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1. Introduction

“The secret of my influence has always been that it remained

secret.” – Salvador Daĺı

Knowing who is influential, or central, in a community, can be important

for the community’s members as well as for businesses and policymakers. In

particular, the extent to which a piece of information diffuses among a popula-

tion often depends on how central the initially informed are within the network

(see Katz and Lazarsfeld (1955); Rogers (1995); Kempe, Kleinberg, and Tardos

(2003, 2005); Borgatti (2005); Ballester, Calvó-Armengol, and Zenou (2006);

Banerjee, Chandrasekhar, Duflo, and Jackson (2013)). Policymakers and or-

ganizations can thus benefit from targeting the right individuals in efforts to

effectively spread valuable information.

However, learning who is central in a social network has the potential to be

difficult. For policymakers, collecting detailed network data is costly. Even

for members of the community, knowing the structure of the network beyond

their immediate friends is far from automatic. Do people know how central

other people, outside of their immediate circle, are? In this paper, we answer

this question theoretically and empirically.

First, we develop a simple model, building upon our previous work (Baner-

jee, Chandrasekhar, Duflo, and Jackson, 2013), to show that individuals in a

network should be able to identify central individuals within their community

without knowing anything about the structure of the network. Our model is

about a process we call gossip, where nodes generate pieces of information

that are then stochastically passed from neighbor to neighbor. We assume

that individuals who hear the gossip are able to keep count of the number of

times each person in the network get mentioned.1 We show that for any lis-

tener in the network, the relative ranking under this count converges over time

to the correct ranking of every node’s ability to send information to the rest

1We use the term “gossip” to refer to the spreading of information about particular people.
Our diffusion process is focused on basic information that is not subject to the biases or ma-
nipulations that might accompany some “rumors” (e.g., see Bloch, Demange, and Kranton
(2014)).
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of the network. The specific measure of a node’s ability to send information

that we use is given by the “diffusion centrality,” introduced in Banerjee et al.

(2013) which answers the question of how widely information from a given

node diffuses in a given number of time periods and for a given random per

period transmission probability. We relate diffusion centrality to other stan-

dard measures of centrality in the literature, proving that it nests three of the

most prominent measures: degree centrality at one extreme (if there is just one

time period of communication), and eigenvector centrality and Katz-Bonacich

centrality at the other extreme (if there are unlimited periods of communica-

tion). For intermediate numbers of periods diffusion centrality takes on a wide

range of other values.

In other words, by listening and keeping count of how often they hear about

someone, individuals learn the correct ranking of community members from

the point of view of how effectively they can serve as a source of information

to the rest of the community.

Second, we use a unique dataset to assess whether this holds empirically. We

asked every adult in each of 35 villages to name the person in their village best

suited to initiate the spread of information. We combine their answers (which

we call their “nominations”) with detailed network data that include maps of

a variety of interactions in each of the 35 villages. We show that individuals

nominate highly diffusion/eigenvector central people (on average at the 71st

percentile of centrality). We also show that the nominations are not simply

based on the nominee’s leadership status or geographic position in the village,

but are significantly correlated with diffusion centrality even after conditioning

on these characteristics, and are better predictors of centrality than these

characteristics. This suggests that people understand our questions and are

doing more than simply naming traditional leaders or geographically central

individuals. Furthermore, there is suggestive evidence that they nominate

people who are indeed diffusion central, not only people with many friends.

In sum, our model shows how individuals can learn who are the most central

people in their network, and our empirical work suggests that individuals have

learned this (although, of course, the data could be consistent with other

models of how people choose individuals to nominate). To our knowledge, this
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is the first paper to demonstrate that members of communities are able, easily

and accurately, to identify highly central people in their community. It is also

the first to describe a simple process by which people can learn things about

part of their broader network that may intuitively seem outside their ambit.2

This is a result of practical importance, since asking people who is the best

person to spread information is a much cheaper way to collect this information

than collecting data on the entire network.

2. A Model of Network Communication

We consider the following model.

2.1. A Network of Individuals. A society of n individuals are connected

via a possibly directed3 and weighted network, which has an adjacency matrix

g ∈ {0, 1}n×n. Unless otherwise stated, we take the network g to be fixed

and let v(1) be its first (right-hand) eigenvector, corresponding to the largest

eigenvalue λ1.
4 The first eigenvector is nonnegative and real-valued by the

Perron-Frobenius Theorem.

Throughout, we assume that the network is (strongly) connected in that

there exists a (directed) path from every node to every other node, so that

information originating at any node could potentially make its way eventually

to any other node.5

2.2. Diffusion Centrality. Banerjee et al. (2013) defined a notion of cen-

trality called diffusion centrality, based on random information flow through a

network according to the following process, which is a variation of a standard

diffusion process that underlies many contagion models.6

2There are some papers (e.g., Milgram (1967) and Dodds et al. (2003)) that have checked
people’s abilities to use knowledge of their friends’ connections to efficiently route messages
to reach distant people, but those rely on local knowledge.
3When defining g in the directed case, the ij-th entry should indicate that i can tell some-
thing to j. In some networks, this may not be reciprocal.
4v(1) is such that gv(1) = λ1v(1) where λ1 is the largest eigenvalue of g in magnitude.
5More generally, everything we say applies to the components of the network.
6See Jackson and Yariv (2011) for background and references. A continuous time version of
diffusion centrality appears in Lawyer (2014).
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A piece of information is initiated at node i and then broadcast outwards

from that node. In each period, each informed node informs each of its neigh-

bors of the piece of information and the identity of its original source with a

probability p ∈ (0, 1], independently across neighbors and history. The process

operates for T periods, where T is a positive integer.

There are many reasons to allow T to be finite. For instance, a new piece

of information may only be “news” for a limited time. Because of boredom,

arrival of other news, the topic of conversation may change. By allowing for

a variety of T ’s, diffusion centrality admits important finite-horizon cases, as

well as more extreme cases where agents discuss a topic indefinitely.7

Diffusion centrality measures how extensively the information spreads as a

function of the initial node. In particular, let

H(g; p, T ) :=
T∑

t=1

(pg)t ,

be the “hearing matrix.” The ij-th entry of H, H(g; p, T )ij, is the expected

number of times, in the first T periods, that j hears about a piece of informa-

tion originating from i. Diffusion centrality is then defined by

DC(g; p, T ) := H(g; p, T ) · 1 =

(
T∑

t=1

(pg)t

)
· 1.

So, DC(g; p, T )i is the expected total number of times that some piece of

information that originates from i is heard by any of the members of the society

during a T -period time interval.8 Banerjee et al. (2013) showed that diffusion

7Of course this is an approximation and, moreover, different topics may have different T ’s.
The current model and definition already moves beyond the literature, but even richer
models could also be studied.
8 We note two useful normalizations. One is to compare it to what would happen if p = 1
and g were the complete network gc, which produces the maximum possible entry for
each ij subject to any T . Thus, each entry of DC(g; p, T ) could be divided through by
the corresponding entry of DC(gc; 1, T ). This produces a measure for which every entry
lies between 0 and 1, where 1 corresponds to the maximum possible numbers of expected
paths possible in T periods with full probability weight and full connectedness. Another
normalization is to compare a given node to the total level for all nodes; that is, to divide all
entries of DC(g; p, T ) by

∑
i DCi(g; p, T ). This normalization tracks how relatively diffusive

one node is compared to the average diffusiveness in its society.
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centrality was a statistically significant predictor of the spread of information

– in that case, about a microfinance program.

Note that this measure allows people to hear the information multiple times

from the same person and count those times as distinct reports, so that it is

possible for an entry of DC to be more than n. There are several advantages

to defining it in this manner. First, although it is possible via simulations

to calculate a measure that tracks the expected number of informed nodes

and avoids double-counting, this expression is much easier to calculate and

for many parameter values the two measures are roughly proportional to each

other. Second, this version of the measure relates nicely to other standard

measures of centrality in the literature, while a measure that adjusts for mul-

tiple hearing does not. Third, in a world in which multiple hearings lead to

a greater probability of information retention, this count might actually be a

better measure of what people learn.9

2.3. Diffusion Centrality’s Relation to Other Centrality Measures. It

is useful to situate diffusion centrality relative to other prominent measures of

centrality in the literature.

Let d(g) denote degree centrality (so di(g) =
∑

j gij). Eigenvector centrality

corresponds to v(1)(g): the first eigenvector of g. Also, let KB(g, p) denote

Katz-Bonacich centrality – defined for p < 1/λ1 by:10

KB(p, g) :=

(
∞∑

t=1

(pg)t

)
· 1.

It is direct to see that (i) diffusion centrality is proportional to degree cen-

trality at the extreme at which T = 1, and (ii) if p < 1/λ1, then diffusion

centrality coincides with Katz-Bonacich centrality if we set T = ∞. We now

show that when p > 1/λ1 diffusion centrality approaches eigenvector central-

ity as T approaches ∞, which then completes the picture of the relationship

between diffusion centrality and extreme centrality measures.

9One could also further enrich the measure by allowing for the forgetting of information,
but with three parameters the measure would start to become unwieldy.
10See (2.7) in Jackson (2008) for additional discussion and background. This was a measure
first discussed by Katz, and corresponds to Bonacich’s definition when both of Bonacich’s
parameters are set to p.
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The difference between the extremes of Katz-Bonacich centrality and eigen-

vector centrality depends on whether p is sufficiently small so that limited

diffusion takes place even in the limit of large T , or whether p is sufficiently

large so that the knowledge saturates the network and then it is only relative

amounts of saturation that are being measured.11

Theorem 1.

(1) Diffusion centrality is proportional to degree when T = 1:

DC (g; p, 1) = pd (g) .

(2) If p ≥ 1/λ1, then as T → ∞ diffusion centrality approximates eigen-

vector centrality:

lim
T →∞

1
∑T

t=1 (pλ1)
t DC (g; p, T ) = v(1).

(3) For T = ∞ and p < 1/λ1, diffusion centrality is Katz-Bonacich cen-

trality:

DC (g; p, ∞) = KB (g, p) ; p < 1/λ1.

All proofs appear in the Appendix.

The result shows that as T is varied, diffusion centrality nests three of the

most prominent and used centrality measures: degree centrality, eigenvector

centrality, and Katz-Bonacich centrality. It thus provides a foundation for

these measures and spans between them.12, 13 Between these extremes, dif-

fusion centrality measures how diffusion process operates for some limited

11Saturation occurs when the entries of
(∑

∞

t=1 (pg)
t
)

· 1 diverge (note that in a [strongly]

connected network, if one entry diverges, then all entries diverge). Nonetheless, the limit
vector is still proportional to a well defined limit vector: the first eigenvector.
12This formalizes a result we mention in (Banerjee, Chandrasekhar, Duflo, and Jackson,
2013). An independent formalization appears in Benzi and Klymko (2014).
13We also remark on the comparison to another measure: the influence vector that appears
in the DeGroot learning model (see, e.g., Golub and Jackson (2010)). That metric captures
how influential a node is in a process of social learning. It corresponds to the (left-hand)
unit eigenvector of a stochasticized matrix of interactions rather than a raw adjacency
matrix. While it might be tempting to use that metric here as well, we note that it is the
right conceptual object to use in a process of repeated averaging through which individuals
update opinions based on averages of their neighbors’ opinions. It is thus conceptually
different from the diffusion process that we study. One can define a variant of diffusion
centrality that works for finite iterations of DeGroot updating.
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number of periods. Importantly, as in Banerjee et al. (2013), the behavior in

the intermediate ranges can be more relevant for certain diffusion phenomena.

3. Relating Diffusion Centrality to Network Gossip

We now investigate whether and how individuals living in g end up with

knowledge of others’ positions in the network that correlates with diffusion

centrality without knowing anything about the network structure.

3.1. A Gossip Process. Diffusion centrality considers diffusion from the

sender’s perspective. Let us now consider the same stochastic information

diffusion process but from a receiver’s perspective. Over time, each individual

hears information that originates from different sources in the network, and in

turn randomly pass that information on. The society discusses each of these

pieces of information for T periods. The key point is that there are many such

topics of conversation, originating from all of the different individuals in the

society, with each topic being passed along for T periods.

For instance, Arun may tell Matt that he has a new car. Matt then may

tell Abhijit that “Arun has a new car,” and then Abhijit may tell Esther that

“Arun has a new car.” Arun may also have told Ben that he thinks house

prices will go up and Ben could have told Esther that “Arun thinks that house

prices will go up”. In this model Esther keeps track of the cumulative number

of times that bits of information that originated from Arun reach her and

compares it with the same number for information that originated from other

people. What is crucial therefore is that the news involves the name of the

node of origin – in this case “Arun” – and not what the information is about.

The first piece of news originating from Arun could be about something he has

done (“bought a car”) but the second could just be an opinion (“Arun thinks

house prices will go up”). Esther keeps track of the fact that she has heard

two different pieces of information originating from Arun.

Recall that

H(g; p, T ) =
T∑

t=1

(pg)t ,
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is such that the ij-th entry, H(g; p, T )ij, is the expected number of times j

hears a piece of information originating from i.

We define the network gossip heard by node j to be the j-th column of H,

NG(g; p, T )j := H(g; p, T )·j.

Thus, NGj lists the expected number of times a node j will hear a given

piece of news as a function of the node of origin of the information. So, if

NG(g; p, T )ij is twice as high as NG(g; p, T )kj then j is expected to hear news

twice as often that originated at node i compared to node k, presuming equal

rates of news originating at i and k.

Note the different perspectives of DC and NG: diffusion centrality tracks

how well information spreads from a given node, while network gossip tracks

relatively how often a given node hears information from (or about) each of

the other nodes.

To end this sub-section two remarks are in order. First, one could allow

passing probabilities to differ by information type and pairs of nodes.14 Indeed,

in Banerjee et al. (2013) we allowed different nodes to pass information with

different probabilities, and in Banerjee et al. (2014) we allow the probability

of communication to depend on the listener’s network position. Although

one can enrich the model in many ways to capture specifics of information

passing, this simple version captures basic dynamics and relates naturally to

centrality measures. Second, we could allow nodes to differ in how frequently

they generate new information which is then transmitted to its neighbors.

Provided this transmission rate is positively related to nodes’ centralities, the

results that we present below still hold (and, in fact, the speed of convergence

would be increased).

3.2. Identifying Central Individuals. With this measure of gossip in hand,

we show how individuals in a society can estimate who is central simply by

14We can generalize our setup replacing p with a matrix P. Now define

H(g; P, T ) :=

(
T∑

t=1

(P ◦ g)
t

)
.

Here P can have entries Pij which allow the transmission probabilities to vary by pair. Note
that Pij can depend on characteristics of those involve and encode strategic behavior based
on the economics being modeled.
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counting how often they hear gossip about others. We first show that, on

average, individuals’ rankings of others according to how much gossip they

hear about the others, given by NGj, are positively correlated with diffusion

centrality.

Theorem 2. For any (g; p, T ),
∑

j cov(DC(g; p, T ), NG(g; p, T )j) = var(DC).

Thus, in any network with differences in diffusion centrality among individu-

als, the average covariance between diffusion centrality and network gossip is

positive.

It is important to emphasize that although both measures, NGi and DCi,

are based on the same sort of information process, they are really two quite

different objects. Diffusion centrality is a gauge of a node’s ability to send

information, while the network gossip measure tracks the reception of infor-

mation by different nodes. Indeed, the reason that Theorem 2 is only stated

for the sum rather than any particular individual j’s network gossip measure is

that for small T it is possible that some nodes have not even heard about other

nodes, and moreover they might be biased towards their local neighborhoods.15

Next, we show that if individuals exchange gossip over extended periods

of time, every individual in the network is eventually able to perfectly rank

others’ centralities.

Theorem 3. If p ≥ 1/λ1, then as T → ∞ every individual j’s ranking of oth-

ers under NG(g; p, T )j will be according to the ranking of diffusion centrality,

DC(g; p, T ), and hence according to eigenvector centrality, v(1).

The intuition is that individuals hear (exponentially) more often about those

who are more diffusion/eigenvector central, as the number of rounds of com-

munication tends to infinity. As such, in the limit, they assess the rankings

15 One might conjecture that more central nodes would be better “listeners”: for instance,
having more accurate rankings than less central listeners after a small number of periods.
Although this might happen in some networks, and for many comparisons, it is not guar-
anteed. None of the centrality measures considered here ensure that a given node, even the
most central node, is positioned in a way to “listen” uniformly better than all other less
central nodes. Typically, even a most central node might be farther than some less central
node from some other important nodes. This can lead a less central node to hear some
things before even the most central node, and thus to have a clearer ranking of at least
some of the network before the most central node. Thus, for small T , the

∑
is important

in Theorem 2.
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according to diffusion/eigenvector centrality correctly. The result implies that

with very little computational ability beyond remembering counts and adding

to them, agents come to learn arbitrarily accurately complex measures of oth-

ers’ centralities, even for people with whom they do not associate.

More sophisticated strategies in which individuals try to infer network topol-

ogy, could accelerate learning. Nonetheless, this result holds even in a minimal

environment wherein individuals do not know the structure of the network and

do not tag anything but the topic of conversation (“Arun has a new car”).

The restriction to p ≥ 1/λ1 is important. For example, as p tends to 0, then

individuals hear with vanishing frequency about others in the network, and

network distance between people can matter in determining whom they think

is the most important.

4. Data

To investigate the theory presented above, we examine new data, coupled

with detailed network data gathered from villages in rural Karnataka (India).

The network data consist of network information combined with “gossip” data

for 35 villages.

To collect the network data (described in more details in (Banerjee, Chan-

drasekhar, Duflo, and Jackson, 2013), and publicly available at http://economics.

mit.edu/faculty/eduflo/social), we surveyed adults regarding with whom

they interact.16 We have data concerning 12 types of interactions for a given

survey respondent: (1) whose houses he or she visits, (2) who visit his or her

house, (3) his or her relatives in the village, (4) non-relatives who socialize with

him or her, (5) who gives him or her medical advice, (6) from whom he or she

borrows money, (7) to whom he or she lends money, (8) from whom he or

she borrows material goods (e.g., kerosene, rice), (9) to whom he or she lends

material goods, (10) from whom he or she gets advice, (11) to whom he or she

gives advice, (12) with whom he or she goes to pray (e.g., at a temple, church

or mosque). Using these data, we construct one network for each village, at

16We have network data from 89.14% of the 16,476 households based on interviews with
65% of all adult individuals aged 18-55.

http://economics.mit.edu/faculty/eduflo/social
http://economics.mit.edu/faculty/eduflo/social
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the household level where a link exists between households if any member of

any household is linked to any other member of any other household in at

least one of the 12 ways.17 The resulting objects are undirected, unweighted

networks at the household level.

To collect the gossip data, we later asked the adults the following two addi-

tional questions:

(Loan) If we want to spread information about a new loan product to everyone

in your village, to whom do you suggest we speak?

(Event) If we want to spread information to everyone in the village about tickets

to a music event, drama, or fair that we would like to organize in your

village, to whom should we speak?

Table 1. Summary Statistics

mean sd
households per village 196 61.70
household degree 17.72 (9.81)
clustering in a household’s neighborhood 0.29 (0.16)
avg distance between nodes in a village 2.37 (0.33)
fraction in the giant component 0.98 (0.01)
is a “leader” 0.13 (0.34)
nominated someone for loan 0.48 (0.16)
nominated someone for event 0.38 (0.16)
was nominated for loan 0.05 (0.03)
was nominated for event 0.04 (0.02)
number of nominations received for loan 0.45 (3.91)
number of nominations received for event 0.34 (3.28)

Notes: for the variables nominated someone for loan (event) and was nom-
inated for loan (event) we present the cross-village standard deviation.

Table 1 provides some summary statistics for our data. The networks are

sparse: the average number of households in a village is 196 with a standard

17Individuals can communicate if they interact in any of the 12 ways, so this is the network
of potential communications, and using this network avoids the selection bias associated
with data-mining to find the most predictive subnetworks.
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deviation of 61.7, while the average degree is 17.7 with a standard deviation

of 9.8.

We see that only 5% of households were named in response to the Loan

question (and 4% for the Event question) with a cross-village standard devia-

tion of 3%. Thus there is a substantial concordance in who is named as a good

initiator of diffusion within a village. In fact, conditional on being nominated,

a household was nominated nine times on average.18 This is perhaps a first

indication that the answers may be meaningful.

The fact that less than half of the households were willing to name someone,

is itself intriguing. Perhaps people are unwilling to offer an opinion when they

are unsure of the answer19 or possibly were afraid of offending someone, given

that they were asked to name just one person.

We label as “leaders” self-help group leaders, shopkeepers, teachers, etc.:

13% of households fall into this category. We use the term as it was defined by

the microfinance organization Bharatha Swamukti Samsthe (BSS) as part of

their strategy for identifying people to initiate diffusion for their product. BSS

approached such social leaders because they were a priori likely to be important

in the social learning process and thereby would contribute to more diffusion

of microfinance. In our earlier work, Banerjee et al. (2013), we show that there

is considerable variation in the centrality of these “leaders” in a network sense,

and that this variation predicts the eventual take up of microfinance.

5. Empirical Analysis

Our theoretical results suggest that people can learn others’ diffusion or

eigenvector centralities simply by tracking news they hear through the network.

Thus, they should be able to name central individuals when asked whom to

use as a “seed” for diffusion. If this is the case, such direct questions can easily

be added to standard survey modules to identify central individuals without

obtaining detailed network data.

18We work at the household level, in keeping with Banerjee et al. (2013) who used households
as network nodes; a household receives a nomination if any of its members are nominated.
19See Alatas et al. (2014) for a model that builds on this idea.
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5.1. Descriptive Evidence. Figure 1 shows a village network where we high-

light both the nominees and the village leaders used by BSS as seeds for micro-

finance information, and thus the best guess of this organization of the most

highly central people.20 We see in the figure that “leaders” include central

households but also some peripheral households. However, nominees appear

to be more central and are rarely peripheral. Additionally, nodes that are both

leaders and nominated are highly central.

Let us examine the relative network position of nominees in detail. Since

the relevant number of periods to compute diffusion centrality is in principle

application-dependent, we start with eigenvector centrality, which is a limit as

T → ∞ of diffusion centrality for large enough p (above the inverse of the first

eigenvalue). We return to compare what happens with other p and T , below.

Figure 2 builds on the theme presented in Figure 1. Examining the like-

lihood that a nominated household is highly central, we find that 47% of

households that are both nominated and have a leader are within the top 10%

of the eigenvector centrality distribution. Furthermore, 23% of the households

that are nominated but are not leaders are in the top decile of the centrality

distribution.

This contrasts with households that are not nominated, irrespective of whether

they have a leader. Only 16% of households that are not nominated but have a

leader, and only 7% of households that are not nominated and have no leader,

are in the top decile of the eigenvector centrality distribution.21 Another way

to see this is that the average percentile in the distribution of eigenvector cen-

trality for those nominated for the loan question is 0.71 (and 0.7 for event),

while it is 0.62 for the traditional leaders.

Not only are nominated nodes more central in the network, but more central

nodes also receive more nominations, as predicted by the theory. Figure 3

shows that households with higher levels of eigenvector centrality receive more

20This is not a geographic representation of nodes but, rather, a representation using a
simple algorithm to visually represent the sub-community structure of the network.
21The difference between the 23% of households that are in the top decile given that they are
nominated but not leaders and the 16% in the top decile given that they are not nominated
but are leaders is significant with a p-value of 0.00 under a Welch test.
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(a) Village network with lead-
ers flagged
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(b) Village network with nominees flagged
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(c) Village network with nomi-
nees/leaders flagged

Figure 1. A village network with nominees (red), leaders
(blue) and those who fulfill both categories (purple) flagged.

nominations on average than households of lower centrality, by a factor of

about four when comparing the highest quintile to the lowest.

Figure 4 presents the distribution of nominations as a function of the net-

work distance from a given household. If information did not travel well
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Figure 2. The probability that a randomly chosen node with
a given classification (whether or not it is nominated under the
event question and whether or not it has a village leader) is in
the top decile of the eigenvector centrality distribution. 95%
confidence intervals are displayed.

through the social network, we might imagine that individuals would only

nominate households to whom they are directly connected. Panel A of Figure

4 shows that fewer than 20% of individuals nominate someone within their

direct neighborhood. At the same time, over 27% of nominations come from a

network distance of at least three or more. Taken together, this suggests that

information about centrality does indeed travel through the network.

From Panel A of Figure 4, we also see that, while people do nominate

individuals in households who are closer to them than the typical household

in the village, respondents generally name people outside of their immediate

neighborhoods and sometimes quite far. Moreover, it is important to note

that highly central individuals are generally closer to people than the typical

household, so, if they did nominate the most central people, this is what we

should expect to find.
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(a) Loan Question (b) Event Question

Figure 3. The average number of nominations per household
vs. the quintile of the households’ eigenvector centralities.

It is plausible that individuals may not have good information about who is

central in parts of the network that are far from them. However, in Panel B

of Figure 4 we see that the average eigenvector centrality percentile of those

named at distance 1 is the same as at distance 2 or distance 3 or more. This

suggests that individuals have reasonable and comparably accurate informa-

tion about central individuals in the community who are immediate neighbors

or at greater distance from them.

5.2. Regression Analysis. Motivated by this evidence, we present a more

systematic analysis of the correlates of nominations, using a discrete choice

framework for the decision to nominate someone.

Our theory suggests that if people choose whom to nominate by picking

someone whom they hear about most frequently, then diffusion centrality

should be a leading predictor of nominations. While the aforementioned re-

sults are consistent with this prediction, there are several plausible alternative

interpretations. For example, individuals may nominate the person with the

most friends, and people with many friends tend to be more diffusion central

than those with fewer friends (i.e., diffusion centrality with T = 1 and T > 1
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(a) Share of nominees in speci-
fied neighborhood

(b) Average eigenvector centrality percentile
of nominees in specified neighborhood

Figure 4. Distribution of centralities of nominees

can be positively correlated). Alternatively, it may be that people simply nom-

inate “leaders” within their village, or people who are central geographically,

and these also correlate with diffusion/eigenvector centrality. There are indeed

a priori reasons to think that leadership status and geography may be good

predictors of network centrality, since, as noted in Banerjee et al. (2013), the

microfinance organization selected “leaders” precisely because they believed

these people would be informationally central. Similarly, previous research

has shown that geographic proximity increases the probability of link forma-

tion (Fafchamps and Gubert, 2007; Ambrus et al., 2014; Chandrasekhar and

Lewis, 2014) and therefore one might expect geographic data to be a useful

predictor of centrality. In addition to leadership data we have detailed GPS

coordinates for every household in each village. We include this in our analysis

below.22

22To operationalize geographic centrality, we use two measures. The first uses the center of
mass. We compute the center of mass and then compute the geographic distance for each
agent i from the center of mass. Centrality is the inverse of this distance, which we normalize
by the standard deviation of this measure by village. The second uses the geographic data
to construct an adjacency matrix. We denote the ij entry of this matrix to be 1

d(i,j) where

d(·, ·) is the geographic distance. Given this weighted graph, we compute the eigenvector
centrality measure associated with this network. Results are robust to either definition.
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Of course, the correlations below are not a “test” that the causal mechanism

is indeed gossip, as in our model, but they do rule out that our diffusion

centrality measure simply picks out degree centrality, geography or traditional

leadership.

To operationalize our analysis using diffusion centrality, we need to first

identify p and T . We use the average of the transmission probability pa-

rameters estimated in Banerjee et al. (2013), which studies the diffusion of

information about a loan, and finds p = 0.2. We set T = 3, since the aver-

age distance between nodes in our network is 2.7 and thus 3 represents the

distance to which information travels before it begins to echo backwards. In

what follows, we use DC(0.2, 3) when we refer to diffusion centrality.

We estimate a discrete choice model of the decision to nominate an individ-

ual. Note that we have large choice sets as there are n − 1 possible nominees

and n nominators per village network. We model agent i as receiving utility

ui(j) for nominating individual j:

ui(j) = α + β′xj + γ′zj + µv + ǫij,v,

where xj is a vector of network centralities for j (eigenvector centrality, DC(0.2, 3),

and degree centrality), zj is a vector of demographic characteristics (e.g., lead-

ership status, geographic position and caste controls), µv is a village fixed

effect, and ǫiv,j is a Type-I extreme value distributed disturbance. For conve-

nience given the large choice sets, we estimate the conditional logit model by

an equivalent Poisson regression, where the outcome is the expected number

of times an alternative is selected (Palmgren, 1981; Baker, 1994; Lang, 1996;

Guimaraes et al., 2003).

Table 2 presents our estimates of β and γ. First we show that DC(0.2, 3)

is a significant driver of an individual nominating another (column 1). A one

standard deviation increase in eigenvector centrality is associated with a 0.634

log-point increase in the number of others nominating a household (statistically

significant at the 1% level). In column 2 we see that this is robust to controlling

for leadership status, geographic centrality of households, as well as village and

caste fixed effects: a one standard deviation increase in diffusion centrality is

associated with a 0.616 log-point increase in the number of others nominating
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Table 2. Factors predicting nominations

(1) (2) (3) (4) (5) (6) (7) (8)

DC(0.2, 3) 0.634*** 0.616*** 0.639** 0.749* 0.982 0.681* 0.727* 1.208
(0.073) (0.099) (0.286) (0.399) (0.814) (0.358) (0.427) (1.179)

Eigenvector Centrality -0.005 -0.142 -0.064 -0.300
(0.276) (0.350) (0.349) (0.594)

Degree Centrality -0.117 -0.208 -0.113 -0.295
(0.405) (0.535) (0.428) (0.662)

Leader 0.637** 0.636** 0.640** 0.640**
(0.298) (0.298) (0.296) (0.296)

Geographic Centrality -0.305 -0.303 -0.309 -0.308
(0.216) (0.215) (0.217) (0.217)

Observations 6,466 5,733 6,466 6,466 6,466 5,733 5,733 5,733
Village and Caste FE No Yes No No No Yes Yes Yes
p−value of βDC(0.2,3) = βEigenvector 0.248 0.324 0.288 0.389

p−value of βDC(0.2,3) = βDegree 0.279 0.373 0.323 0.410

Notes: The table reports estimate of a Poisson regression where the outcome variable is the expected number of
nominations under the loan question. Degree centrality, eigenvector centrality and DC(0.2, 3) are normalized by
within-village standard deviation. Standard errors (clustered at the village level) are reported in parentheses. ***
p < 0.01, ** p < 0.05, * p < 0.1.

the household (significant at the 1% level). Leadership status does affect the

number of nominations as well, as we saw in the descriptive evidence, but the

point estimate of the diffusion centrality coefficient hardly changes.

In columns 3-5 we add eigenvector and degree centrality as points of compar-

ison. It seems that it is indeed diffusion centrality that best predicts nomina-

tions. A one standard deviation in DC(0.2, 3) corresponds to a 0.639 log-point

increase in the number of nominations (statistically significant at the 5% level)

as compared to -0.005 log-points when looking at eigenvector centrality (not

statistically significant, column 3). Similarly, including both DC(0.2, 3) and

degree centrality leaves the coefficient on DC(0.2, 3) mostly unchanged, a 0.749

log-point increase in the number of nominations associated with a one standard

deviation increase in centrality, whereas there is no statistically significant as-

sociation with degree centrality and the point estimate is considerably smaller

(-0.117, column 4). However, parameter estimates are noisy and one cannot

reject the hypothesis that the coefficients on DC(0.2, 3) and eigenvector cen-

trality as well as DC(0.2, 3) and degree are statistically the same, despite the
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difference in the point estimates. The p-values of a test of equality of coeffi-

cients are 0.248 and 0.279 in columns 3 and 4, respectively (see the last row

of the table). Further, we include all three centrality measures in column 5

and are unable to reject that any individual coefficient is statistically different

from zero, although they are jointly significant with a p-value of 0.00). The

point estimate of DC(0.2, 3) remains similar to those in column 4, and both

degree and eigenvector centrality have negative point estimates. However, due

to the colinearity of the three centrality variables, standard errors are more

than twice as large than in the previous columns. Columns 6-8 repeat the exer-

cises of columns 3-5, now including leadership status and geographic centrality

as extra control variables. Additionally, we add village and household caste

fixed effects. As before we find that DC(0.2, 3) enters significantly and with

similar effect sizes, unless all three centralities are included, where the esti-

mates become noisy. Moreover, in our pairwise comparisons neither degree nor

eigenvector centrality coefficients are large and statistically significant drivers

of the number of nominations.

Our results provide suggestive evidence that a key driver of the nomina-

tion decision involves diffusion centrality with T > 1 although, given the high

degree of correlation of these metrics in our sample, we cannot statistically re-

ject that all centrality variables matter equally. The point estimates, however,

point towards the diffusion centrality as the most robust factor. Overall, it is

clear that individuals are able to accurately name highly central individuals,

well beyond using other status variables.

6. Concluding Remarks

Our model illustrates that it should be easy for even very myopic and non-

Bayesian agents, simply by counting, to have an idea as to who is central in

their community (according to fairly complex definitions). Motivated by this,

we asked villagers to identify central individuals in their village. They do not

simply name locally central individuals (the most central among those they

know), but actually name ones that are globally central within the village. This
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suggests that individuals may use simple protocols to learn valuable things

about the complex systems within which they are embedded.

Our findings have important policy implications, since such nomination data

are easily collected and therefore can be used in a variety of contexts, either on

its own, or combined with other easily collected data, to identify who would be

a good seed for an information. For instance, if a household is both a nominee

and a leader, it has a 47% likelihood of being in the top 10% of the centrality

distribution.

It is also worth commenting that our work focuses on the network-based me-

chanics of communication. In practice, considerations beyond simple network

position may determine who the “best” person is to spread information, as

other characteristics may affect the quality and impact of communication. An

avenue for further research is to investigate whether villagers take such char-

acteristics into account and thus may nominate individuals who are even more

successful at diffusing information than the most central individual in the net-

work. Beyond these, the work presented here opens a rich agenda for further

research, as one can explore which other aspects of agents’ social environments

can be learned in simple ways.
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Appendix A. Proofs

We prove all of the statements for the case of weighted and directed net-

works.

Let v(L,k) indicate k-th left-hand side eigenvector of g and similarly let v(R,k)

indicate g’s k-th right-hand side eigenvector. In the case of undirected net-

works, v(L,k) = v(R,k). In the case of directed networks, eigenvector v(1) in the

main body corresponds to v(R,1).

The following lemma is used in proofs of the theorems.

Lemma 1. Consider a positive and diagonalizable g. Then g has a unique

largest eigenvalue. Moreover, letting g̃ = g/λ1,

[g̃T ]ij →T v
(R,1)
i v

(L,1)
j .

Proof of Lemma 1. The uniqueness of the largest eigenvalue follows from

the Perron-Frobenius Theorem (given that g is positive). By diagonalizability

we can write g as

g = VΛV−1

where Λ is the matrix with eigenvalues on the diagonal (ordered from 1 to n in

order of magnitude) and V is the matrix with columns equal to the right-hand

eigenvectors, and V−1 is not only V’s inverse, but is also the matrix with rows

equal to the left-hand eigenvectors. By normalizing g̃ = g/λ1, it follows that

g̃ = VΛ̃V−1, where Λ̃ is the diagonal matrix such that Λ̃ = diag
{
1, λ̃2, ..., λ̃n

}
,

and λ̃k = λk

λ1
. Since the largest eigenvalue of g is unique, it also follows that

0 ≤
∣∣∣λ̃k

∣∣∣ < 1 for k > 1.

It helps to write the ik-th entry of V as v
(R,k)
i , and similarly, the kj-th entry

of V−1 is written as v
(L,k)
j . Therefore, it is straightforward to check that

g̃T
ij =

n∑

k=1

v
(R,k)
i v

(L,k)
j λ̃T

k .

Separating terms,

g̃T
ij = v

(R,1)
i v

(L,1)
j +

n∑

k=2

v
(R,k)
i v

(L,k)
j λ̃T

k .
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Thus, given that λ̃k

T
→ 0 for k ≥ 2, it follows that

g̃T
ij →T →∞ v

(R,1)
i v

(L,1)
j ,

as claimed.

Proof of Theorem 1. We show the second statement as the others follow

directly.

First, note that in any neighborhood of any nonnegative matrix g, there

exists a positive and diagonalizable matrix g′. Next, consider any nonnegative

g. If the statement holds for any arbitrarily close positive and diagonalizable

g′, then since DC(g;p,T )∑
T

t=1
(pλ1)t

is a continuous function (in a neighborhood of a non-

negative and strongly connected g) as is the first eigenvector, the statement

also holds at g. Thus, it is enough to prove the result for a positive and

diagonalizable g, as in what follows.

In fact, we show the following strengthening of the statement for a positive

and diagonalizable g.

• The ‘tail terms’ approach eigenvector centrality:

(g/λ1)
t · 1 → v(R,1) as t → ∞.

• If p > λ−1
1 , then

lim
T →∞

DC (g; p, T )
∑T

t=1 (pλ1)
t = lim

T →∞

DC (g; p, T )
pλ1−(pλ1)T +1

1−(pλ1)

= v(R,1).

• If p = λ−1
1 , then

lim
T →∞

1

T
DC

(
g; λ−1

1 , T
)

= v(R,1).

By diagonalizability we write

g = VΛV−1,

and normalizing g̃ = g/λ1 it follows that g̃ = VΛ̃V−1. Normalize the eigen-

vectors to lie in ℓ1, so the entries in each column of V−1 and each row of V
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sum to 1. Then, applying Lemma 1, it follows that g̃T · 1 is such that

g̃T · 1 → v(R,1).

This completes the proof of the first statement.

Next, we turn to the sum
∑∞

t=1 g̃t · 1 and show the second statement for the

case where p = 1/λ1. It is sufficient to show

lim
T →∞

∥∥∥∥∥∥

DC
(
g; λ−1

1 , T
)

T
− v(R,1)

∥∥∥∥∥∥
= 0.

First, note that as with our calculations above,

DCi

(
g; λ−1

1 , T
)

=
∑

j

T∑

t=1

∑

k

v
(R,k)
i v

(L,k)
j λ̃t

k

Thus,
∣∣∣∣∣∣

DCi

(
g; λ−1

1 , T
)

T
− v

(R,1)
i

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑
j

∑T
t=1

∑n
k=1 v

(R,k)
i v

(L,k)
j λ̃t

k

T
− v

(R,1)
i

∣∣∣∣∣∣
=

=

∣∣∣∣∣∣
1

T

∑

j

T∑

t=1

n∑

k=2

v
(R,k)
i v

(L,k)
j λ̃t

k

∣∣∣∣∣∣
≤

1

T

T∑

t=1

n∑

k=2

1 ·

∣∣∣∣∣∣

n∑

j=1

v
(L,k)
j

∣∣∣∣∣∣
︸ ︷︷ ︸

≤1

·
∣∣∣λ̃t

k

∣∣∣

≤
n

T

T∑

t=1

∣∣∣λ̃t
2

∣∣∣ =
n

T

∣∣∣λ̃2

∣∣∣

1 −
∣∣∣λ̃2

∣∣∣

(
1 −

∣∣∣λ̃2

∣∣∣
T
)

→ 0.

Since the length of the vector (which is n) is unchanging in T , pointwise

convergence implies convergence in norm, proving the result.

The final piece repeats the argument for p > 1/λ1, but now uses the def-

inition g̃ = (pg). Then we have Λ̃ = diag
{
λ̃1, ..., λ̃n

}
with pλk = λ̃k. We

show

lim
T →∞

∥∥∥∥∥
DC (g; p, T )
∑T

t=1 (pλ1)
t − v(R,1)

∥∥∥∥∥ = 0.
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By similar derivations as above,
∣∣∣∣∣∣

DCi

(
g; λ−1

1 , T
)

∑T
t=1 λ̃t

1

− v
(R,1)
i

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑
j

∑T
t=1

∑n
k=1 v

(R,k)
i v

(L,k)
j λ̃t

k∑T
t=1 λ̃t

1

− v
(R,1)
i

∣∣∣∣∣∣
=

=

∣∣∣∣∣∣
1

∑T
t=1 λ̃t

1

∑

j

T∑

t=1

n∑

k=2

v
(R,k)
i v

(L,k)
j λ̃t

k

∣∣∣∣∣∣

≤
1

∑T
t=1 λ̃t

1

T∑

t=1

n∑

k=2

1 ·

∣∣∣∣∣∣

n∑

j=1

v
(L,k)
j

∣∣∣∣∣∣
·
∣∣∣λ̃t

k

∣∣∣

≤
n

∑T
t=1 λ̃t

1

T∑

t=1

∣∣∣λ̃t
2

∣∣∣ .

Note that this last expression converges to 0 since λ̃1 > 1, and λ̃1 > λ̃2.
23

which completes the argument.

Proof of Theorem 2. Recall that H =
∑T

t=1 (pg)t and DC =
(∑T

t=1 (pg)t
)
·1

and so

DCi =
∑

j

Hij.

Additionally,

cov(DC, H·,j) =
∑

i

(
DCi −

∑

k

DCk

n

)(
Hij −

∑

k

Hkj

n

)
.

Thus

∑

j

cov(DC, H·,j) =
∑

i

(
DCi −

∑

k

DCk

n

)
∑

j

Hij −
∑

k

∑
j Hkj

n


 ,

implying

∑

j

cov(DC, H·,j) =
∑

i

(
DCi −

∑

k

DCk

n

)(
DCi −

∑

k

DCk

n

)
= var(DC),

23Note that it is important that p ≥ 1/λ1 for this claim, since if p < 1/λ1, then pλ1 < 1. In
that case, observe that ∑T

t=1

∣∣λ̃2

∣∣t
∑T

t=1 λ̃t
1

=
λ̃2

λ̃1

·
1 − λ̃1

1 − λ̃2

by the properties of a geometric sum, which is of constant order. Thus, higher order terms

(λ̃2, etc.) persistently matter and are not dominated relative to
∑T

t λ̃t
1.
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which completes the proof.

Proof of Theorem 3. Again, we prove the result for a positive diagonaliz-

able g, noting that it then holds for any (nonnegative) g.

Again, let g be written as

g = VΛV−1.

Also, let λ̃k = pλk. It then follows that we can write

H =
T∑

t=1

(pg)t =
T∑

t=1

(
n∑

k=1

v
(R,k)
i v

(L,k)
j λ̃t

k

)
.

By the ordering of the eigenvalues from largest to smallest in magnitude,

H·,j =
T∑

t=1

[
v(R,1)v

(L,1)
j λ̃t

1 + v(R,2)v
(L,2)
j λ̃t

2 + O
(∣∣∣λ̃2

∣∣∣
t
)]

=
T∑

t=1

[
v(R,1)v

(L,1)
j λ̃t

1 + O
(∣∣∣λ̃2

∣∣∣
t
)]

= v(R,1)v
(L,1)
j

T∑

t=1

λ̃t
1 + O

(
T∑

t=1

∣∣∣λ̃2

∣∣∣
t
)

.

So, since the largest eigenvalue is unique, it follows that

H·,j∑T
t=1 λ̃t

1

= v(R,1)v
(L,1)
j + O




∑T
t=1

∣∣∣λ̃2

∣∣∣
t

∑T
t=1 λ̃t

1


 .

Note that the last expression converges to 0 since λ̃1 > 1, and λ̃1 > λ̃2. Thus,

H·,j∑T
t=1 λ̃t

1

→ v(R,1)v
(L,1)
j

for each j. This completes the proof since each column of H is proportional to

v(R,1) in the limit, and thus has the correct ranking for large enough T .24 Note

that the ranking is up to ties, as the ranking of tied entries may vary arbitrarily

along the sequence. That is, if v
(R,1)
i = v

(R,1)
ℓ , then the ranking that j has over

24The discussion in Footnote 23 clarifies why p > 1/λ1 is required for the argument.
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i and ℓ could vary arbitrarily with T , but their rankings will be correct relative

to any other entries with higher or lower eigenvector centralities.
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