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The Gene Ontology (GO) offers a comprehensive and standardized way to describe a 
protein's biological role.  Proteins are annotated with GO terms based on direct or indirect 
experimental evidence.  Term assignments are also inferred from homology and literature 
mining.  Regardless of the type of evidence used, GO assignments are manually curated 
or electronic.  Unfortunately, manual curation cannot keep pace with the data, available 
from publications and various large experimental datasets. Automated literature-based 
annotation methods have been developed in order to speed up the annotation.  However, 
they only apply to proteins that have been experimentally investigated or have close 
homologs with sufficient and consistent annotation.  One of the homology-based 
electronic methods for GO annotation is provided by the InterPro database. The 
InterPro2GO/PFAM2GO associates individual protein domains with GO terms and thus 
can be used to annotate the less studied proteins.  However, protein classification via a 
single functional domain demands stringency to avoid large number of false positives.  
This work broadens the basic approach.  We model proteins via their entire functional 
domain content and train individual decision tree classifiers for each GO term using 
known protein assignments.  We demonstrate that our approach is sensitive, specific and 
precise, as well as fairly robust to sparse data.  We have found that our method is more 
sensitive when compared to the InterPro2GO performance and suffers only some 
precision decrease. In comparison to the InterPro2GO we have improved the sensitivity 
by 22%, 27% and 50% for Molecular Function, Biological Process and Cellular GO 
terms respectively.  

1 Introduction 

With genomic data available in large volume for many organisms, assigning a 
function to a sequence has become the new challenge for genomics.  Various 
computational methods provide insights into properties of a novel or poorly 
studied protein.  Relevant to this study are the homology-motivated methods that 
describe the protein function in terms of functional domains.  Databases such as 
InterPro (Mulder, Apweiler et al. 2003), PFAM (Bateman, Birney et al. 2002) 
and others identify functional domains and describe the domain function.  
Knowledge of a protein's domain content is crucial to understanding the 
protein’s role.  However, proteins often contain multiple domains, some of 
which may be shared with proteins playing a different role in the cell (Fig. 1).  
Thus, domain identification cannot become the final point of any annotation.  
This issue can be addressed by mapping functional domains to Gene Ontology 
(Ashburner, Ball et al. 2000) terms and by using the Gene Ontology for protein 
annotation. 



The goal of the Gene Ontology Consortium (Ashburner, Ball et al. 2000) is 
to produce a controlled biological vocabulary that can be applied to all 
organisms even as the knowledge of gene and protein roles in cells is 
accumulating and changing. GO provides three structured networks of defined 
terms to describe gene product attributes: biological process, cellular component 
and molecular function. GO is one of the controlled vocabularies of the Open 
Biological Ontologies (OBO.)  It is one that is most advanced in its development 
and will likely serve as a reference for other proposed biological ontologies in 
the OBO family. The curators of GO annotate a gene’s associations with GO 
terms and the evidence of the association is recorded in the GO database.  
Contributions to GO come from various public databases and model organism 
consortia such as the FlyBase (The FlyBase Consortium 2003), Saccharomyces 
Genome Database (SGD) (Issel-Tarver, Christie et al. 2002), WormBase 
(Harris, Lee et al. 2003),  SwissProt (Boeckmann, Bairoch et al. 2003). 
Information stored in the GO database is extremely valuable as it is created in a 
controlled manner and provides a compilation of knowledge about genes from 
various organisms.  The hierarchical nature of the Gene Ontology allows for an 
elegant representation of both  knowledge and uncertainty in understanding of 
the biological role of a protein.  For example, let us imagine a novel protein 
known to be a kinase whose target remains to be determined.  Gene Ontology 
can store 'kinase activity' as the current known molecular function without 
requiring further specification.  Thus each GO term has parents that represent a 
less certain annotation than the child. The Gene Ontology offers two properties 
essential for protein annotation: completeness and breakdown by generalization. 

A number of methods have been developed to annotate gene products with 
GO terms electronically1.  The electronic methods fall into the categories of: 
• Text mining, such as literature mining (Chiang and Yu 2003) and 

(Raychaudhuri, Chang et al. 2002), and pattern of annotation mining  (King, 
Foulger et al. 2003). 

• Analysis of experimental and sequence data: 
• Sequence similarity-motivated methods such as The Institute Of Genomic 
Research (TIGR) annotations for T. brucei (El-Sayed, Ghedin et al. 2003) and 
Arabidopsis (Buell, Joardar et al. 2003; Haas, Delcher et al. 2003; Wortman, 
Haas et al. 2003), annotations by (Hennig, Groth et al. 2003), the BLAST-
based approach of (Khan, Situ et al. 2003), and others. 
• Methods based on protein domains, such as (Schug, Diskin et al. 2002). 
• Methods using gene-expression datasets as in (Lagreid, Hvidsten et al. 
2003), (Hvidsten, Komorowski et al. 2001), (Hvidsten, Laegreid et al. 2003). 
• Methods using protein-protein interaction data, such as (Letovsky and Kasif 
2003). 

• Multi-source and multi-approach (integrative methods):  
• Database-driven EBI GOA (Camon, Magrane et al. 2003) and Mouse 
Genome Informatics  annotations (Hill, Davis et al. 2001). 

                                                           
1 See http://bio-mirror.asti.dost.gov.ph/biomirror/geneontology/docs/GO.annotation.html for the most current available 

computational annotations. 

http://obo.sourceforge.net/
http://obo.sourceforge.net/
http://bio-mirror.asti.dost.gov.ph/biomirror/geneontology/docs/GO.annotation.html


• Other multi-source methods, such as (Xie, Wasserman et al. 2002), which 
use text mining, domain information, sequence homology and other 
approaches. 

 
Electronic annotation methods can take advantage of mappings between various 
existing databases and GO2.   The following types of mappings to GO from 
several datasets currently exist: 
• Keyword/concept: spkw2GO, which maps UniProt (Apweiler 2004) 

keywords; genprotec2GO, which maps GenProtEC (Riley 1998; Serres and 
Riley 2000) function names to GO; tigr2GO, mapping TIGR roles (Haft, 
Selengut et al. 2003) and others. 

• Protein family: tigrfam2GO maps TIGR protein families (Haft, Selengut et 
al. 2003). 

• Pathway: metacyc2go maps MetaCyc (Karp, Riley et al. 2002) metabolic 
processes and functions . 

• Domain: InterPro2GO, which maps InterPro (Mulder, Apweiler et al. 2003) 
entries to GO; PFAM2GO, derived from InterPro2GO, which maps 
PFAMs, and others. 

In some cases, such as in the case of InterPro2GO/PFAM2GO, the map between 
the PFAM domains and GO terms can be used to associate proteins with GO 
terms directly.  
A number of methods combine various sources of information to predict the GO 
assignments.  For example, a Bayesian method developed by (Troyanskaya, 
Dolinski et al. 2003) integrates multiple data sources such as protein-protein 
interactions and gene expression data and creates functional groupings of S. 
Cerevisiae genes.  Probabilistic decision trees have been used by (Syed and 
Yona 2003) to predict protein function based on biochemical properties of 
proteins coupled with sequence database analysis.  (Syed and Yona 2003) noted 
the possibility of using domain content for function prediction.  (Hvidsten, 
Komorowski et al. 2001) have combined gene expression and ontology data to 
predict protein function using rough set theory.  (Raychaudhuri, Chang et al. 
2002) have implemented a text-mining algorithm for GO annotation. 

There are about 100,000 genes currently annotated by the GO consortium 
and only a small fraction of those, about 10,000, are human and mouse genes. 
Most of the proteins for which there exists an experimentally validated 
annotation come from simple uni-cellular organisms like bacteria or yeast. Thus 
for many human and mammalian genes the association with the GO terms has to 
be predicted by comparison with simpler proteins. Given the complexity of the 
mammalian protein domain architectures, a comparison with the simpler 
proteins is not straightforward. In order to address this challenge we propose a 
method for inferring the GO annotation of a protein from the protein domain 
composition. 

We chose proteins' domain content as a model, and use PFAM domain 
annotations as our principal data source.  Representation of proteins in terms of 
                                                           
2 The complete, up-to-date listing of mappings to GO can be found at the Gene Ontology Consortium's web site at 
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their functional domain content creates a multi-dimensional attribute space, 
where each domain is a dimension.  From here on, we will refer to a protein’s 
domain composition as to its domain content or domain vector (in the space of 
all known domains).  We will use these terms interchangeably.  The task of GO 
term annotation becomes that of mapping a multi-dimensional attribute vector to 
a set of labels (GO terms).  Broadly speaking, we restate protein annotation as a 
classification problem.  As documented in the literature, for example, in 
(Krishnan and Westhead 2003), the decision tree paradigm can work well for 
this type of problems.   

We compare two different representations of proteins by their domain 
composition, integer and binary one.  We evaluate their performance in 
associating proteins and GO terms.  We also compare the performance of our 
method to GO term association using the InterPro2GO mapping.  We 
demonstrate that using a protein's entire domain vector over a single domain 
significantly enhances the sensitivity of annotation for all three GO networks at 
the expense of a relatively small decrease in precision.   

2 Systems and Methods 

We need to tackle several obstacles that confound the classification problem as 
formulated in the decision tree context: 

• A protein can be associated with many GO terms. Owing to the complex 
structure of Gene Ontology, the number of “true” labels describing a protein is 
much larger than the number of GO terms.  This is because, in principle, 
almost any subset of GO terms should be treated as a unique label. The 
number of such labels is combinatorially large and precludes any classification 
attempt.  Thus GO terms must have individual classifiers. 
• The space of attributes for our classification problem is quite large. 
Currently there are about 7,000 PFAMs identified.  Generally, classifiers don’t 
perform well in high-dimensional attribute spaces.  Fortunately, most GO 
terms describe relatively small numbers of proteins.  Thus it is feasible to 
construct for each GO term a training set that is represented in a subspace with 
much lower dimensionality. 
• Our classifier needs to take into account not only the known associations 
between proteins and GO terms but also, cautiously, the absence of such 
associations.   We can make a generally true assumption that proteins not 
already annotated with a term ought to stay dissociated from that term for a 
good reason.  In other words, some proteins not associated in GO with a 
particular GO term may be treated as negative examples in that term’s training 
set.  However, due to the incompleteness of data in GO we cannot always take 
this to be true and therefore we should not accept blindly all such proteins as 
negative examples.   



2.1 Details of Protein Representation 

We have chosen PFAM domains as units of a domain content. PFAM domains 
become the single dimensions of the attribute space, with each protein 
represented as a sparse vector in that space.  We distinguish between binary and 
integer attribute vectors, as illustrated in Figure 1 and Table 1.  In addition to 
PFAM domain composition, we analyze all proteins from the training and 
testing sets for the presence of the signal peptide, transmembrane regions 
(Krogh, Larsson et al. 2001) and coiled coil (Berger, Wilson et al. 1995) regions.  
These three indicators are treated as extra dimensions in the attribute space. 

Naturally, all proteins associated with a GO term constitute a true positives 
set. The definition of the negatives is more elaborate. Let us define all proteins 
associated with a particular GO term t as {Pt}.  Let us denote as {Dt} the set of 
all domains belonging to proteins described by that GO term.  Let us further 
denote as {DP} the domains of some protein P.  If {Dt} and {DP} have non-empty 
intersection and P is not assigned to a parent of t, then we call P a true negative.  
This definition reflects the fact that P, although similar in domain composition 
to proteins in {Pt}, was nonetheless annotated by a human expert to fall outside 
of this GO term, presumably for a biological reason. This definition of true 
negatives substantially reduces the dimensionality of the space of attributes for 
each GO term.   

For each GO term we have also created a set of 'synthetic' negative protein 
examples. These 'synthetic' proteins are single domain proteins made of all 
domains from the true negative examples but only those domains that are not 
present in the positive set’s parent terms.   These synthetic negatives are always 
assigned binary values for their domain counts.  

In addition to synthetic proteins we have also designed one artificial 
'supernegative' protein per GO term which is composed of all domains that are 
not present in the protein set representing parents of this term.  The 
supernegative served as the reduced representation for the entire set of proteins 
eliminated from the training set by the selection of true positives and negatives.  
Dimensionality of supernegatives is much higher than that of regular proteins 
since {Dsupernegative} ≈ {Ddata_set – Dt}.  

2.2 Algorithm 

Several well-known decision-tree-learning algorithms are available (e.g. CART 
(Breiman, Friedman et al. 1984)).  For this work we have chosen the OC1 
decision tree package (Murthy, Kasif et al. 1994).  OC1 allows for oblique as 
well as axis-parallel splits3 in the space of attributes, which gave us more 
flexibility in our data representation. 

The OC1 classifier was configured to test both axis-parallel and oblique 
splits in the integer attribute space, and axis-parallel splits only in the binary 
space.  Following some initial experimentation with different goodness criteria 
supported by OC1, we have selected the twoing rule (Breiman, Friedman et al. 
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1984), although similar (but slightly inferior) results were obtained using 
information gain during this initial testing.  In the oblique mode, the maximal 
number of iterations was set to 50 and minimal to 20. We have always used the 
axis-parallel mode for the GO terms that had more than 1000 positive examples 
in the training set due to the runtime constraints.   

2.3 Training and Testing Sets 

We have used two different sets of proteins from SwissProt database for training 
and testing the validity of the decision tree approach.  
• Training set: SwissProt proteins from human, mouse and yeast annotated by 

GO – 6367 proteins, 1756 domains and 3375 GO terms. 
• Testing set: SwissProt proteins from fly (D. Melanogaster) and worm 

(C.Elegans) annotated by GO – 1024 proteins, 640 domains and 1138 GO 
terms. 

The training set was selected to encompass the eukaryotic evolutionary tree. The 
testing set was selected to represent organisms that are evolutionarily distant 
from the training set organisms. 

2.4  Benchmark 

As a benchmark we used a reference list generated by the InterPro database. 
InterPro2GO associates the protein domains with GO terms (Camon, Magrane et 
al. 2003; Mulder, Apweiler et al. 2003).  InterPro2GO is the only available 
approach that uses domain information to predict GO terms. InterPro2GO uses a 
simple association rule: a protein domain is associated with a GO term if all 
proteins associated with the term have that domain. We have used the 
InterPro2GO list to assess the performance of our method. 

2.5 Measures of Performance 

Each GO term has a unique decision tree trained using the set of examples from 
the training set. For each term we have a number of true positive associations 
(TP) predicted by the method, a number of all true associations in the test set 
(T), a number of positive associations (P) predicted by the method, a number 
true negative associations predicted (TN), and a total number of negative (non-
existing) associations possible  (N). We measure the overall performance of a 
method by Sensitivity=TP/T, Specificity=TN/N and Precision=TP/P where the 
numbers TP, T, P, TN, N are summed over all predicted GO term associations.  

We also can measure the average per term performance of the classifier. 
Given the limited size of training and testing sets, not all GO terms were trained 
or tested and in consequence not all tested GO terms have positive examples. 
Thus to estimate the average term performance over the complete set of GO 
proteins we also calculate the performance averaged over the GO terms that do 
have positive examples. We split the set of GO terms into parents, those terms 
that do have as children more specific terms linked with them and leaves, the 



terms that are the last nodes in the GO diagram and represent the most specific 
protein descriptors in GO. We calculate the averages for ‘parent’ and ‘leaf’4 
terms separately to check whether the method performs differently on generic 
and specific term types and whether it is affected by a small number of positive 
examples. 

3 Results 

In the initial testing of the decision tree approach we limited our predictions to 
the molecular function of the GO ontology. We have tested 12 possible settings 
of the method that split into two categories:  

1.  using synthetic negatives and synthetic supernegative examples  
2.  using binary versus integer domain representation and axis-parallel or 

oblique attribute space partition.  
Results from those tests are presented in Table 2.  We completed only one of 
four tests with the oblique mode in the time limit that we have set for the 
algorithm runtime (4 days). Performance of this test convinced us that the 
oblique search mode is not improving the performance. The standard deviations 
for Precision and Sensitivity are about 1-1.5%. The standard deviations for 
specificity are less then 0.5%. Results presented in Table 2 show that the use of 
synthetic negatives improves the precision of the method by about 15%.  It is 
also clear that the binary representation of the protein is sufficient for the best 
resolution of the GO terms and is also computationally less demanding. The 
differences in performance of axis-parallel, oblique and binary domain methods 
are not statistically significant. The use of supernegative alone is detrimental to 
the performance of the classifier. However, the supernegative in combination 
with synthetic negatives marginally improves the precision and sensitivity. The 
time runs for the algorithm are only approximate since the processors were not 
uniquely reserved for our application. 

Given relatively small training set, some GO terms have quite a small 
number of positive examples. Table 3 shows the average numbers of the 
positives, negatives, and synthetic negatives (taken from the training set of 
proteins) for the GO terms that are in the testing set. We need to note that these 
distributions are not normal. As expected, the average number of positives is 
much smaller for the leaf terms than the parent terms. However, distributions of 
sensitivity, specificity and precision do not show strong dependency on the 
number of positives or the dimensionality of the attribute space (data not 
shown). To check whether the performance is different for leaf and parent terms 
we have calculated precision, sensitivity and specificity averaged over terms in 
each of those two categories. We discuss below results for the Molecular 
Function branch of the GO graph. For the binary domain representation and 
axis-parallel method the average performance for leaves (168 leaves with 
defined testing set positives) was: Precision = 93.8 ± 21.0, 
                                                           
4 Here we mean the ‘leaves’ in the sense of ‘leaves of the Directed Acyclic Graph’, or those terms that are the most specific 

in their hierarchy and don’t have any children.  ‘Parents’ are ‘all nodes which are not leaves’. 



Sensitivity=88.6±25.3, Specificity=99.99 ± 0.07. The average performance for 
parents (321 parents with defined testing set positives) is: Precision = 88.0 ± 
24.0, Sensitivity = 81.7 ± 25.3, Specificity = 99.6 ± 4.1. This results show that 
the performance of the classifier is not adversely affected by a small number of 
positive examples. In fact the leaf terms have on average better performance as 
we can expect from the more detailed level of description given by the leaf 
terms.  Similar results are obtained for the other two branches of the GO graph. 

The comparison of our results to InterPro2GO mappings is shown in Table 
4.  We evaluated both methods using the same test set of proteins. The decision 
trees were trained using the binary domain representation with synthetic 
negatives and supernegative examples. The InterPro2GO mapping used for 
comparison was derived from the complete set of GO proteins but GO terms 
absent from our training set of proteins were not considered. The results 
demonstrated that the Decision Tree approach was more sensitive than the 
InterPro2GO mapping. The greatest improvement in sensitivity, a 50% increase, 
was achieved for the cellular component network of the GO ontology. This good 
result is not surprising since, in addition to PFAM domain information, we have 
included as attributes the information about signal peptides, transmembrane 
helices and coiled coil regions which are good predictors of cellular localization.  
Sensitivity was also substantially improved for two other networks: for the 
Biological Process the sensitivity was improved by 26.5% and for Molecular 
Function the sensitivity was improved by 22.6%. The precision of our method is 
lower than that of InterPro2GO. This, too, is not unexpected since the 
InterPro2GO mapping uses a very conservative assignment of domains to GO 
terms.  The values of precision and sensitivity averaged over leaves and parents 
(see above) suggest that the performance over a complete set of proteins 
characterized in GO should have a better precision than the ones listed in Table 
4.  

4 Discussion 

The results of our initial investigation show that the Decision Tree classification 
approach is a valid and effective method for assigning GO ontology terms to 
proteins based on the domain composition. The method tested here favorably 
compares with the InterPro2GO approach, currently the only available method 
that analyses proteins by their domain composition. A prototype web server for 
assignment of GO ontology to proteins has been designed. Figure 2 shows the 
results of assignment to GO terms based on the small training set described 
above. We note that our definition of true negatives could introduce some false 
negative assignments in the training set. This is unavoidable due to 
incompleteness of curation and the sparseness of experimental evidence. The 
excessive assignment of training examples to the set of true negatives should 
increase the count of false negatives, decreasing both sensitivity and precision of 
the algorithm.  This may account for some of classification mistakes (see Fig. 3), 



however the very good performance of the classifier justifies our definition of 
true negatives. 

We plan to run the domain assignment for all GO terms with reviewed 
annotations. This set of proteins will be used for a final training of the GO 
decision trees. Ten–fold cross-validation procedure will be used to estimate the 
performance of each tree trained for individual GO terms. The performance data 
from those experiments will be used to estimate the performance of each 
decision tree as exemplified in Figure 2. The final trees will be trained on the 
whole set of GO proteins. 

5 Tables and Figures 

 
Figure 1.  An example of two proteins sharing common domains: Connective Tissue Growth Factor 
(CTGF) and XP_194318 (similar to kielin).  Domains are: Insulin-like Growth Factor Binding 
Protein (IGFBP), Von Wlillebrand Factor C domain (VWC), Von Willebrand factor D domain 
(VWD), Trombospondin-domain 1, c-terminal cys-knot domain (CTCK). 

Figure 2. The prototype GO ontology assignment server. 
 

 Binary model Integer model 
CTGF {1, 1, 1, 1, 0} {1, 1, 1, 1, 0} 

XP_919318 {0, 1, 0, 0, 1} {0, 2, 0, 0, 2} 

Table 1.  Example of two different models of domain composition. The proteins show are the same 
as in Figure 1. The attribute space for these two proteins is D={IGFBP,VWC,TSP1, CTCK, VWD} 

 Integer domains 
Axis-parallel 

Integer domains 
Oblique 

Binary domains 
Axis-parallel 

No synthetics no supernegative
prec = 67.3 ± 1.0 
sens = 79.3 ± 1.3 
spec = 99.8 ± 0.1 

Longer than the 
runtime limit 

prec = 65.9 ± 1.0 
sens = 82.7 ± 1.3 
spec = 99.8 ± 0.1 

Using synthetics no supernegative
prec = 80.9 ± 1.3 
sens = 78.5 ± 1.3 
spec = 99.9 ± 0.1 

Longer than the 
runtime limit 

prec = 82.2 ± 1.3 
sens = 80.8 ± 1.3 
spec = 99.9 ± 0.1 



No synthetics using supernegative
prec = 26.8 ± 0.4 
sens = 80.5 ± 1.3 
spec = 99.1 ± 0.1 

Longer than the 
runtime limit 

prec = 28.0 ± 0.4 
sens = 82.3 ± 1.3 
spec = 99.1 ± 0.1 

prec = 81.1 ± 1.3 
sens = 79.9 ± 1.3 
spec = 99.9 ± 0.1 

prec = 81.4 ± 1.3 
sens = 78.8 ± 1.3 
spec = 99.9 ± 0.1 

prec = 82.6 ± 1.3 
sens = 81.0 ± 1.3 
spec = 99.9 ± 0.1 Using synthetics and supernegative 

(timed5)

time : 27 hours time : 66 hours time : 20 hours 

Table 2.  Data models’ effect on GO term prediction 

  all Leaves Parents 

Positives 28 4 67

Negatives 792 601 1113

synthetics 205 164 275

Table 3. The average numbers of positive, negative and synthetic negative examples for different 
types of GO terms. 

 
InterPro2GO Decision Tree 

prec = 91.5 ± 1.8 prec = 82.9 ± 1.3 

sens = 42.6 ± 0.7 sens = 69.1 ± 1.1 

Biological Process spec = 99.9 ± 0.2 spec = 99.9 ± 0.1 

prec = 99.8 ± 3.4 prec = 85.0 ± 1.8 

sens = 34.8 ± 1.0 sens = 84.9 ± 1.8 
Cellular 
Component spec = 99.9 ± 0.4 spec = 99.8 ± 0.2 

prec = 98.9 ± 2.0 prec = 82.6 ± 1.3 

sens = 58.4 ± 1.0 sens = 81.0 ± 1.3 

Molecular Function sepc = 99.9 ± 0.2 spec = 99.9 ± 0.1 

Table 4.  Comparison of performance of the Decision Tree classifier (binary domain representation 
and synthetic negative examples) to that of InterPro2GO PFAM-based assignments 
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