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Decoding the morphology and physical connections of all the neurons populating a brain

is necessary for predicting and studying the relationships between its form and function,

as well as for documenting structural abnormalities in neuropathies. Digitizing a complete

and high-fidelity map of the mammalian brain at the micro-scale will allow neuroscientists

to understand disease, consciousness, and ultimately what it is that makes us humans.

The critical obstacle for reaching this goal is the lack of robust and accurate tools able

to deal with 3D datasets representing dense-packed cells in their native arrangement

within the brain. This obliges neuroscientist to manually identify the neurons populating an

acquired digital image stack, a notably time-consuming procedure prone to human bias.

Here we review the automatic and semi-automatic algorithms and software for neuron

segmentation available in the literature, as well as the metrics purposely designed for

their validation, highlighting their strengths and limitations. In this direction, we also briefly

introduce the recent advances in tissue clarification that enable significant improvements

in both optical access of neural tissue and image stack quality, and which could enable

more efficient segmentation approaches. Finally, we discuss new methods and tools

for processing tissues and acquiring images at sub-cellular scales, which will require

new robust algorithms for identifying neurons and their sub-structures (e.g., spines, thin

neurites). This will lead to a more detailed structural map of the brain, taking twenty-first

century cellular neuroscience to the next level, i.e., the Structural Connectome.
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CLARITY

BRIEF HISTORICAL PERSPECTIVE

Understanding how the brain works and how it gets sick is one of the biggest scientific challenges
of our times (Alivisatos et al., 2012). Deciphering the correspondence between single-neuron
morphology and high-level brain function is thought to be the key to unraveling its mystery.

Several projects worldwide are addressing this ambitious goal (Grillner et al., 2016), as
summarized in Table 1.
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GRAPHICAL ABSTRACT | The integration of clarification methods, advanced imaging techniques, and novel image processing algorithms will allow the digitization

of a complete and high-fidelity map of the brain at micrometric and even sub-micrometric scales, for predicting and studying the relationships between its

micro-circuitry and high-level functions, as well as evaluating abnormal cell morphology in neurodegenerative and neurodevelopmental disorders.

Despite the global interest and initiatives, one of the
fundamental underlying limitations is still our ignorance about
neural architecture and Connectome in the brain. In fact, the
complete Structural Brain Connectome at the level of synapses
has been just reconstructed for the Caenorhabditis elegans’
nervous system, a worm which has as few as 302 neurons
(White et al., 1986). Unfortunately, the complete mapping of
more complex brains, such as mammalian ones, is yet beyond
our reach. The problem is even more elusive for the human
brain, since it comprises an estimated 1011 neurons with 1015

connections between them. However, it would mark a critical
milestone in the worldwide effort to profoundly explore the
function of complex neural circuits, as well as to understand
fundamental and pathological brain processes.

Light microscopy has long been one of neuroscientists’
cardinal tools for studies of cellular morphology and brain
cyto-architecture (Wilt et al., 2009). Conventional microscopy
is limited by the interaction of light with biological tissues (i.e.,
scattering and attenuation) and their intrinsic heterogeneity.
Indeed, traditionally brain tissue was cut in 10–20 µm-thick
slices for ensuring that only a small fraction of photons are
scattered (Pawley, 2010). Figure 1A sketches the workflow
adopted by the Human Brain Project researchers for digitizing
an entire human brain. Firstly, a 65 year old female human
brain embedded in paraffin was cut into 7,400 individual slices,

each measuring 20 µm-thick. These histological samples were
mounted on slides, stained to detect the cell structures, acquired
with a high-resolution flatbed scanner, painstakingly aligned, and
reconstructed, thus allowing the digitization of an entire human
brain down to the cellular level. Although the procedure results in
high image quality and diffraction-limited resolution, it is costly,
laborious, and involves tissue deformation and loss (Richardson
and Lichtman, 2015).

To overcome these setbacks, 3D fluorescence imaging using
laser scanning (e.g., confocal and two-photon microscopy)
provides the high spatial resolution necessary to resolve
individual neurons and neuronal processes at depths of tens to
hundreds of micrometers (Ntziachristos, 2010). These digital

imaging techniques, flanked by the clarification methods

recently developed for making tissues essentially transparent
(Figure 1B), further increase the depth of penetration of light in
samples (Richardson and Lichtman, 2015; Magliaro et al., 2016).

Even after the clarification step, 3D digital images representing
neurons in their native arrangement within the brain are a
challenge to process for detailing single-neuron morphology and
topology and cell-to-cell physical connections. In fact, a robust
algorithm or tool performing 3D single-neuron segmentation

and tracing from volumetric images of brain tissue is still lacking.
From a historical perspective, the majority of the algorithms
performing single neuron reconstructions are primarily focused
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TABLE 1 | Principal global initiatives aimed at studying the brain.

Starting

year

Challenge Funding

European Union Human Brain Project

(http://www.humanbrainproject.eu/)

2013 • Simulation and modeling of mice and human brains, based on a detailed neurobiological

knowledge of their parts.

• Implementation of different infrastructure platforms for high performance computing,

medical informatics, neuromorphic engineering and robotics.

300M e

Israel Brain Technologies

(http://israelbrain.org/)

2011 • Accelerate brain-related innovation and commercialization. 28M $

Japan Brain/MINDS

(http://brainminds.jp/en/)

2014 • Map the brain of a small New World monkey, considered an important step toward gaining

better understanding of the human brain.

365M $

US BRAIN Initiative

(http://www.braininitiative.nih.gov/)

2013 • Accelerate the development and application of innovative technologies and to construct a

dynamic picture of brain function that integrates neuronal and circuit activity over time and

space.

• Understand how the brain and body create our thoughts, motivations, and feelings.

950M $

on sparsely labeled data acquired from the nervous systems of
insects or worms (Wang et al., 2011; Quan et al., 2016). Thus
their application to this new class of images, usually representing
dense-packed neurons typical of mammalian brains, is limited
(Chothani et al., 2011; Wang et al., 2017; Hernandez et al.,
2018). For this reason, manual segmentation is still considered
the gold-standard.

In this perspective, the next sections summarize the tools,
techniques, and procedures developed in the past few decades
for acquiring and then identifying all the neurons and their
connections, inspiring new ideas for mapping a complete
mammalian brain Structural Connectome.

SUMMARY OF THE ESTABLISHED
PRINCIPLES

The role of cell structure in regulating cell behavior and
tissue function is well known (Brown et al., 2008). For
instance, studies have shown that neurite arborisation patterns
established during development are characteristic for particular
neuronal subtypes and relate to function. Neurite arbor
size and shape influence the integration of synaptic inputs
(Gulledge et al., 2005) and these in turn are regulated by
both intrinsic developmental programs and external signals
(Wong and Ghosh, 2002; Jan and Jan, 2003).

Moreover, the study of cell shape, complexity and size is
also vital for studying the normal development of dendritic and
axonal arbors and for documenting neuro-pathological changes.
In fact, alterations in neurite morphology have been observed
in a number of neuro-pathological conditions including mental
retardation syndromes (Anderton et al., 1998; Fatemi et al., 2012).

In view of this, new approaches to reconstruct neurons and
micro-circuitry from empirical data will aid neuro-anatomical
mapping, as well as generating more accurate models that
can be used to bridge the gap between single-cell morphology
and complex neural structures, paving the way toward making
predictions about higher-level brain organization (Budd and
Kisvárday, 2012).

CURRENT STATE OF THE ART

Segmentation Algorithms
While a detailed description of state of art algorithms for single
3D neuron segmentation and tracing certainly deserves more
than a mini-review, here we give an overview aiming at helping
neuroscientists to navigate the plethora of published works on
neuron segmentation, while underlining some fundamentals
aspects when developing new approaches. A summary of
the most popular and/or useful available tools for neuron
segmentation is reported in Table 2.

A great number of semi-automatic/automatic 3D tracing
algorithms have been proposed to enable large-scale data
collection in recent years (Türetken et al., 2011; Ming et al.,
2013; Mukherjee et al., 2013; Xiao and Peng, 2013; Yang et al.,
2013; Santamaría-Pang et al., 2015; Acciai et al., 2016; Soltanian-
Zadeh et al., 2019), and many of these were supported by
hackathon events such as the DIADEM [(DIgital reconstructions
of Axonal and DEndrite Morphology) challenge in 2009-2010
(Gillette et al., 2011) and the BigNeuron project in 2005 (Peng
et al., 2015)], during which different algorithms were compared
in terms of reconstruction quality against a manually-traced
gold-standard. Most of these are pipelines, combining several
steps of image processing, instead of segmentation algorithms
per se. In this sense, both semi-automatic and automatic
3D approaches are generally integrated into frameworks
that combine pre-processing (e.g., denoising), branch tracing,
and post-processing methods. Relevant pre-processing steps
comprise image denoising as well as deconvolution approaches.
Image denoising techniques may assume a specific model of
signal and noise according to adopted acquisition methodology,
e.g., gaussian or poisson-like, as well as exploit linear or non-
filtering, patch-based, and wavelet denoising (Kervrann et al.,
2016). Deconvolution techniques aim at restoring images after
distortion by microscopes. This operation is complicated by
several factors. In fact, while the imaging system point spread
function (PSF) is band limited, image noise is not. As a result,
image deconvolution is an ill-posed problem and requires the
adoption of regularization approaches. Moreover, the PSF may
vary across the sample and the shift-invariance approximation
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FIGURE 1 | (A) The traditional workflow adopted for digitizing an entire brain:

the sample is first fixed in formaldehyde and embedded in paraffin and then

cut in thin slices. Subsequent slices are collected, acquired using a

high-resolution scanner, and finally aligned and reconstructed. (B) A new

workflow, integrating new methods for processing the samples and advanced

3D imaging will be faster and more accurately deliver the reconstruction of an

entire mammal brain.

that is often assumed might not be valid. Different models for
deconvolution adopt a parametric model of noise and/or signal,
thus combining denoising and deconvolution steps (Sarder and
Nehorai, 2006).

While some segmentation algorithms give more freedom
in the pre-processing steps, some others act in a “black-box”
fashion, leading to an easier-to-use tool but with less flexibility.
Among them, new solutions supported by the application of
deep learning have been proposed (Mazzamuto et al., 2018;
Soltanian-Zadeh et al., 2019). However, the need of an expert,
as well as of training data for fitting the weights of connections
within the artificial neural network, can be extremely expensive.
Segmentation steps can be followed by tracing algorithms that
are developed to identify axons and/or neural branches. For
instance, graph theoretic approaches are proposed to connect
locally identified trees and generate neuronal global morphology
by optimizing a maximum likelihood global tree measure
(Basu et al., 2010).

The most popular tool for neuron segmentation from 3D
datasets is Neurolucida (MicroBrightField, Inc., Williston, VT;
Glaser and Glaser, 1990). However, it is a commercial tool,
and we do believe that one of the fundamentals of twenty-first
century cellular neuroscience should rely on open-source
sharing of tools and algorithms. In this perspective, the main
software for sharing new approaches and compare them with
existing ones is certainly Vaa3d [i.e., “3D Visualization-Assisted
Analysis,” (Peng et al., 2014)]. Originally developed for the
visualization of large amounts of data, Vaa3d became a (i)
cross-platform (i.e., Windows, Mac, Linux), (ii) modular (i.e.,
it is composed of different modules for image visualization,
segmentation, data analysis, reconstruction comparison),
and (iii) open-source suite for image analysis widely used
among researchers. Several algorithms are implemented in
this suite, allowing for instantaneous “hands-on” access to
published algorithms. Furthermore, a user-friendly interface
allows also non-expert users to access a great number of
implemented algorithms. Nevertheless, sometimes users
need their own pipelines for a successful segmentation,
making the use of customizable open-source tools preferable
(Nunez-Iglesias et al., 2014; Liu et al., 2016).

The segmented structures obtained have to be stored and
shared with other researchers labs. Moreover, researchers find
themselves struggling to manage their image data (often
terabytes) and remote access is always difficult. For these
reasons, living on-line archives (e.g., the HBP share platform,
the Allen Brain Atlas, OMERO, and DataBrain Linkert et al.,
2010; Magliaro et al., 2017a) have been developed. Data
already published and organized following template guidelines
(e.g., with the proper metadata) can be periodically added
to enrich their content. These tools are fundamental for
strengthening collaborations between neuroscientists, promoting
networking and increasing cooperation with teams with different
backgrounds, thus tackling the mapping of the Connectome.
Moreover, such databases can be a valid tool for educational and
informational purposes.

Metrics
The ability of an algorithm to isolate single cells is evaluated
comparing its outcomes with the ground truth, i.e., manual
segmentation. The comparison is performed on some specified
metric, which is basically a rule or a set of rules able to
quantitatively define the difference between the reconstruction
provided by the algorithm and the manual one. In this way,
it is possible to define “how far” the automatic reconstruction
is from the ground-truth. The ideal metric should be able to
tolerate minor differences but also strongly penalize topological
(e.g., splits/merges) and morphological (e.g., missing branches,
inaccurate dendrite thickness) disagreements.

Several metrics for assessing neuron reconstructions have
been proposed and most of them are implemented in both
Vaa3d and MATLAB-based tools (Liu et al., 2016). One of the
favorites was defined during the DIADEM challenge (Ascoli,
2009). Briefly, this metric compares two digital reconstructions
of the same neuron, evaluating the topological similarity between
specific points (i.e., the nodes) of the algorithm outcome and
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TABLE 2 | Principal state-of-art tool for segmenting neurons.

Availability URL General overview Modality Sparse/dense References

Neurolucida Commercial

(free-trial

available)

• https://www.mbfbioscience.

com/free-trials

Suite of tools for visualization,

pre-processing, tracing,

segmentation, reconstruction,

and post-processing analysis.

Automatic/

Semi-Automatic

Sparse/Dense MicroBrightField,

Inc., Williston, VT;

Glaser and Glaser,

1990

Vaa3D Free • https://github.com/Vaa3D Suite of tools for visualization,

pre-processing, tracing,

segmentation, reconstruction,

and post-processing analysis.

Automatic/

Semi-Automatic

Sparse/Dense Peng et al., 2014

Rivulet Free • https://github.com/

RivuletStudio/

(also available as Vaa3D plugin)

Tool for neuron segmentation,

tracing, and reconstruction.

Automatic Sparse Liu et al., 2016

Neutube Free • https://www.neutracing.com/ Tool for neuron tracing,

reconstruction, and visualization.

Semi-Automatic/

Manual

Sparse/Dense Feng et al., 2015

Neuronstudio Free • https://icahn.mssm.edu/cnic/

tools.html

Tool for neuron tracing and

reconstruction.

Semi-Automatic/

Manual

Sparse Rodriguez et al.,

2008

ManSegtool Free • https://mansegtool.

wordpress.com/downloads/

Tool for neuron segmentation,

reconstruction, and visualization.

Manual Sparse/Dense Magliaro et al.,

2017b

NeuroGPS Free • https://sourceforge.net/

projects/neurogps-tree/ (also

available as Vaa3D plugin)

Tool for post-processing

reconstruction of single neurons.

Automatic Dense Quan et al., 2016

Tree2Tree Free • http://www.ece.virginia.edu/

viva/suvadip_docs/Neuron/

research_neuron.html

Tool for neuron segmentation

and neural branches

reconstruction.

Automatic Sparse Basu et al., 2010

TREES Free • https://www.treestoolbox.org/

download.html

Tool for visualization, tracing,

segmentation, reconstruction,

and post-processing analysis.

Automatic/

Manual

Sparse/Dense Beining et al.,

2017

G-cut Free • https://muyezhu@bitbucket.

org/muyezhu/gcut/src/master/

Tool for post-processing

identification of single neurons

(requires already traced

structure).

Automatic Dense Li et al., 2019

of the gold standard. However, the DIADEM metrics, as well
as some others defined in the last few years, for example
by Peng et al. (Peng et al., 2011; Liu et al., 2016), cannot
be exhaustive for neuron segmentation. This is because they
only yield geometrical, skeleton-based information about the
neuron at selected points, thus neglecting important volumetric
information, such as neurite thickness or soma shape.

Attempts at describing new approaches for taking into
account the volumetric features of the neurons have been made
[e.g., the surface-to-volume ratio of 3D reconstructions obtained
both manually and through a tool/algorithm (Liu et al., 2016;
Callara et al., 2018)]. In this direction, new approaches including
volumetric information should be defined, leading to the next
generation of metrics, in which not only discrete “nodes” in the
reconstruction, but the whole segmented neuron is used for the
comparison, at both volumetric and topological levels. Obviously,
this also implies a shift in the way manual segmentation (and not
just tracing) should be done (Magliaro et al., 2017b).

HIGHLIGHT OF FUTURE DIRECTIONS

The anatomical mapping of the mammalian brain at the micro-
scale is a crucial need of the whole neuroscience community.

Here, we review the protocols and tools which can be considered
as the building blocks for this ambitious aim. The integration
of advanced imaging techniques, clearing protocols and new
robust image processing algorithms, e.g., the workflow illustrated
in the Graphical Abstract, is essential for delivering a high-
fidelity map of neuron morphology and topology as well as their
physical connections. The main roadblock in the workflow is
doubtless isolating single neurons, since a robust algorithm for
3D neuron segmentation is still lacking. In this context, we would
like to enhance the importance of isolating and quantifying the
shape and size of single neurons rather than just identifying
them from the background within a dataset. Indeed, while some
methods have been proposed for the segmentation of neurons
from clarified tissues (Mazzamuto et al., 2018), they do not as yet
yield volumetric or topological information on single neurons.

Thanks to new technologies and protocols available, the
digitization of the Structural Connectome can be enriched with
sub-cellular details at a level that could not be previously
achieved. In particular, the recent development of new
fluorescence-based labeling techniques, such as those exploiting
membrane probes, allow plasma membrane staining with
excellent contrast in single, and double photon imaging.
Among them, MemBright fluorescent membrane probes
allow neuronal imaging through live, confocal and Stochastic
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Optical Reconstruction Microscopy (STORM) microscopy
(Collot et al., 2019). These approaches are especially powerful
when combined with super-resolution imaging, which can
improve the spatial resolution of imaging by over an order of
magnitude (i.e., down to tens of nanometers). As an example,
whole-cell super-resolution imaging (Legant et al., 2016) and
super-resolution optical fluctuation imaging (SOFI) (Duwé
and Dedecker, 2017) can be employed for producing images
of the full 3D cell architecture with a resolution of 50 nm. An
algorithm able to deal with such a variety of datasets will speed
up neuro-anatomical mapping in mammalian brains even at
sub-micrometric resolution, as well as generating models usable
for making predictions about higher-level brain organization.

Clearly, an integrated multi-disciplinary approach supported
by open science principles could accelerate progress in this
challenging field.
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KEY CONCEPTS

Key Concept 1 | Structural Brain Connectome
The Structural Connectome is a comprehensive map of
all the neuronal cells in their three-dimensional (3D)
native arrangement and of their physical connections
within the brain. Mapping the brain at cellular and sub-
cellular resolution is crucial for fully understanding the
mechanisms shaping higher level brain functions and
for evaluating the morphological abnormalities related
to neuropathies.

Key Concept 2 | Digital Imaging
3D digital imaging is based on sampling successive points in a
focal plane to reproduce the spatial distribution of endogenous
or exogenous fluorescent probes within a sample. The resulting
continuous fluorescence is collected by a detector and converted
into a digital image with discrete grey levels through a process
known as quantization.

Key Concept 3 | Tissue Clarification Methods
The mix of components of small size (e.g., proteins, lipids, and
pigments) composing a biological tissue has different refractive
indices. As a result, their interaction with light leads to scattering
and absorption phenomena, limiting imaging at cellular and
sub-cellular resolution to depths of a few micrometres. Clearing
methods aim at reducing tissue opacity by homogenizing
refractive indexes to limit refraction and diffusion phenomena,
without damaging the cells.

Key Concept 4 | 3D Neuron Segmentation and Tracing
3D segmentation is the process of neuron identification in a
digital image stack preserving its volumetric information (e.g.,
neurite thickness and soma volume). 3D tracing just determines
the pathway of the neurites, focusing on arborisation topology.
The standard formats for storing and sharing tracing outcomes
are ∗.swc and ∗.asc files, which provide spatial information at
some points of interest (e.g., neuron nodes). No similar standards
exist for 3D segmentation.
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