In

[KKDO1]
[KM04)
[KS§VODa]
[KSEV00b]
[LBF04]

I1.ewa6)
[Tewis]
|LOSs]
[%FHHOZ]

[MPS03]

[ Muri3]

[2SM04]

[Oved2]

[WS3]

[Penl)3]

[RFHTON

[REW9g]

[SME ™01}

[vROO0]

[WsvoD]

[XR03]

1664

Proc. 43st [EEL Symp. on loundations of Comipuater
Science, 2002,

T>. Kempe, J. Kicinberg. and A. Demers, Spatial gossip
and resource location protocols. In Proe. 33rd ACM
Symp. on Theery of Computing, 2001,

D. Kempe and Frank McShenry. A decentralized algo-
rithm Tor spectral analaysis. In Sympaviun on Theary
of Coniputing. ACM, 2004,

R. Karp. C. Schindelhauer. S. Shenker. and B. Vocking.
Randomized rumor spreading. In Proc. 41st IEEE Symp.
on Foundarions of Compurer Science, 2000,

R. Karp. C. Schindelnaver, S, Shenker. and B, Veking.
Randomized mmor spreading. In Proc, Syampositn on
Foundations of Competer Science. TEEE. 2000,

Z. Lin. M. Brouke. and B. Francis. Local comuol
strategics for groups of mabile auwtonomous agents.
49{4y:622-629, April 2004,

A S Lewis. Convex analysis on the |lemitian matrices.
SIAM Journal on Optimization, 6164177, 1996.

A 5 Lewis. Nomsmooth analvsis of eigenvalues,
Mathematical Programming, 84:1-24, 1999

A 5. Lewis and M. L. Overton. Eigenvalue oplinniza-
tion. Acta Numerica, 5:143-190, 1596,

5. Madden, M. Franklin, J. Hellerstein, and W. Hong.
Tag: A tiny aggrepalion service for ad-hac sensor nel-
works. In Proc. 5th Symyp.on Operating Systems Design
and Inmiementation, 2002.

M. Mihail. C. Papadimitoon, and A. Saberi. Internet is
an exapnder. [n Proc. Conf. on Foundations of Computer
Science, 2003,

L. Murean. Leadesless coordination via bidirectional
and unidireciional time-dependent communication. In
Proceedings of JEEE Conference on Decision and Con-
irol, Decemnber 20003,

R. Olfati-Saber and R. M. Murray. Consensus problems
in networks of agents with switching topolopy and
ime-deluys. IEEE Tranyuciions on Auromatic Conirol,
49(91.1520-1533, September 2004,

M. L. Cwerton. Large-scale opfimization of cigenvalues.
SIAM Jeurnal on Optintization, 2:88-120, 1992,

M. L. Overton and R. 5. Womersley.  Optimality
conditions and dualily theory for minimizing sums of
the larcest eigenvalues of symmetric matrices. Matha-
matical Programming, 62:321-357, 1993,

M. Penrose. Random peomeiric graphs. Oxford smdies
in probubality, Oxford University Press. Oxfurd, 2003,
5. Ratnasamy, P. Trancis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Proc.of the ACM SIGCOMM Conference, 2001,

Y. Rubani, A. Sinclair, and R, Wanka. Local divergenee
of Markov chains ond the analysis of iterative load-
balancing schemes. In Prae. Conference on Foundations
of Computer Science. IEEE, 1998,

I Stoica, R. Momis, D. Karger, F. Kaashoek, and
H. Balaknishnan. Chord: A scalable peer-lo-peer lookup
service for imternet applications, In Proc.of the ACM
SIGCOMM Conference, 2001,

R. van Renesse. Scalable and secure resource location.
In 33rd Hawaii Intl. Conf. on Sysrem Sciences, 2000,
H. Wolkowicz. R. 8aigal, and L. Vandenberghe. Hand-
book of Semidefinite Progriomming, Theory, Algorithms,
and Applications. XInwer Academic Publishers, 2000.
.. Xiaoand 8. Boyd. Fasl linear ilerations for distwibuted
averagmg. ln Proc. 2003 Conference on Decision and
Conirol, December 2003,


http://www.stanford.edu/"boyd/cvxbook.ht

