
Gossip-based Resource Management
for Cloud Environments

Fetahi Wuhib and Rolf Stadler
ACCESS Linnaeus Center

KTH Royal Institute of Technology
Email: {fetahi,stadler}@kth.se

Mike Spreitzer
IBM T.J. Watson Research Center

Email: mspreitz@us.ibm.com

Abstract—We address the problem of resource manage-
ment for a large-scale cloud environment that hosts sites.
Our contribution centers around outlining a distributed
middleware architecture and presenting one of its key
elements, a gossip protocol that meets our design goals:
fairness of resource allocation with respect to hosted sites,
efficient adaptation to load changes and scalability in terms
of both the number of machines and sites. We formalize
the resource allocation problem as that of dynamically
maximizing the cloud utility under CPU and memory
constraints. While we can show that an optimal solution
without considering memory constraints is straightforward
(but not useful), we provide an efficient heuristic solution
for the complete problem instead. We evaluate the protocol
through simulation and find its performance to be well-
aligned with our design goals.

Index Terms—cloud computing, distributed manage-
ment, resource allocation, gossip protocols

I. INTRODUCTION

We consider the problem of resource management
for a large-scale cloud environment. Such an environ-
ment includes the physical infrastructure and associated
control functionality that enables the provisioning and
management of cloud services. The perspective we take
is that of a cloud service provider, which hosts sites in
a cloud environment.

The stakeholders are depicted in Figure 1a. The cloud
service provider owns and administrates the physical
infrastructure, on which cloud services are provided. It
offers hosting services to site owners through a middle-
ware that executes on its infrastructure (See Figure 1b).
Site owners provide services to their respective users via
sites that are hosted by the cloud service provider.

The type of sites we have in mind for this work
ranges from smaller websites (that are hosted on a single
physical machine) up to medium-scale e-commerce sites
(whose demand can be satisfied with the resources of
a few dozen machines per site). A cloud, by which
we mean the infrastructure and the middleware depicted
in 1b, would run millions of such sites and includes
hundreds of thousands of machines.

(a) (b)

Fig. 1. (a) Deployment scenario with the stakeholders of the
cloud environment considered in this work. (b) Overall architecture
of the cloud environment; this work focuses on resource management
performed by the middleware layer.

This work contributes towards engineering a middle-
ware layer that performs resource allocation in such a
cloud environment, with the following design goals.

1) Performance objective: We consider computational
and memory resources, and the objective is to
achieve max-min fairness for computational re-
sources under memory constraints.

2) Adaptability: The resource allocation process must
dynamically and efficiently adapt to changes in the
demand for cloud services.

3) Scalability: The Resource allocation process must
be scalable both in the number of machines in
the cloud and the number of sites that the cloud
hosts. This means that the resources consumed per
machine in order to achieve a given performance
objective must increase sublinearly with both the
number of machines and the number of sites.

Our approach centers around a decentralized design
whereby the components of the middleware layer run
on every processing node of the cloud environment. (We
refer to a processing node as a machine in the remainder
of the paper.) To achieve scalability, we envision that
all key tasks of the middleware layer, including estimat-
ing global states, placing site modules and computing
policies for request forwarding are based on distributed
algorithms. Further, we rely on a global directory for

1

fetahi
Typewritten Text
This paper appears in the 6th International Conference on Network and Service Management, Niagara Falls, Ontario, Canada, October 25-29, 2010.

routing requests from users on the Internet to access
points to particular sites inside the cloud.

The core contribution of the paper is a gossip pro-
tocol that can be used to meet the design goals above.
While gossip protocols have been studied before for load
balancing in distributed systems, there are no results
available (to our knowledge) for the case of considering
memory constraints and the cost of a configuration
change, which make the resource allocation problem
much harder. Coming up with an optimal and efficient
solution for the problem that does not consider memory
constraints is quite straightforward (but not useful in our
context), and we can only provide an efficient heuristic
for the problem we set out to solve, since the memory
constraints make it NP-hard.

The paper is structured as follows. Section II outlines
the architecture of a middleware layer that performs re-
source management for a large-scale cloud environment.
Section III formalizes the resource allocation problem.
Section IV presents two protocols to solve this problem,
one of which is evaluated through simulation in Section
V. Section VI reviews related work, and Section VII
contains the conclusion of this research and outlines
future work.

II. SYSTEM ARCHITECTURE

A cloud environment spans several datacenters in-
terconnected by an internet. Each of these datacenters
contains a large number of machines that are connected
by a high-speed network. Users access sites hosted by
the cloud environment through the public Internet. A site
is typically accessed through a URL that is translated to a
network address through a global directory service, such
as DNS. A request to a site is routed through the Internet
to a machine inside a datacenter that either processes
the request or forwards it. In this paper, we restrict
ourselves to a cloud that spans a datacenter containing a
single cluster of machines and leave for further work
the extension of our contribution to an environment
including multiple datacenters.

Figure 2 (left) shows the architecture of the cloud
middleware. The components of the middleware layer
run on all machines. The resources of the cloud are
primarily consumed by module instances whereby the
functionality of a site is made up of one or more
modules. In the middleware, a module either contains
part of the service logic of a site (denoted by mi in
Figure 2) or a site manager (denoted by SMi).

Each machine runs a machine manager component
that computes the resource allocation policy, which in-
cludes deciding the module instances to run. The re-
source allocation policy is computed by a protocol (later

Fig. 2. The architecture for the cloud middleware (left) and compo-
nents for request handling and resource allocation (right).

in the paper called P) that runs in the resource manager
component. This component takes as input the projected
demand for each module that the machine runs. The
computed allocation policy is sent to the module sched-
uler for implementation/execution, as well as the site
managers for making decisions on request forwarding.
The overlay manager implements a distributed algorithm
that maintains an overlay graph of the machines in the
cloud and provides each resource manager with a list of
machines to interact with.

Our architecture associates (one or more) site man-
ager with each site(s). Each site manager handles user
requests to a particular site. It has two important com-
ponents: a demand profiler and request forwarder. The
demand profiler estimates the resource demand of each
module of the site based on the request statistics, QoS
targets, etc. (An example of such a profiler can be
found in [1].) This estimate is forwarded to all machine
managers that run instances of modules belonging to this
site. Similarly, the request forwarder sends user requests
for processing to instances of modules belonging to this
site. Request forwarding decisions take into account the
resource allocation policy and constraints such as session
affinity. Figure 2 (right) shows the components of a site
manager and how they relate to machine managers.

The remainder of this paper focuses on the func-
tionality of the resource manager component. For other
components of our architecture, such as overlay manager
and demand profiler we rely on known solutions.

III. FORMALIZING THE PROBLEM OF RESOURCE
ALLOCATION BY THE CLOUD MIDDLEWARE

For this work, we consider a cloud as having com-
putational resources (i.e., CPU) and memory resources,
which are available on the machines in the cloud infras-
tructure. As explained earlier, we restrict the discussion
to the case where all machines belong to a single cluster
and cooperate as peers in the task of resource allocation.
The specific problem we address is that of placing
modules (more precisely: identical instances of modules)

2

on machines and allocating cloud resources to these
modules, such that a cloud utility is maximized under
constraints. As cloud utility we choose the minimum
utility generated by any site, which we define as the
minimum utility of its module instances. We formulate
the resource allocation problem as that of maximizing
the cloud utility under CPU and memory constraints.
The solution to this problem is a configuration matrix
that controls the module scheduler and request forwarder
components. At discrete points in time, events occur,
such as load changes, addition and removal of site or
machines, etc. In response to such an event, the opti-
mization problem is solved again, in order to keep the
cloud utility maximized. We add a secondary objective
to the optimization problem, which states that the cost
of change from the current configuration to the new
configuration must be minimized.

A. The Model
We model the cloud as a system with a set of sites

S and a set of machines N that run the sites. Each site
s ∈ S is composed of a set of modules denoted by Ms,
and the set of all modules in the cloud is M =

⋃
s∈SMs.

We model the CPU demand as the vector ω(t) =
[ω1(t), ω2(t), . . . , ω|M |(t)]

T and the memory demand as
the vector γ = [γ1, γ2, . . . , γ|M |]

T , assuming that CPU
demand is time dependent while memory demand is not
[2].

We consider a system that may run more than one
instance of a module m, each on a different machine,
in which case its CPU demand is divided among its
instances. The demand ωn,m(t) of an instance of m run-
ning on machine n is given by ωn,m(t) = αn,m(t)ωm(t)
where

∑
n∈N αn,m(t) = 1 and αn,m(t) ≥ 0. We call

the matrix A with elements αn,m(t) the configuration
(matrix) of the system. A is a non-negative matrix with
1TA = 1T .

A machine n ∈ N in the cloud has a CPU capacity
Ωn and a memory capacity Γn. We use Ω and Γ to
denote the vectors of CPU and memory capacities of all
the machines in the system. An instance of module m
running on machine n demands ωn,m(t) CPU resource
and γm memory resource from n. Machine n allocates
to module m the CPU capacity ω̂n,m(t) (which may be
different from ωn,m(t)) and the memory capacity γm.
The value for ω̂n,m(t) depends on the allocation policy
in the cloud, and our specific policy Ω̂(t) is described
in Section IV-A.

We define the utility un,m(t) generated by an instance
of module m on machine n as the ratio of the allocated
CPU capacity to the demand of the instance on that
particular machine, namely, un,m(t) =

ω̂n,m(t)
ωn,m(t) . (An

S, N , M set of all sites, machines and modules
Ms, s ∈ S set of modules of site s

ω(t),γ ∈ R|M| CPU and memory demand vectors
A(t) ∈ R|N|×|M| configuration matrix
ωn,m(t) ∈ R CPU demand of the instance of module m

on machine n
ω̂n,m(t) ∈ R CPU allocated to the instance of module

m on machine n

Ω̂(t) ∈ R|N|×|M| CPU allocation matrix with elements
ω̂n,m(t)

Ω,Γ ∈ R|N| CPU and memory capacity vectors
un,m(t), Uc utility generated by an instance of module

m on machine n, utility generated by the
cloud

TABLE I
NOTATIONS USED IN FORMALIZING RESOURCE ALLOCATION

instance with ωn,m = 0 generates a utility of ∞.) We
further define the utility of a module m as um(t) =
minn∈N{un,m(t)} and that of a site as the minimum of
the utility of its modules. Finally, the utility of the cloud
U c is the minimum of the utilities of the sites it hosts.
As a consequence, the utility of the cloud becomes the
minimum utility of any module instance in the system.

We model the system as evolving at discrete points in
time t = 0, 1,

Table I summarizes the notations used in this paper.

B. The Optimization Problem

For the above model, we consider a cloud with
CPU capacity Ω, memory capacity Γ, and demand
vectors ω,γ. We first discuss a simplified version of
the problem. It consists of finding a configuration A that
maximizes the cloud utility U c:

maximize U c(A,ω)

subject to A ≥ 0, 1TA = 1T (a)

Ω̂(A,ω)1 � Ω (b)

(OP(1))

Our concept of utility is max-min fairness (cf. [2]),
and our goal is to achieve fairness among sites. This
means that we want to maximize the minimum utility of
all sites, which we achieve by maximizing the minimum
utility of all module instances.

Constraint (a) of OP(1) relates to dividing into shares
the CPU demand of each module into the demand of
its instances. The constraint expresses that all shares
are non-negative and add up to 1 for each module.
Constraint (b) says that, for each machine in the cloud,
the allocated CPU resources can not be larger than the
available capacity. Ω̂ is the resource allocation function
which we discuss in Section IV-A.

3

We now extend OP(1) to the problem that captures
the cloud environment in more detail. First, we take into
account the memory constraints on individual machines,
which significantly increases the problem complexity.
Second, we consider the fact that the system must adapt
to external events described above, in order to keep
the cloud utility maximized. Therefore, the problem
becomes one of adapting the current configuration A(t)
at time t to a new configuration A(t+ 1) at time t+ 1
which achieves maximum utility at minimum cost of
adapting the configuration.

maximize U c(A(t+ 1),ω(t+ 1))

minimize c∗(A(t), A(t+ 1))

subject to A(t+ 1) ≥ 0, 1TA(t+ 1) = 1T

Ω̂(A(t+ 1),ω(t+ 1))1 � Ω

sign(A(t+ 1))γ � Γ.
(OP(2))

This optimization problem has prioritized objectives in
the sense that, among all configurations A that maximize
the cloud utility, we select one that minimizes the cost
function c∗. (The cost function we choose for this work
gives the number of module instances that are started
to reconfigure the system from the current to the new
configuration.)

While this paper considers only events in form of
changes in demand, OP(2) allows us to express (and
solve) the problem of finding a new allocation after other
events, including adding or removing sites or machines.

IV. A PROTOCOL FOR DISTRIBUTED RESOURCE
ALLOCATION

In this section, we present a protocol P, which is a
heuristic algorithm for solving OP(2) and which repre-
sents our proposed protocol for resource allocation in a
cloud environment.

P is a gossip protocol and has the structure of a round-
based distributed algorithm (whereby round-based does
not imply that the protocol is synchronous). When exe-
cuting a round-based gossip protocol, each node selects
a subset of other nodes to interact with, whereby the
selection function is often probabilistic. Nodes interact
via ‘small’ messages, which are processed and trigger
local state changes. In this work, node interaction follows
the so-called push-pull paradigm, whereby two nodes
exchange state information, process this information and
update their local states during a round.

P runs on all machines of the cloud. It is invoked
at discrete points in time, in response to a load change.

The output of the protocol, the configuration matrix A, is
distributed across the machines of the system. A controls
the start and stop of module instances and determines
the control policies for module schedulers and request
forwarders. The protocol executes in the resource man-
ager components of the middleware architecture (See
Figure 2). A set of candidate machines to interact with
is maintained by the overlay manager component of the
machine manager. We assume that the time it takes for
P to compute a new configuration A is small compared
to the time between events that trigger consecutive runs
of the protocols. At the time of initialization, P reads as
input a feasible configuration of the system (see below).
At later invocations, the protocol reads as input the
configuration matrix produced during the previous run.

A. Functionalities the protocol P Uses

a) Random selection of machines: P relies on the
ability of a machine to select another machine of the
cloud uniformly at random. In this work, we approximate
this ability by using CYCLON, an overlay protocol that
produces a time-varying network graph with properties
of a random network [3].

b) Resource allocation and module scheduling pol-
icy: In this work, machines apply a resource alloca-
tion policy Ω̂ that allocates CPU resources to module
instances proportional to their respective demand, i.e.,
ω̂n,m(t) = ωn,m(t)Ωn/

∑
i ωn,i. Such a policy respects

the constraints in OP(1) and OP(2) regarding CPU
capacity.

c) Computing a feasible configuration: P requires
a feasible configuration as input during its initialization
phase. A simple greedy algorithm can be used for this
purpose, which we present in [4] due to space limitation.

B. Protocol P’: An Optimal Solution to OP(1)

We developed the protocol P’, which is a distributed
solution to OP(1). P’ is a gossip protocol that produces
a sequence of configuration matrices A(r), r = 1, 2, . . .,
such that the series of cloud utilities U c(A(r),ω) con-
verges exponentially fast to the optimal utility. Due
to space limitation, P’ is described and its properties
proved in [4]. We would encourage the reader to look
up this protocol, as it is quite simple and enables a better
understanding of P, which can be seen as an extension of
P’. During each round of P’, two machines perform an
equalization step whereby CPU demand is moved from
one machine to another machine in such a way that their
relative demands are equalized. The relative demand of
a machine n is defined as vn =

∑
m ωn,m/Ωn.

4

C. Protocol P: A Heuristic Solution to OP(2)

OP(2) differs from OP(1) in that memory constraints
of individual machines are considered and a secondary
objective is added for the purpose of minimizing the
cost of adapting the system from the current to a new
configuration that maximizes the utility for the new
demand. Introducing local memory constraints to the
optimization problem turns OP(1), which we showed can
be efficiently solved for many practical cases [4], into an
NP-hard problem [2].

P employs the same basic mechanism as P’ as it
attempts to equalize the relative demands of pairs of ma-
chines during a protocol round. Due to the local memory
constraints, such a step does not always succeed.

P uses the following approach to achieve its objectives.
First, pairs of machines that execute an equalization step
are often chosen in such a way that they run instances of
common modules. To support this concept, we maintain
on each machine n the set Nn of machines in the cloud
that run module instances common with n. To avoid the
possibility of the cloud being partitioned into disjoint
sets of interacting machines, n is occasionally paired
with a machine outside of the set Nn to execute an
equalization step. This dual approach keeps low the
need for starting new module instances and thus keeps
the cost low. Second, during an equalization step, P
attempts to reduce the difference in relative demand
between two machines, in case it cannot equalize the
demand. Further, P attempts to execute an equalization
step in such a way that the demand for a specific
module is shifted to one machine only. This concept
aims at increasing the probability that an equalization
step succeeds in equalizing the relative demands, thus
increasing the cloud utility.

The pseudocode of P is given in Algorithm 1. To keep
the presentation simple, we omit thread synchronization
primitives which prevent concurrent machine to machine
interactions. Note that setting αn,m = 0 implies stopping
module m on machine n.

During the initialization of machine n, the algorithm
reads the CPU demand vector, the CPU and memory
capacity vectors, and the row of the configuration matrix
for n. (For an efficient implementation, n must only
read those vector components that refer to itself and
its module instances.) Then, it starts two threads: an
active thread, in which the machine periodically executes
a round, and a passive thread that waits for another
machine to start an interaction.

The active thread executes rmax rounds. In each
round, n chooses a machine n′ uniformly at random
from the set Nn with probability p and from the set

Algorithm 1 Protocol P computes a heuristic solution
for OP(2) and returns a configuration matrix A. Code
for node n.
initialization
1: read ω,Ω,Γ, rown(A), Nn;
2: start the passive and active threads
active thread
3: for r = 1 to rmax do
4: if rand(0..1) < p then
5: choose n′ at random from Nn;
6: else
7: choose n′ at random from N −Nn;
8: send(n′, rown(A));

rown′(A) =receive(n′);
9: equalizeWith(n′, rown′(A));
10: sleep(roundDuration);
11: write rown(A);
passive thread
12: while true do
13: rown′(A)=receive(n′);

send(n′, rown(A));
14: equalizeWith(n′, rown′(A));

proc equalizeWith(j, rowj(A))
1: l = arg max{vn, vj}; l′ = arg min{vn, vj};
2: if j ∈ Nn then
3: moveDemand1(l, rowl(A), l′, rowl′(A));
4: else
5: moveDemand2(l, rowl(A), l′, rowl′(A));

proc moveDemand1(l, rowl(A), l′, rowl′(A))
1: compute ∆ω such that

1
Ωl

(
∑
m ωl,m −∆ω) = 1

Ωl′
(
∑
m ωl′,m + ∆ω)

2: let mod be an array of all modules
that run on both l and l′, sorted by
increasing ωl,m

3: for i = 1 to |mod| do
4: m = mod[i]; δω = min(∆ω, ωl,m);
5: ∆ω −= δω; δα = αl,m

δω
ωl,m

;
αl′,m += δα; αl,m −= δα;

proc moveDemand2(l, rowl(A), l′, rowl′(A))
1: compute ∆ω such that

1
Ωl

(
∑
m ωl,m −∆ω) = 1

Ωl′
(
∑
m ωl′,m + ∆ω)

2: let mod be an array of all modules
that run on l, sorted by decreasing
ωl,m

γm
;

3: for i = 1 to |mod| do
4: m = mod[i]; δω = min(∆ω, ωl,m);
5: if γm +

∑
i|αl′,i>0 γi ≤ Γl′ then

6: ∆ω −= δω; δα = αl,m
δω
ωl,m

;
αl′,m += δα; αl,m −= δα;

N − Nn with probability 1 − p. (For the evaluation of
P in Section V, we set p = |Nn|

1+|Nn| .) Then, n sends
its state (i.e., rown(A)) to n′ , receives n′’s state as a
response, and calls the procedure equalizeWith(),
which performs the equalization step. The passive thread

5

executes in a continuous loop. Whenever n receives the
state from another machine n′, it responds by sending
its own state to n′ and performing an equalization step
by invoking equalizeWith().

The procedure equalizeWith() attempts to equal-
ize the relative demands of machines n and n′.
It first identifies the machine l with the larger (or
equal) relative demand and the machine l′ with the
lower relative demand. Then, if n′ belongs to Nn
and thus runs at least one common module instance,
procedure moveDemand1() is invoked. Otherwise
moveDemand2() is invoked.
moveDemand1() equalizes (or reduces the differ-

ence) of the relative demands of the two machines, by
shifting demand from the machine l with the larger
relative demand to the machine l′ with the smaller
relative demand. It starts by computing the demand ∆ω
that needs to be shifted from l to l′ (step 1). Then, from
the set of modules that run on both machines, taking an
instance with the smallest demand on l, it proceeds to
shift the demand from l to l′, until a total of ∆ω demand
is shifted, or it has exhausted the set of modules.
moveDemand2() equalizes (or reduces the differ-

ence) of the relative demands of the two machines,
by moving demand from the machine with larger rel-
ative demand to the machine with smaller relative de-
mand. Unlike moveDemand1(), moveDemand2()
starts one or more module instances at the destination
machine, to move demand from the source machine to
the destination, if sufficient memory at the destination
machine is available. Finding a set of instances at the
source that equalize the relative demands of the partic-
ipating machines while observing the available memory
of the destination is a Knapsack problem. A greedy
approximation method is applied, whereby the module
m with the largest value of ωl,m

γm
is moved first, followed

by the second largest, etc., until the relative demands are
equalized or the set of candidate modules is exhausted
[5].

V. EVALUATION THROUGH SIMULATION

We have evaluated P through extensive simulations
using a discrete event simulator that we developed in-
house. We simulate a distributed system that runs the
machine manager components of all machines in the
cloud. Specifically, these machine managers execute the
protocol P, which computes the allocation matrix A, and
also the CYCLON protocol, which provides for P the
function of selecting a random neighbor. The external
events for this simulation are the changes in demand
vector ω.

Evaluation metrics: We evaluate the protocol in
various scenarios and measure the following metrics. We
express the fairness of resource allocation through the
coefficient of variation of site utilities, computed as the
ratio of the standard deviation divided by the average
of the utilities. We measure the satisfied demand as the
fraction of sites that generate a utility larger than 1.
We measure the cost of reconfiguration as the ratio of
module instances started to module instances running,
per machine.

Generating the demand vectors ω and γ: In all
scenarios, the number of modules of a site is chosen from
a discrete Poisson distribution with mean 1, incremented
by 1. The memory demand of a module is chosen
uniformly at random from the set cγ ·{128MB, 256MB,
512MB, 1GB, 2GB}. For a site s, at each change in
demand, the demand profiler generates CPU demands
chosen from an exponential distribution with mean ω(s).
We choose the distribution for ω(s) among all sites to
be Zipf distributed with α = 0.7, following evidence in
[6]. The maximum value for the distribution is cω·500G
CPU units and the population size used is 20,000. For a
module m of site s, we choose a demand factor βm with∑
m∈Ms

βm = 1, chosen uniformly at random, which
describes the share of module m in the demand of the
site s. cγ and cω are scaling factors, see below.

Capacity of machines: A machine has CPU capac-
ity selected uniformly at random from {2, 4, 8, 16}G
CPU units and a memory capacity selected uniformly
at random from {2, 4, 8, 16}GB (CPU and memory
capacities are chosen independently of each other).

Choosing machines for interaction: Each machine
runs CYCLON, a gossip protocol that implements ran-
dom neighbor selection.

Scenario parameters: We evaluate the performance
of our resource allocation protocol P under varying
intensities of CPU and memory load which are defined as
follows. The CPU load intensity is measured by the CPU
load factor (CLF), which is the ratio of the total CPU
demand of sites to the total CPU capacity of machines
in the cloud. Similarly, the memory load factor(MLF) is
the ratio of the total memory demand of sites (assuming
each module runs only one instance) to the total memory
capacity of all machines in the cloud. In the simulations,
we vary CLF and MLF by changing cγ and cω . In the
reported experiments, we use the following parameters
unless stated otherwise:

• |N |=10,000, |S|=24,000
• rmax = 30, CLF = MLF = 0.5
• maximum number of instances/module: 100
• number of load changes during a run: 100

6

A. Fairness

First, we evaluate P regarding the fairness of re-
source allocation for CLF={0.1, 0.4, 0.7, 1.0, 1.3} and
MLF={0.15, 0.35, 0.55, 0.75, 0.95}. (We leave out
MLF=1 because there may not exist a feasible solution
or our initialization algorithm may not find it.) We
compare the performance of our protocol to that of an
ideal system, which can be thought of as a centralized
system which performs resource allocation on a giant
single machine that has the aggregate CPU and aggregate
memory capacities of the entire cloud. The performance
of this centralized system gives us a bound on the
performance P.

Figure 3a shows that the measured fairness metric
seems to be independent of CLF. (Note that the value of
this metric that corresponds to our fairness goal is 0.) We
expect this because P allocates CPU resources propor-
tional to the demand of a module instance, regardless of
the available capacity on the particular machine. Second,
the figure shows that resource allocation becomes less
fair when MLF is increased. For example, the average
deviation of the utilities of sites is about 16% from the
average utility for MLF of 15%. However, this value
increases to about 100% when MLF is at 75%. This
behavior is also to be expected, since increasing MLF
results in machines being less likely to have suffcient
memory for starting new instances. Note that the ideal
system always achieves our fairness goal since its mem-
ory is not fragmented.

B. Scalability

In this scenario, we measure the dependence of our
evaluation metrics on the size of the cloud. To achieve
this, we run simulations for a cloud with (2,500, 5,000,
10,000, 20,000, 40,000, 160,000) machines and (6,000,
12,000, 24,000, 48,000, 96,000, 384,000) sites respec-
tively (keeping the ratio of sites to machines at 2.4,
which ensures that CLF and MLF are kept close to the
default value of 0.5). Figure 3b shows the result obtained,
which indicates that all metrics considered for this evalu-
ation are independent of the system size. In other words,
if the number of machines grows at the same rate as the
number of sites, (while the CPU and memory capacities
of a machine, as well as all parameters characterizing a
site, such as demand, number of modules, etc., stay the
same) then we expect all considered metrics to remain
constant. Note that our conclusion is related exclusively
to the scalability of the protocol P. The complete resource
management system includes many more functions that
have not been evaluated here, for instance, the scalability
of effectively choosing a random peer.

(a) Fairness of the resource allocation in function of the CPU load
factor (CLF) and the memory load factor (MLF) of the cloud. A value
of 0 achieves the fairness objective of the cloud.

(b) Scalability with respect to the number of machines and sites.

Fig. 3. The performance of the resource allocation protocol P with
respect to fairness and scalability.

C. Satisfied demand and cost of reconfiguration

We evaluated P with regards to satisfied demand
and cost of reconfiguration for different values of CLF
and MLF. Due to space limitation, the details of the
evaluation and the results are presented in [4]. With
regards to satisfied demand, the results show that our
protocol satisfies more than 95% of all site demands
for CLF≤ 70% and MLF≤ 55%. With regards to
cost of reconfiguration, the result shows that the cost
increases with decreasing MLF. For instance, the cost
of reconfiguration is less than 3% for MLF of 95%.
However, it increases to 35% for MLF of 15%.

VI. RELATED WORK

The problem of application placement in the context
of resource management for datacenters has been studied
before (e.g., [2], [7]), and solutions are already available
in middleware products [8]. While these product solu-
tions allow for a fair resource allocation in a similar
way as our scheme does, they rely on centralized archi-
tectures, which do not at all scale to system sizes we
consider in this paper.

7

The work in [9], which has been extended by [10]
presents a distributed middleware layer for application
placement in datacenters. As in this paper, the goal of
that work is to maximize a cluster utility under changing
demand, although a different concept of utility is used.
The proposed design in [9], [10] scales with the number
of machines, but it does not scale in the number of
applications, as the design in this paper does. (The
concept of an application in the referenced work roughly
corresponds to concept of a site in this paper.)

Distributed load balancing algorithms have been ex-
tensively studied for homogeneous as well as hetero-
geneous systems, for both divisible and indivisible de-
mands. These algorithms typically fall into two classes:
diffusion algorithms (e.g., [11]) and dimension exchange
algorithms (e.g., [12]). Convergence results for different
network topologies and different norms (that measure
the distance between the system state and the optimal
state) have been reported, and it seems to us that the
problem is well understood today. The key difference
to the problem addressed in this paper is that these
algorithms do not take into account memory constraints.
Considering memory constraints makes the problem NP-
hard and does require a new approach.

VII. DISCUSSION AND CONCLUSION

With this paper, we make a significant contribution
towards engineering a resource management middleware
for a site-hosting cloud environment. We identify a
key component of such a middleware and present a
protocol that can be used to meet our design goals
for resource management: fairness of resource allocation
with respect to sites, efficient adaptation to load changes
and scalability of the middleware layer in terms of both
the number of machines in the cloud as well as the
number of hosted sites.

We presented a gossip protocol that computes a
heuristic solution to the resource allocation problem and
evaluated its performance through simulation. In all the
scenarios we investigated, we observe that the protocol
qualitatively behaves as expected based on its design.
For instance, regarding fairness, the protocol performs
close to an ideal system for scenarios where the ratio of
the total memory capacity to the total memory demand
is large. More importantly, the simulations suggest that
the protocol is scalable in the sense that all inves-
tigated metrics do not change when the system size
(i.e., the number of machines) increases proportional
to the external load (i.e., the number of sites). Note
that if we would solve the resource allocation problem
expressed in OP(2) by P in a centralized system, then the
CPU and memory demand for that resource allocation

system would increase linearly with the system size. This
strongly suggests to us that a centralized solution for the
problem we address in this paper will not be feasible.

The results reported in this paper are building blocks
towards engineering a resource management solution
for large-scale clouds. Pursuing this goal, we plan to
address the following issues in future work: (1) Develop
a distributed mechanism that efficiently places new sites.
(2) Extend the middleware design to become robust
to machine failures. (3) Extend the middleware design
to span several clusters and several datacenters, while
keeping module instances of the same site “close to
each other”, in order to minimize response times and
communication overhead.

REFERENCES

[1] G. Pacifici, W. Segmuller, M. Spreitzer, and A. Tantawi, “Dy-
namic estimation of CPU demand of web traffic,” in valuetools
’06: Proceedings of the 1st international conference on Perfor-
mance evaluation methodolgies and tools. New York, NY, USA:
ACM, 2006, p. 26.

[2] D. Carrera, M. Steinder, I. Whalley, J. Torres, and E. Ayguade,
“Utility-based placement of dynamic web applications with fair-
ness goals,” in Network Operations and Management Symposium,
2008. NOMS 2008. IEEE, april 2008, pp. 9 –16.

[3] S. Voulgaris, D. Gavidia, and M. van Steen, “CYCLON: Inex-
pensive membership management for unstructured p2p overlays,”
Journal of Network and Systems Management, vol. 13, no. 2, pp.
197–217, 2005.

[4] F. Wuhib, R. Stadler, and M. Spreitzer, “Gossip-based resource
management for cloud environments (long version),” KTH Royal
Institute of Technology, Tech. Rep., August 2010, TRITA-EE
2010:032.

[5] G. B. Dantzig, “Discrete-Variable Extremum Problems,” OPER-
ATIONS RESEARCH, vol. 5, no. 2, pp. 266–288, 1957.

[6] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
caching and Zipf-like distributions: evidence and implications,” in
INFOCOM ’99. Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE,
vol. 1, 21-25 1999, pp. 126 –134 vol.1.

[7] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A scalable
application placement controller for enterprise data centers,” in
WWW ’07: Proceedings of the 16th international conference on
World Wide Web. New York, NY, USA: ACM, 2007, pp. 331–
340.

[8] IBM, “IBM WebSphere Application Server.” [Online]. Avail-
able: http://www.ibm.com/software/webservers/appserv/extend/
virtualenterprise/

[9] C. Adam and R. Stadler, “Service middleware for self-managing
large-scale systems,” Network and Service Management, IEEE
Transactions on, vol. 4, no. 3, pp. 50–64, April 2008.

[10] J. Famaey, W. De Cock, T. Wauters, F. De Turck, B. Dhoedt, and
P. Demeester, “A latency-aware algorithm for dynamic service
placement in large-scale overlays,” in IM’09: Proceedings of
the 11th IFIP/IEEE international conference on Symposium on
Integrated Network Management. Piscataway, NJ, USA: IEEE
Press, 2009, pp. 414–421.

[11] G. Cybenko, “Dynamic load balancing for distributed memory
multiprocessors,” Journal of Parallel and Distributed Computing,
vol. 7, no. 2, pp. 279 – 301, 1989.

[12] C. Z. Xu and F. C. M. Lau, “Analysis of the generalized dimen-
sion exchange method for dynamic load balancing,” Journal of
Parallel and Distributed Computing, vol. 16, pp. 385–393, 1992.

8

