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Abstract 

Distributed computing continuum systems (DCCS) make use of a vast number of 
computing devices to process data generated by edge devices such as the Internet of 
Things and sensor nodes. Besides performing computations, these devices also pro-
duce data including, for example, event logs, configuration files, network management 
information. When these data are analyzed, we can learn more about the devices, such 
as their capabilities, processing efficiency, resource usage, and failure prediction. How-
ever, these data are available in different forms and have different attributes due to the 
highly heterogeneous nature of DCCS. The diversity of data poses various challenges 
which we discuss by relating them to big data, so that we can utilize the advantages 
of big data analytical tools. We enumerate several existing tools that can perform the 
monitoring task and also summarize their characteristics. Further, we provide a general 
governance and sustainable architecture for DCCS, which reflects the human body’s 
self-healing model. The proposed model has three stages: first, it analyzes system data 
to acquire knowledge; second, it can leverage the knowledge to monitor and predict 
future conditions; and third, it takes further actions to autonomously solve any issue 
or to alert administrators. Thus, the DCCS model is designed to minimize the system’s 
downtime while optimizing resource usage. A small set of data is used to illustrate the 
monitoring and prediction of the performance of a system through Bayesian network 
structure learning. Finally, we discuss the limitations of the governance and sustainabil-
ity model, and we provide possible solutions to overcome them and make the system 
more efficient.

Keywords: Distributed computing continuum systems, Big data analytics, Governance 
and sustainability, Self-healing, Representation learning, Bayesian network structure 
learning

Introduction
In the past decade, a large number of resource-constrained computing devices, such as 
the Internet of Things (IoT), have been used in a wide range of applications. As these 
devices have limited resources, edge and cloud devices are added to the systems to per-
form larger computations. Depending on the computational effort, low-level devices 
(edge) are dependent on high-resource devices (cloud), which enables the edge-to-cloud 
continuum [1]. We refer to the entire system as Distributed Computing Continuum 
Systems (DCCS) [2]. DCCS are more complex than current cloud systems because of 
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(amongst others) the heterogeneity of devices, unpredictable data sizes, geospatial dis-
tribution, varying network rates, resource federation [3].

In DCCS, tasks are divided into smaller chunks and distributed across a network of 
computing resources. These tasks take advantage of the combined processing power and 
resources of all the devices in the network [4, 5]. To coordinate their tasks efficiently, a 
system must manage the allocation of tasks to the available resources and the flow of 
data between the different devices [6]. There exist various computation and task offload-
ing techniques in the edge-to-cloud continuum with their pitfalls [7–11]. Still, there 
remain several issues to solve in order to make DCCS more efficient and dynamic [12, 
13]. However, the performance of DCCS not only depends on the efficiency of the com-
putational or task offloading techniques but also the condition of the device. Specifically, 
this refers to whether DCCS can handle current workloads, provide reliable function-
ality, network connectivity, adequate energy supply, and identify other potential issues 
that may arise. Thus, DCCS devices need to be monitored to ensure minimal downtime, 
as well as to improve efficiency by utilizing resources efficiently.

Monitoring every single device in DCCS is nearly impossible, thus, there is a need for 
automated tools that use device data to monitor the system. Although there are some 
tools in the literature for monitoring IoT devices (refer Sect. "Existing solutions or tools 
for IoT monitoring"), they are not sufficient for the entire DCCS. Thus, novel tools 
and methodologies are needed to monitor the entire DCCS through efficient govern-
ance models to achieve long-term sustainability. However, the IoT tools in the literature 
are used to monitor, analyze data, and provide notifications or visualizations about IoT 
devices. To take appropriate action, these notifications require a manual analysis, which 
is complex and prone to errors.

DCCS requires a governance and sustainability framework that can monitor the entire 
system and predict upcoming failures to minimize the downtime of the system. In addi-
tion, this model minimizes human intervention and acts autonomously to resolve issues. 
The proposed general governance and sustainability model is based on the self-healing 
mechanism of the human body, due to the body’s capability of diagnosing and healing 
issues on its own. The human body contains many cells that are used to diagnose and 
treat diseases, similarly, our model analyzes the data from each device to identify and 
predict issues. The heterogeneity of the devices in DCCS and the diversity of the data 
associated with them further complicate the process to analyze the data with limited 
resources. Within this paper, we discuss all of these challenges and suggest alternative 
solutions to analyze such complex data. This framework uses Representation Learn-
ing (ReL) to understand causal relationships, which helps identify or predict faults or 
failures of devices. Additionally, the ReL can assist in identifying the root cause of fail-
ure or faults. The identified issues are immediately visualized through Graphical User 
Interfaces (GUIs). Further, the appropriate administrator is informed, or issues are auto-
matically resolved. We introduced SLOs (Service-level objectives) [14, 15] to check the 
reliability of our framework.

Motivation

The self-healing power of human beings creates a dynamic equilibrium for the deprived 
body. With the self-healing mechanism, one can endure for a long time The human body 
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has a brilliant self-repair system that kills cancer cells, attacks infectious agents, repairs 
broken proteins, keeps coronary arteries open, and prevents aging naturally [16]. Con-
sider the simple case of how the human body heals a cut on a specific part of our body, 
such as a finger [17]. The human body heals the wound in four stages which include 
rapid hemostasis (bleeding control), appropriate inflammation, proliferation (repairing 
tissues), and reshaping (maturation of tissues) [18]. Each stage is associated with key 
molecular and cellular events as well as a multitude of secreted factors that coordinate 
them.

During the initial phase of hemostasis, blood cells are restricted from moving through 
the vessels. When a blood vessel breaks, platelets adhere to each other to seal the open-
ing. During the inflammatory phase, the body’s repair and healing cell moves to the site 
of the wound to protect it from infection. Bacteria, pathogens, and damaged cells are 
eliminated during this phase. As a result of inflammation, swelling, pain, and redness 
are caused by several white blood cells, enzymes, nutrients, and growth factors. A third 
phase of the process is proliferation, which is responsible for ensuring that newly formed 
blood vessels provide enough nutrients and oxygen to the granulated tissue. In the final 
reshaping process, the wound is closed and the collagen is reshaped as it was originally. 
Additionally, this phase removes dead skin cells and thickens the skin where the wound 
was inflicted [19, 20]. DCCS can also be modeled as a self-healing system, similar to the 
human body, by acting autonomously [21].

This paper models a self-governing and sustainability conceptual framework with 
action capabilities that are similar to how human bodies heal themselves. Governing 
DCCS must consider their current state and behavior. Hence, this is achieved through 
continuous monitoring and state forecasting based on the analysis of data collected from 
the devices. However, analyzing DCCS data is challenging due to the complexity associ-
ated with its data structure, and the heterogeneity of the devices. This paper presents 
the challenges associated with DCCS’ data and provides the simplest ways to minimize 
downtime through governance and sustainability. The contributions of the paper are 
summarized in Sect. "Contribution" .

Contribution

The major contributions of this article are summarized as follows: 

1 In this paper, we proposed a general conceptual framework that can be used for 
developing new architectures and tools that sustainably operate for a longer period 
with minimal downtime through the efficient governance of DCCS. The governance 
and sustainability framework helps continuously monitor and predict DCCS’ behav-
ior, and heal the system if misbehavior’s detected. In the end, we also summarize the 
challenges associated with this conceptual framework.

2 To the best of our knowledge, this is the first proposed framework in the literature to 
monitor the entire DCCS.

3 This paper provides an illustrative example of how Bayesian Network Structure 
Learning (BNSL) can be used in governance and sustainable architectures to monitor 
or predict DCCS’s behavior.
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4 Finally, we suggest possible add-ons to the governance and sustainable DCCS con-
ceptual framework to improve the efficiency of the DCCS.

Organization

The remaining sections of this article are arranged as follows: In section "Background", 
we present information about the data sources, data types, and formats in DCCS. Fur-
thermore, we present various challenges that arise due to the data heterogeneity and dif-
ferences between manufacturers. In addition, we describe how DCCS’ data matches the 
characteristics of Big Data. Section "Problem definition" provides the problem definition 
and the importance of the proposed governance and sustainable conceptual framework 
for the near future. Section "Existing solutions or tools for IoT monitoring" discusses 
the most common tools available in the literature to monitor IoT networks, we examine 
these tools and summarize their benefits and limitations. Section "Proposed governance 
and sustainability framework" provides the proposed general model for the govern-
ance and sustainability of DCCS. Future research directions are covered in Sect. "Future 
research directions" . Finally, we conclude the paper in Sect. "Conclusion" .

Background
In this section, we present the data associated with DCCS and its relationship to big 
data. In the beginning, we provide information about data sources, the varieties of data 
types, and formats in DCCS. Furthermore, we discuss various challenges that arise due 
to the heterogeneity of devices, and the diversity of device manufacturers. We briefly dis-
cuss big data and its advantages. Finally, we discuss how DCCS’ data challenges match 
the characteristics of Big Data.

Distributed computer continuum systems

DCCS are composed of a large number of heterogeneous computing devices, which per-
form large computations by coordinating their resources. The overall infrastructure of 
DCCS is highly scalable, flexible, and resilient to perform these computations effectively 
[22, 23]. During these computations, each device produces a vast amount of data, which 
is discussed in the following subsections.

DCCS’s Data

In general, the data in DCCS will be in various forms, such as numerical, categorical, 
or structured data, but also raw or multimedia data. All these forms of data are distrib-
uted and processed by multiple devices across the systems. Depending on each device’s 
capacity, either they can process complete data or a portion of the data. Delay-aware 
applications (e.g., industrial, medical, and transport) can partition the data among multi-
ple devices for quick analytics.

Source of DCCS’s data

There is a variety of computing devices involved in DCCS, which analyses data from 
different sources. Besides that, each device in DCCS also maintains a variety of data in 
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different formats, including e.g., custom log files, information about the network and 
devices, and location information. These data formats are elaborated as follows: 

Custom Log metrics:  The data available in the log files can be used for debugging, 
troubleshooting, monitoring, analysis, etc. Each device in 
DCCS maintains its own log file and notes each activity timely. 
While extracting the log files, one can extract the device meta-
data (e.g., manufacturer, model, serial number, supported 
data formats), specific events of the device, and its timestamp, 
error, or warning messages. However, multiple heterogeneous 
devices involved in DCCS follow different formats for their log 
files (e.g. CSV, JSON, or XML), thus, we can only expect the 
same format or attributes from similar devices in the DCCS. 
E.g., log files of Arduino, Raspberry pi, and a cloud machine 
are expected to be in the same format as shown in Fig.  1. A 
study on log files useful for Intrusion Detection in a system is 
discussed by Landauer et al. [24] and Alsaedi et al. [25].

Network information:    Information related to the network connection (e.g. Internet 
or Bluetooth) is another important data source, which pro-
vides details about the supporting communication or the net-
work configurations. Especially in DCCS, this information is 
stored differently depending on the device type or its manu-
facturers. Some devices in DCCS have their network configu-
ration details hard-coded into their firmware, so they cannot 
be changed. E.g., medical devices, such as smart inhalers or 
wearable fitness trackers are hard-coded to connect to Blue-
tooth or the Internet to transmit data or receive updates from 
mobile phones. Similarly, under this category comes smart 
home devices such as smart thermostats, security cameras, 
and smart plugs. In DCCS, another way to store the network 
configuration settings is through stored files (e.g., the static 
network configuration of Raspberry pi is available in ‘/etc/
dhcpcd.conf’) or store the network configuration details 
in the database of a particular device or server. E.g., the Rasp-
berry pi dynamic and static network configuration information 
stored in ‘/etc/wpa_supplicant/wpa_supplicant.
conf’, and ‘/etc/dhcpcd.conf’, respectively, and they 
are depicted in Fig. 2.

Hardware information:  Most of the devices participating in DCCS are resource con-
strained. There are limitations on their hardware in terms of 
microcontrollers, battery capacities, Radio Frequency (RF), 
and ports. The hardware configuration information is stored in 
a file in each device, e.g., Raspberry pi maintains all its com-
ponents information using a file located at the path ‘/boot/
config.txt.’ This file contains information related to the 
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Fig. 1 Example for System log files of different devices in DCCS a Arduino b Raspberry Pi (c) Cloud server

Fig. 2 Example for Network configuration information of Raspberry Pi a Dynamic b Static
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hardware, such as input/output settings, multimedia (audio/
video) support, HDMI display setting, supporting resolutions, 
the bus and its speed, and GPU information (if any). Through 
this file, one can adjust the settings as necessary for the need of 
an application. This information helps in deciding whether the 
device can participate in the computation or needs to transfer 
the data to a different device with higher resource availability. 
It is essential to monitor these settings as inappropriate con-
figuration values can cause the device to become unstable. The 
information about energy availability and usage is an addi-
tional important metric for the DCCS devices, because most 
of them are operated through external energy sources. These 
values are grasped using separate power monitoring meters or 
software-based solutions.

Device location:  The locations of all devices contained in the DCCS are essen-
tial because they determine how well the devices can commu-
nicate with other devices. A device location is considered in 
two ways: Physical location and logical location. The device’s 
physical location is represented with geographic coordinates, 
which are notated using longitude and latitude. This data 
can be fetched from the metadata or the server’s database. 
In the case of mobile devices (e.g., autonomous vehicles), a 
GPS tracker is attached to track their physical locations. The 
logical location indicates the device’s location in the network, 
such as topological order or IP address. The logical loca-
tion of a device is stored in the ‘/etc/hosts’ (static hosts), 
which helps to identify whether the device is active or not. 
The pointing direction of a device is also crucial for some 
applications, such as camera devices for surveillance.

Challenges of DCCS’s data

The data of DCCS are in different formats and they lead to further complications in ana-
lyzing and extracting knowledge from it. These challenges are categorized as follows: 

High non-linearity among attributes:  Due to the heterogeneity of the devices in 
the DCCS, there are huge diversities in their 
attributes. Even though some devices are 
homogeneous, but the data in DCCS is diver-
sified in terms of usage patterns, performance 
metrics, etc., over time. These attributes 
cause non-linearity, which leads to complex-
ity in identifying the relationship between 
the dependent and independent attributes. 
For example, throughput and cost of Vir-
tual Machines (VMs) in an elasticity-ena-
bled cloud are non-linear [26]. However, the 



Page 8 of 31Donta et al. Journal of Big Data           (2023) 10:53 

workload and cost of VMs are linear when 
considering the pay-as-use principle.

Sparsity:  The sparsity in DCCS’s data indicates the una-
vailability of specific data, missing any details 
or the data contains only zeros. It can also be 
defined as the data in which only a small frac-
tion of it is useful; extracting useful informa-
tion out of sparse data is a challenging issue. 
It is more complicated when the datasets 
are non-linear, e.g., Fig.  1 depicts the same 
devices participating in DCCS tasks having 
different forms of logs whereas some of the 
attributed information from Fig.  1a, b, and 
c are not common. These sparse data make 
it difficult to perform analytics. Yuejie et  al. 
in [27] provide an approach using atomic 
norm minimization to harness sparsity over 
the continuum. Federico et  al. [28] provide 
a detailed study on sparse and dense data in 
IoT.

Structure breaking:  The structure of all the systems data in DCCS 
is not similar. It is a combination of databases, 
file systems (e.g. configuration or setup files), 
semi-structured data, and sparse data. An 
advantage of using structure breaking is that 
it is easy to modify or analyze the data. Since 
we are working with the whole system, it is 
necessary to preserve the structure of systems 
data. Structure-preserving models are char-
acterized by preserving explicit properties 
of their counterparts in their discretizations. 
But, preserving the structure of DCCS’ data is 
challenging.

Explanatory factors across the systems:  Since the DCCS’ data contains non-linearity, 
sparsity, and structure breaking, it also con-
tains explanatory factors across the systems. 
These explanatory factors help to mini-
mize the number of computations required 
to make the decisions in the systems. For 
instance, if the response from a device is 
not received for a while, our analytics can 
guess either the device is down due to lack 
of energy or disconnected from the Internet. 
In the same case, the device is responding 
for some time and not responding at other 
times, this indicates that the networking of 
the particular device is faulty. In case, the 
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device does not respond completely for a 
longer period, this may be due to the drain of 
complete energy. The explanatory factors are 
of different types:   

 Simple explanatory factors:  These explanatory factors show a relationship 
between a maximum of two dependent variables. 
For example, consider Packet_loss and Through-
put as variables. Decreasing the Packet_loss in 
the system increases the Throughput. Simple 
explanatory factors help to break large and com-
plex systems into simpler ones.

Multiple explanatory factors :  These kinds of variables have a relationship 
between multiple dependent attributes. The 
effect of one variable affects multiple other varia-
bles. Consider, e.g., variables such as Packet_loss , 
Buffer_usage , and Delay: the overflow of Buffer 
affects multiple other attributes such as increases 
Packet_loss and Delay. Hence, changing a vari-
able directly affects multiple other variables.

Hierarchical explanatory factors:  These kinds of factors are dependent hierar-
chically. Which indicated the effect on variable 
x causes an effect on y, the effect on variable y 
causes an effect on z, and so on. For e.g., sharing 
the same portion of data to multiple devices in 
DCCS cause additional wastage of energy and 
computational resources. Additional resource 
utilization cause Delay to compute the data 
available for analytics in the queue. Longer 
waits in the queue may cause buffer overflows. 
Buffer overflow causes increased Packet_loss , 
and increased Packet_loss causes lowing 
Throughout, and so on.

To overcome all the above challenges, an efficient analysis model is required to extract 
useful information for further decision-making, and Big Data Analysis is a great solution 
for such a purpose.

Big data and its characteristics

A vast number of machines and humans interacting with them continuously generate 
structured, semi-structured, or unstructured data. These massive amounts of data can-
not be handled through conventional storage or processing approaches[29]. Big data is 
a term used to describe an immense amount of data that is too complex and too large 
to be processed and analyzed using traditional data processing tools [30]. Big data has 
become increasingly important in recent years because it allows organizations to gain 
insights from this data. By analyzing large volumes of data, organizations can uncover 
hidden patterns, correlations, and trends that can help them make better decisions and 
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improve their operations [31]. It is generated by a variety of sources, such as sensors, 
social media, agriculture [32] and transactions, and it is typically stored in distributed 
systems such as Hadoop or NoSQL databases. Because of its size and complexity, big 
data requires specialized tools and techniques to process and analyze the data, such as 
machine learning (ML) and distributed computing. Big data is often characterized by 
the 5Vs: volume, velocity, variety, value, and veracity [33, 34], which are summarized as 
follows: 

Volume:   The basic characteristic of Big Data is that large amounts of data are gener-
ated or made available or stored for computations.

Velocity:  The velocity is defined as the speed of the streaming data [35]. As DCCS’ 
data is streaming and changing every unit of time, this metric refers to the 
speed at which the data is generating or changing. This metric also refers to 
the movement of the data from one device to another.

Variety:  It is termed as different types of data that are available or generated for 
computations. This means that the data is a combination of all structured, 
semi-structured, and unstructured data which can be stored or meant for 
computation.

Value:  This characteristic is related to a specific application. This refers to a poten-
tial value (insights) that can be achieved through analysis, and it is useful to 
make efficient decisions depending on the applications.

Veracity:  This refers to the consistency, reliability, quality, or accuracy of the data. 
Sometimes, there is missing or inconsistent information in the given input 
data, which cannot provide deeper insight after analysis. In short, this char-
acteristic defines the level of trust in the DCCS’ data.

Characteristics such as Value and Veracity help to gain insights and achieve the quality 
of the big data.

How does DCCS’s data meet big data characteristics?

When we compare the challenges of DCCS’s data discussed in subsection  such as non-
linear, sparsity, explanatory factors, and structure breaking, we can claim that it satisfies 
the 5Vs of big data.

Multiple and vast numbers of devices are involved in DCCS, and each device is associ-
ated with its data. When data from all devices are combined, it will become large vol-
ume of data [22, 36, 37]. The challenge of structure breaking in DCCS’s data (which are 
in the form of file (unstructured/semi-structured), database (structured), etc.) implies 
the nature of Variety characteristic of big data. The Explanatory challenge factors across 
the systems refer to the dependencies or linearity among multiple attributes in the sys-
tem’s data. This characteristic of DCCS’s data allows us to gain insights, achieve mean-
ingful, reliable, or trustable data. So, this challenge of DCCS’s data satisfies the Value 
and Veracity characteristics of big data. Since the DCCS are dynamic and operated in 
real-time, most of the metrics or data associated with each device change frequently. 
This dynamically changing data is called as streaming data which is also to be analyzed. 
In contrast, the streaming data must meet the characteristic of Velocity of the big data. 
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So, we can claim that the data associated with the DCCS’ devices meet all the Big data 
characteristics.

Problem definition
DCCS performance depends on resource efficiency, but also on maintaining device 
health. For example, each device is properly connected to the network, buffer usage is 
appropriate, functionalities are reliable, able to handle assigned workloads efficiently, 
etc. These conditions are continuously monitored and ensure minimal downtime to 
achieve maximum efficiency out of DCCS. These are more complex than a current 
Cloud-based systems because of the vast amount of heterogeneous devices, data sizes, 
geospatial locations, communication channels, etc. Monitoring each system manually is 
nearly impossible. Also, to the best of our knowledge, there is no system or tool available 
in the literature to fulfill this task.

In this context, we propose a conceptual framework to monitor the entire DCCS 
autonomously. Our framework addresses efficient decision making, and provides self-
healing strategies to achieve long-term system sustainability. It is able to analyze the data 
associated with each device and make decisions in terms of the health condition of the 
device. Through a self-healing mechanism similar to the human body, the fault or fail-
ure in the system is autonomously healed. But, there are several challenges associated 
with DCCS’s data, which are summarized in Subsection  . However, we have alterna-
tive solutions to mitigate these challenges. By considering all these challenges, DCCS 
are continuously monitored and predictive analytics are provided through the proposed 
governance and sustainable conceptual framework. There are several advantages of 
using the proposed governance and sustainable conceptual framework are discussed as 
follows:   

Early detection of fault or failures:   The continuous monitoring of the entire DCCS 
help to identify fault or failures before they might 
occur in the system.

Performance enhancement:   The monitoring framework can help to identify 
bottlenecks in DCCS, so it is easy to rectify them 
to improve the performance of the system.

Scalability:   The Framework allows to handle a large amount of 
data and provides insights into complex data.

Efficient resource utilization:   Through predictive analytics, it is possible to 
optimize resource utilization such as bandwidth, 
buffer, and computing capabilities.

Existing solutions or tools for IoT monitoring
There are several tools used in the literature to monitor IoT devices. However, each 
tool has its own limitations and benefits. Some of the currently used popular tools are 
summarized in Table 1. In Table 1, we summarize prominent features including cloud-
based, visualization, scalability, security, complexity and open source or commercial. 
As we noticed, except Particle all other tools listed in this section are cloud-based. 
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Visualization identifies whether the tool can visualize the analyzed result to identify 
and monitor faults. Scalability shows whether the tool can provide services if any newly 
added devices included in to the existing IoT system. The security feature indicates 
whether the tool provides secure data analytics or not. Complexity means how much 
computational resource or time is needed to analyze monitoring data. Here, high indi-
cates the tool needs more computational capabilities to analyze, and vice versa. Open 
source refers to whether the tool is available for free use or commercial. Following is a 
further discussion of each tool.

Domotz:  This is a cloud-based remote network monitoring tool 
to sustain the network as long as possible by trou-
bleshooting issues. Domotz can monitor the perfor-
mance of large networks and their configurations, and 
if any malicious behavior is identified alert them to the 
administrators.

Datadog:  This tool collects and analyzes business data along with 
device data to identify the performance and health of 
the device. Datadog supports multiple cloud platforms 
(e.g. Google, Azure, AWS), and is also available in multi-
ple languages such as Python, PHP,.NET, Ruby, etc.

Particle:  It is an edge-to-cloud IoT platform that monitors the 
device’s health remotely and mitigates any rogue emis-
sions identified in an event log file. This tool can identify 
the root cause of data leaks, if any, and notify the admin-
istrators immediately.

MetricFire:  This is an open-access tool for monitoring IoT devices, 
which are located either locally or in a remote cloud 
system. This tool uses Graphite to acquire the data and 

Table 1 List of available centralized/remote IoT device monitoring tools

Tools Cloud-based Visualization Scalability Security Complexity Open source

Domotz [38] � � × � High ×

Datadog [39] � � � × High ×

Particle [40] × × � × Medium �

MetricFire [41] � � × × Low �

ThingWorx [42] � � × × Medium ×

Splunk [43] � × � × High ×

Senseye PdM [44] � × × � Medium ×

SkySpark [45] � � × × Low �

Oracle IoT [46] � × × × High ×

AWS IoT Monitoring [47] � � × × Medium �

Salesforce IoT Cloud [48] � × � × Low ×

Azure IoT Suite [49] � � × × Medium �

IBM Watson IoT [50] � × � × High ×

TeamViewer IoT [51] � � × � High ×
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visualize the performance of devices. MetricFire can 
work in any network size of edge devices and provides 
user-friendly visualization to identify the issues quickly 
by the administrator.

ThingWorx:  This is a cloud-based remote monitoring tool that is 
designed for Industrial IoT for predictive maintenance. 
ThingWorx can monitor irrespective of the number of 
devices in the network.

Splunk:  This tool acquires device data and extracts insights to 
identify the device functionalities and keep informing 
the administrator of performance gaps to enable effec-
tive troubleshooting. Splunk analytics provides custom-
ized metrics that can be visualized to the user through 
different tools.

Senseye PdM:  This is a cloud-based remote monitoring tool for Indus-
trial IoT devices; it provides predictive maintenance 
through AI/ML-based algorithms. Senseye PdM is effi-
cient in producing valid predictions which include the 
lifespan of a machine. This tool can support Microsoft 
Azure cloud. However, this tool is not efficient for a 
small network with a limited number of IoT devices.

SkySpark:  This is an open analytical platform to perform the ana-
lytics of the data collected from the sensors, extract 
insights, and visualizes these insights to the user.

Oracle IoT:  This tool is designed for industrial IoT device monitor-
ing based on data collected from devices. Oracle IoT can 
be connected to Oracle apps to visualize the devices’ 
metrics.

AWS IoT Device Monitoring:  This tool can monitor irrespective of the number of 
devices in the network and support multiple IoT appli-
cation protocols including HTTP, MQTT, and Web-
Socket (more about these protocols can be found in 
Donta et al. [52]). This tool can run centrally in the AWS 
cloud platform, and provide secure networking.

Salesforce IoT Cloud:  This tool acquires business and device data through 
RESTful and API for further analysis.

Microsoft Azure IoT Suite:  This is a cloud-based intelligent remote monitoring tool 
that diagnoses edge devices, provides customized met-
rics, and visualizes them through various tools including 
digital twins. This tool can support irrespective of the 
size of the edge devices.

IBM Watson IoT:  This is one of the IoT device health monitoring plat-
forms. IBM Watson IoT monitors the functionalities, 
connectivity, and availability of edge devices through 
AI-based data analytics. This tool works intelligently and 
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supports cognitive computing approaches to enhance 
decision-making efficiency. This tool supports the IBM 
cloud.

TeamViewer IoT:  This tool acquires data from industrial IoT devices and 
monitors the devices remotely and ensures the security 
of IoT devices.

All the tools discussed in this section monitor only a specific part (IoT devices), but 
not the entire structure of DCCS. Moreover, most of these tools monitor the software or 
hardware of a specific IoT device, but not their connectivity and network issues. To the 
best of our knowledge, there are no tools available in the literature to monitor the entire 
DCCS. Also, no self-healing mechanisms were implemented for tools summarized in 
Table 1. Thus, there is a need to have an emerging tool to fill this gap.

Proposed governance and sustainability framework
In this section, we define a general framework for monitoring and predicting system 
performance and its condition continuously. We also define necessary actions to take 
place automatically or manually to maintain a minimal downtime of DCCS. The general 
framework for the proposed DCCS governance and sustainable model is presented in 
Fig. 3. In this model, there are multiple phases including data acquisition from devices, 
representation, knowledge extraction, monitoring DCCS, forecasting troubles, notify-
ing or visualizing troubles to administrators, and taking corrective actions on their own 
or through administrators. In this section, we also provide an illustrative example for a 
better understanding of the proposed governance and sustainable architecture through 
BNSL. Lastly, this section concludes with a discussion of challenges imposed by DCCS 
sustainability and governance process.

Data

In the current digital age, data plays a crucial role in several fields e.g., Business, Health-
care, Industry automation, Education, and DCCS data is not an exception. DCCS 
applications use business data analytics, but the data associated with the devices is 
usually ignored. There is a lot of data available or generated by each device, which will 
be discussed in Subsection   and it comes in different formats. These data can be used 
as input to the governance and sustainability model to perform efficient monitoring 
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Fig. 3 The proposed governance and sustainability conceptual framework for DCCS
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and predictions about the DCCS condition. Since DCCS data is in different formats 
(unstructured), various methods are mentioned in the literature to convert it to struc-
tured data such as data modeling, text mining [53], data wrangling [54, 55], natural lan-
guage processing, etc. Evaluation metrics such as detection accuracy or false alarm rates 
require ground truth tables that assign labels unambiguously to all events. Moreover, big 
data analytics tools can perform them without having to convert data from unstructured 
to structured form [56, 57].

Because DCCS data poses several challenges (subsection  ), it leads to regular issues 
in ML datasets such as missing values, high dimensionality, label imbalance, lack of 
generalization, and noisy data. Several methods have been proposed in the literature to 
mitigate these challenges, including feature engineering, data preprocessing, data aug-
mentation, and dimensionality reduction [58]. Nevertheless, addressing these challenges 
requires additional computing resources, which is a complex task for constrained edge 
devices in DCCS (since we are distributing the loads among various parts of the sys-
tems). In addition, it requires knowledge of data that is being converted from unstruc-
tured to structured. Here, representation learning plays a significant role in extracting 
the underlying features from unstructured and non-linear data, which helps to mitigate 
the challenges discussed in subsection .

Learning representations from data

Many preprocessing approaches have been proposed in the literature for mitigating 
missing, noisy values, outliers, and inconsistent details within the given data. They are 
efficient at performing these tasks but they do not ease the extraction of knowledge from 
them. So, learning data representation makes the knowledge extraction process easier 
and helps to build efficient predictors and classifiers. The ReL strategies consider a vast 
amount of data and perform multiple transformations to extract useful information 
from it [59]. They also represent it in a way that is easily accessible, such as through 
graphs. There are several benefits of using representation learning including scalabil-
ity, structure preservation, information preservation, data sparsity, and easy-to-identify 
explanatory factors among the data [60, 61]. Due to these reasons, learning represen-
tation approaches are used in several applications such as Natural Language Process-
ing (NLP), speech recognition, and signal processing [62]. To simplify the process of 
knowledge extraction, we should also consider learning representation for resource-con-
strained devices, such as DCCS [2].

DCCS data contain several complexities which are discussed in Sect.  "Challenges of 
DCCS’s data", while representation learning can handle all of those complexities. In 
addition, ReL can minimize manual preprocessing or data modeling time. It reduces the 
dimensionality of data and compares large amounts of data to useful features. ReL can 
remove inconsistencies, noisy or outlier values, and recover missing values from the data 
during this process. Because the dimension is lowered, learning algorithms require less 
effort to analyze and produce knowledge. On the other hand, the best useful features 
help to improve the accuracy of the results. There are several ReL algorithms in the lit-
erature, and the most popular are Graph Representation Learning (GRL), Contrastive 
Representation Learning (CRL), Bayesian Network Structure Learning (BNSL), Matrix 
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factorization, Random walk learning (RWL), Deep walk, etc [23]. We present an illus-
trative example to better understand how ReL (through BNSL) can generate structures, 
which further supports knowledge discovery.

Illustrative example

We provide an illustrative example to better understand a ReL of the proposed govern-
ance and sustainable model. In this example, we consider simple data and monitor the 
performance of DCCS using a ReL approach called Bayesian network structure learn-
ing. We thought of simplified values of five devices (device1 to device5 ) and four perfor-
mance metrics (Throughput (TH), Buffer usage (BU), Packet loss (PL), and Delay (DE)), 
as shown in Eq. (1). Using these values, we learn the representation of the metrics and 
decide how they are causally related to each other. The values in Eq. (1) are represented 
with binary values, in which the value one (1) indicates the device is performing well (i.e., 
meets the threshold), whereas zero (0) indicates the device does not meet the threshold. 
e.g., the throughput of device4 is poor, and the remaining devices are performing well. 
Similarly, the BU of device3 is under the threshold when compared with the remaining 
devices, and meets the threshold for the remaining three metrics, throughput, packet 
loss, and delay.

We consider the BNSL approach and build the relations among the metrics according to 
the data given in Eq. (1). The BNSL provides a learned structure in the form of a knowl-
edge graph specifically a Direct Acyclic Graph (DAG), helping to identify the relation 
between the direct and indirect correlations [63, 64]. Since BNSL can be used in con-
strain-based or score-based, in this paper we consider a score-based approach [65]. The 
score metric for a structure G and data D can be generally defined as shown in Eq. (2)

where the first term LL(G, D) indicates the log-likelihood of the data under DAG struc-
ture G. The second term is used for regularization, i.e., Bias Regularization. One of the 
popular Bias regularization functions is −φ(|D|)× ||G|| , which is known as neutralized 
function.

Here the first term, i.e. φ(|D|) is calculated using Eq. (3)

where |D| indicates the number of data points. The φ(|D|) is known as the Bayesian 
Information Criterion (BIC). With the BIC, the influence of model complexity decreases 
as |D| grows, allowing the log-likelihood term to eventually dominate the score.

(1)

device1
device2
device3
device4
device5

Th BU PL De










1 1 0 1
1 1 0 0
1 0 1 1
0 1 1 0
1 1 0 0











(2)Score(G,D) = LL(G,D)± Bias

(3)φ(|D|) =
log(|D|)
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The second term ||G|| indicates the sum of parameters or components available in G, 
as shown in Eq. (4).

where |E| indicates total number of edges, and |V| indicates total number of vertices in 
G.

Initially, we build a DAG using chow-liu algorithm [66] and identify the optimal BNSL 
using the scope function shown in Eq. (2). The Initial complete Graph generated using 
the given data shown in Eq. (1) is represented as shown in Fig. 4a. Construction of score-
based DAG for Fig. 4a using chow-liu algorithm use the following steps: 

1 Compute Mutual Information (MI) of each possible edge using Eq.(5) 

 where P(x), and P(x, y) are calculated as shown in Equation  (6) and Equation  (7), 
respectively. 

 The resultant MI for each edge such as (TH ,BU) = 0.0729 , (TH ,PL) = 0.322 , 
(TH ,De) = 0.171 , (BU ,PL) = 0.322 , (PL,DE) = 0.002 , and (BU ,DE) = 0.322 . Fig-
ure  4b shows the graphical representation for weighted MI values of each edge in 
graph G.

2 Next, determining Maximum Spanning Tree (MST) using the MI weights for the 
Fig. 4b, whereas this work considers Kruskal’s algorithms [67] for this job. Initially, 
we consider a Tree ( T  ) without any edges as shown in Fig. 5a. Next, we choose the 
maximum MI value from the weighted graph (Fig.  4b), and include it to ( T  ), if it 
does not form any cycle. In this case, we identify three MIs having similar values and 

(4)||G|| =

∑

(|E| + |V |)

(5)MI(X ,Y ) =
∑

x∈X

∑

y∈Y

P(x, y)log
P(x, y)

P(x)P(y)

(6)P(x) =
count(x)

number of data points

(7)P(x, y) =
count(x, y)

number of data points

Th

BU PL

De

(a)
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BU PL
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0.02
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(b)
Fig. 4 Bayesian network Structure Learning (a) Initial Complete Graph for input data shown in Eq. (1) (b) 
Mutual information of each possible edge
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tie the break using the order of the attributes in the dataset. Further, we consider the 
next highest weight MI which is (PL,BU) , as shown in Fig. 4c. We iterate the process 
again and choose the next highest edge i.e. (BU ,DE) , as shown in Fig. 4d. We repeat 
this process until the number of edges in T  is one less than the number of nodes 
( i.e., |V | = |N | − 1 ), where N and V are the number of nodes and edges in T  , respec-
tively.

3 Once the |N | − 1 edges included to T  , it is necessary to identify the root node among 
them. Instead of randomly choosing the root node, the chow-liu algorithm uses Log-
likelihood function to estimate the value of choosing each node as a root and decide 
the best one according to the maximum value returned by it. The log-likelihood 
function is shown in Eq. (8). 

 where N is the number of data entries, D denotes the DAG, and  ̺ is denoted as 
entropy and it is computed using Eq. (9) 

 We consider each node as a route and estimate the LL(D) when considering them as 
a route and also assign the directions for the MST. The LL(D) when considering the 
TH as a root is ≈ (−5.033) , and the directions are assigned as shown in Fig. 6a. Next, 
we change the root node to BU, and estimate the LL(D), and it results in a value 
similar to TH i.e., ≈ (−5.033) . The directions for each edge are decided as shown 
in Fig. 6b, when BU is the root. Further, we estimate the LL(D) by choosing PL as a 
root, the resultant value is ≈ (−5.6925) , and the directions of edges are represented 
in Fig.  6c. Finally, the node DE is considered the root, the LL(D) returned a value 
of ≈ (−7.359) , and the direction of D is decided as shown in Fig. 6d. From this, we 
notice a similar value for the nodes TH and BU, whereas we can consider any DAG 
for further BNSL.

We consider node BU as the root and continue the construction of BNSL using it. For 
simplicity of presentation, we adjust the DAG without changing the direction of the 

(8)LL(D) = −N ×

N
∑

i

̺(xi|Parent(xi))

(9)̺(xi|Parent(xi)) =
∑

Pr(xi|Parent(xi))× log(Pr(xi|Parent(xi)))
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Fig. 5 Maximum spanning tree construction using Kruskal’s algorithms (a) Initial Tree with empty edges (b) 
Considering first maximum MI weight which is (TH, PL) (c) Considering second maximum MI weight which is 
(PL, BU) (d) Considering next maximum MI weight which is (BU,DE)
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edges, as shown in Fig. 7. We consider Fig. 6b for further process of creating a learned 
representation for the Bayesian network.

Next, include the additional edges to the best DAG D resulting from the chow-liu 
algorithm, without forming a cycle (to maintain DAG properties). Further, estimate the 
score of D after adding each new edge using Eq. (2). e.g., the Score of the resultant DAG 
by chow-liu algorithm as shown in Fig. 8a is ( −13.1598). We include the edges one by 
one and estimate the Score, as shown in Fig. 8. First, we add an edge between the nodes 
DeE to TH (TH to DE forms a cycle, so it is not valid) and estimate the score. Adding 
(DE,TH) results in the score ( −14.1357), and pictorial representation is shown in Fig. 8b. 
Next, we will add another edge to estimate the maximum score, and we get an added 
edge between De and PL, so resultant Score is ( −14.1598), whose pictorial representation 
is shown in Fig. 8c. We further add another edge between BU and Th, and the estimated 
score here is ( −15.2966), and the pictorial representation is depicted in Fig. 8d. Finally, 
we consider the best score achieved DAG, which is shown in Fig. 8a.

The learned representation using BNSL is shown in Fig. 9 with each node and its 
associated correlation values. In Fig.  9, the tabular entries for each node are con-
sidered based on the input dataset shown in Eq.  (1). This information helps in pre-
dicting or monitoring the DCCS performance and helps to get the predictions, e.g., 
device events and probabilities for the four performance metrics in the DCCS can 
be measured using this data. E.g., a device added and its performance metrics may 
be considered as TH and BU are above the threshold, but the Delay and PL are under 
the threshold values. The probability correlation for this situation in the DCCS is 
measured according to the representation (see Fig.  9) as Pr(TH ,BU ,∼ DE,∼ PL) 
which is the product of probabilities of Pr(TH | ∼ PL) (PL is the parent to TH), 
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Fig. 6 Assignment of Root nodes (a) Choose Th as root node and its LL= −5.033(b) Choose BU as root node 
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Fig. 7 Considered BU as a root node, and adjusting the DAG for better representation
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probabilities of Pr(BU) (BU is the root, so direct probability when it is 1), probabilities 
of Pr(∼ DE| ∼ BU) (BU is the parent to DE), and probabilities of Pr(∼ PL|BU) (BU is 
the parent to PL). From Fig. 9, we notice the numerical values for and substitute them 
appropriately i.e., 0.9286× 0.75× 0.7222× 0.7222 . The probability that something 
occurs in the system is 0.36325.

Similarly, we can analyze the multiple correlations among these performance metrics 
using the learned representation. We have considered only a few metrics and data to 
gain insight into the algorithm, but if we considered multiple metrics and devices, we 
could have achieved even better correlations. Altering the rows and columns of the input 
data also helps in analyzing the performance of each device and we can achieve causal 
relation with other devices in the DCCS.
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Fig. 8 Maximum scored DAG for BNSL by adding the edges without forming cycles (a) Resultant DSG of 
chow-liu algorithm (Score = −13.1598) (b) Add an edge between De to Th (Score = −14.1357) (c) Add an 
edge between De to PL (Score = −14.1598) (d) Add an edge between BU to Th (Score = −15.2966)
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information which helps in predictions and monitoring
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Knowledge

The term “knowledge” in the DCCS governance and sustainability model refers to infor-
mation that can be extracted from data through analysis or insight. An imperative deter-
minant of the quality of the knowledge that has been acquired from learning data is its 
ability to be generalized. The accumulation of knowledge is the result of interactions 
with a pool of information. It is easier and faster to monitor, predict, and make decisions 
when knowledge is extracted. There are several ways to represent knowledge, but graph 
representation is an easy way to store and visualize [68]. The knowledge graph is a com-
prehensive view of the nodes, edges, and labels. On ingestion of data, they are capable of 
identifying individual objects and their relationships with one another [69]. An extended 
form of knowledge representation is the use of DAGs as illustrated in Fig. 9, which are 
easy to query and provide decisions or answers.

Monitoring and prediction

DCCS involves a wide variety of devices (from the edge to the cloud), each with its capa-
bilities. Hence, testing the performance of each device is essential to achieve maximum 
benefit. As there are so many devices present and their locations also vary, it is impos-
sible to keep track of them manually. However, there are several monitoring tools in the 
literature (discussed in Sect. "Existing solutions or tools for IoT monitoring" ), but they 
are not useful for monitoring the entire DCCS. The governance and sustainability model 
is used to monitor the condition and efficiency of these devices autonomously, to max-
imize their benefit from them. Thus, the knowledge extracted from DCCS data helps 
identify the root cause of the problem, such as manufacturer’s defects, network issues, 
inefficient energy use, etc. The ready knowledge helps to identify or predict the issues 
in the devices and notify the administrator or try to self-heal to achieve the best usage 
of devices. As a result of readily available knowledge, we can identify or predict issues 
with devices and report them to the administration or attempt to self-heal to achieve 
maximum effectiveness. In addition to showing the issues, predictions and monitor-
ing variables are also useful in improving the efficiency of resource utilization. Due to 
the limitations of the computational resources of edge devices, it is difficult to deter-
mine their availability for performing tasks [70, 71]. In addition to determining the most 
effective use of resources through prediction, the knowledge extracted from the data 
also assists in identifying the most appropriate future needs for the devices and their 
resources. However, it is necessary to verify the reliability of the suggestions made by 
governance and sustainable models, and this is a challenging issue. This challenge can 
be mitigated by leveraging SLOs [72, 73]. Whenever monitoring or predicting issues are 
identified through querying, their reliability must be verified by mapping them to SLOs 
before a decision is made.

Notifications and/or visualization

In the governance process, notification plays a vital role in resolving errors in DCCS. 
However, our model monitors and predicts several aspects such as networking, com-
putation efficiency, device health, etc., so it is crucial to decide how these notifications 
are delivered to administrators. These notifications are usually in text format and can 
be received via text messages, push notes, emails, or sent to visualization tools. In any 
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case, it is necessary to set up who can receive these messages (privacy concerns), what 
frequency of notifications is appropriate, and what level of information to transmit. 
Multiple operations are running on DCCS simultaneously, and it is important to decide 
whether notifications should be delivered to relevant people who monitor specific 
aspects of DCCS. Privacy concerns make it necessary to restrict notifications to unau-
thorized entities.

Another significant metric to take into account is the frequency of notifications since 
more frequent notifications require more computational resources. However, continu-
ous monitoring is a requirement of DCCS, so determining the frequency is crucial. It 
is imperative to know what level of detail should be notified to the administrator. Con-
sequently, if the administrator needs to solve the issue, they must know the details of 
where the problem arises, or what the root cause of the issue is. Since the environment 
is dynamic, we need an adaptive framework, it will be decided dynamically depending 
on the issues raised. When there are no issues, report the performance metrics to the 
administrator without providing detailed analysis. When a device fails to respond, there 
is usually a detailed problem such as either a network failure, power supply failure or any 
other problem. Once the problem is identified, the administrator can solve it. To estab-
lish dynamic DCCS governance, it is necessary to make autonomous decisions based on 
these notifications. These notifications are further analyzed or compared using SLOs to 
decide if the notified problem can be rectified, or if it truly caused a problem or not.

The visualization can be a dashboard that provides analytical results in a graphical 
interface. Visualization provides a powerful means of monitoring DCCS performance 
in terms of various metrics, enabling the user to understand patterns and malfunc-
tions more easily. These visualization metrics include network performance, compu-
tational efficiency, resource usage, etc. Visualization tools can alert administrators by 
highlighting the fault. Graphite and Grafana [74] are open-source tools that provide a 
visualization with flexible and custom dashboards. In the literature, these tools are used 
in MetricFire [41] for efficient visualizations. These tools are popular for visualization 
because of efficient storage in databases, having a web-based interface to interact with 
data and easy scripting for customization. Recent advances such as digital twins [75–77], 
AR/VR [78], and metaverse technologies [79–81] can also help improve DCCS visualiza-
tion effectively. These tools are very efficient at identifying the fault and visualizing them 
to the user/administrator, but they are not able to solve the problem autonomously.

Decision making

In the governance and sustainability model, the decision-making phase shows that some 
actions will be taken to correct problems identified in previous phases. These decisions 
are categorized into autonomous and manual decision-making. Autonomous decision-
making in this context refers to the DCCS being able to rectify issues without human 
intervention. This can be achieved through predefined rules or using learning-driven 
approaches. When a rule-based approach is used, the notifications match the SLOs 
and make the necessary decisions. A learning-driven approach monitors DCCS behav-
ior continuously while making dynamic decisions. Among these two approaches, SLOs 
provide quick decisions and balance time and computation, whereas learning-based 
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methods are computationally intensive. However, combining both scenarios leads to 
better results and helps with dynamic decision-making. Manual decisions are made by 
the administrator based on identified problems that are not possible to address autono-
mously. E.g., network failure, hardware damage, being disconnected from the network 
through physical failures, etc. This means that problems that are not addressed through 
software instructions must be handled by humans or robots, but not autonomously by 
the system.

Actions

Once the decision-making system recommends an autonomously solvable problem, it 
will be further received by the action stage to cure the failure or fault. Other issues are 
handled manually by the appropriate administrator. The autonomously solvable prob-
lems are solved similarly to the self-healing process of the human body (this paper con-
sidered wound healing). The human body evolved over millions of years to develop a 
complex and highly effective self-healing mechanism. The human body and DCCS have 
many similarities, and using this self-healing system not only helps improve perfor-
mance but also minimizes managing costs and performance improvement. Simulating 
an similar system is extremely difficult but not impossible. However, it can be achieved 
through continuous monitoring and analysis of collected DCCS data.

The mechanism of self-healing in the Action phase of the governance and sustainable 
DCCS model is illustrated in Figure 10. The four stages of the wound healing process 
described in motivation (subsection ) are described concerning DCCS as follows. 

Hemostasis (Prevent from other damages):    When a fault or failure is reported 
by the decision-making system, 
this phase starts immediately. Dur-
ing this phase, services attached to 
a specific system are diverted to 
other nearby nodes. This includes 
rerouting, activating a backup pro-
cess, or diverting computing tasks 
to other available systems. There-
fore, future damages such as data 
loss and computation delays can be 
prevented.

Inflammation ReshapingHemostasisHemostasis Inflammation Proliferation

Prevent from other damage:
Activate backup devices, Re-
routing the traffic, or
computation to other devices.

Bleeding control

Once the failure or fault is
noticed
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DCCS

Clean and ready for
new tissue Repairing tissues Maturation of tissues

Activation of a response to
the fault or failure:
(a) Identify root cause of the
issue (network, node failure,
threat, etc.)
(b) Activate appropriate
response to compensate for the
loss of capacity

Repair or restoration of device
or connection:
(a) Re-configuring the affected
systems (restore previous)
(b) Recovering lost data
(c) Replacing if hardware failure
(Depends on the importance of
the system)

Optimize or update system:
(a) Updating configurations
(refining )
(b) use learned history for similar
failures in future
(c) use this information for
improving monitoring and
alerting systems

Detection of root cause
and ready to rectify

Rectifying the
problem and

determine feasible
solution

Optimize the solution

Fig. 10 Action (Self-healing) taken place after the fail or fault is detected by decision-making system
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Inflammation (Detection of root cause):     During the inflammation 
phase, the system starts 
identifying the root cause 
of the problem, such as 
connection failure, system 
overload, buffer overflows, 
energy drain, untrusted 
requests to access 
resources, etc. Once the 
root cause is recognized, 
this phase determines the 
resources needed to solve 
the issue.

Proliferation (Repair or restoration of the problem):   During this phase, the 
model works on rectify-
ing the issue and begins 
recovering lost data, 
including restoring con-
figurations and working 
on resolving the issue. 
If the system cannot be 
recovered or restored, it 
recommends replacing 
it with the appropriate 
administrators.

Reshaping (Optimize or update system):    This phase involves send-
ing the final decision back 
to the decision-making 
system to update the 
learning model so that 
further decisions can be 
optimized. Reconfigura-
tions and system updates 
also fall under this phase.

Challenges

DCCS are designed to provide efficient computations for business data. But, it is neces-
sary to govern (through monitoring tools) the devices to get longer sustainability with 
minimal downtime. These monitoring tools have to do additional analyses of the infor-
mation from various sources. So, it is necessary to trade off the computations between 
the business and device data, which imposes several challenges. They are summarized as 
follows: 

Priority:    Since the primary goal of DCCS is to analyze business data, it is nec-
essary to give it a high priority. However, as business data flows 
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continuously in the DCCS, it is necessary to allocate computing slots or 
dedicated devices for governance. Since centralizing governance is not a 
promising strategy, it is necessary to consider the priorities of the work-
loads between business data computation and monitoring strategies.

Starvation:   In addition to the above challenge, it is also necessary to avoid starvation 
while assigning priorities. If we give the highest priority to business data 
analysis, we must ensure that the governance process does not suffer 
from starvation, and vice versa. To avoid starvation, schedule monitoring 
tasks and business data processing by a deadline.

Consistency:    It is necessary to estimate, how frequently the governance process will 
take place. DCCS run dynamically, so it is necessary to monitor them 
consistently to mitigate downtime. However, this frequent system data 
analysis does not affect business data analysis.

Privacy:   Analytics are on log and configuration files during the monitoring pro-
cess. Therefore, it is necessary to preserve privacy.

Future research directions
Governance and sustainability for DCCS is a conceptual framework, but it can be fur-
ther developed using the following advances to become more dynamic and autonomous. 
The challenges and benefits of these advancements are also discussed here.

Minimize computational load at edge

It is possible to perform monitoring tasks anywhere in DCCS, such as cloud, fog, or 
edge. But, performing this task at the Edge is more beneficial in terms of shortening 
the delay in providing services. As AI and ML strategies have become more widespread 
and beneficial, most edge devices are using them to some extent. Edge intelligence has 
become popular because of its minimal latency and quick decision-making. Since AI/
ML approaches are computationally hungry, they consume more computation and 
use more energy and memory [82]. Due to the rapid power drain of edge nodes, they 
can only sustain for a short time. Hence, it is pertinent to determine whether AI/ML is 
needed for edge devices and minimize unnecessary computations as much as possible. It 
does not mean stopping the use of AI/ML techniques at the edge, but choosing the most 
appropriate algorithms based on the application, which can be efficient in the trade-off 
between efficiency and long-term sustainability. There are several ways to minimize edge 
computations, mainly when learning algorithms are run. This includes 1) distribution 
of learning among multiple edge devices [83, 84], 2) skipping some parts of the interac-
tions that are unnecessary, e.g. frame skipping methods in deep neural networks [85], 
3) provide input as knowledge or features [86], 4) decide on an optimal number of lay-
ers sufficient to produce maximum accuracy [87], etc. The majority of learning models 
extract correlations between variables but do not extract causal relationships. So when 
comparing causality with correlation, causality results in better predictions. In addition, 
causality approaches are computationally more efficient than correlation approaches. So, 
there is a chance to minimize computations at the edge through causality.
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Learning multiple tasks

DCCS are an example of a system in which multiple related but not identical tasks are 
performed simultaneously. E.g., the information on a device configuration and its net-
work configuration is not identical but related. Learning such tasks can simultaneously 
improve the system’s overall performance and also accuracy [88]. Multi-task Learning 
(MTL) strategies can optimize multiple objective functions simultaneously through 
learning different tasks. These approaches initially classify the jobs from the given data 
and perform learning separately. In the computing continuum, MTL is used to iden-
tify inference attacks [89], traffic predictions in the IoT [90], computational offloading 
at Edge [91], among others. Especially through MTL, different tasks, such as device 
monitoring, network monitoring, and privacy preservation, can simultaneously perform 
operations from the available system data. Since we are working with resource-con-
strained devices in DCCS, distributed MTL can be more promising [92]. It can minimize 
the load on a single machine, and the tasks/learning models are distributed among mul-
tiple devices.

Zero-touch provisioning

Zero-touch Provisioning (ZTP) is an end-to-end network service provisioning model to 
configure network devices [93, 94]. The devices in DCCS software and configurations 
need to be updated in a timely manner. There are several heterogeneous devices that 
make it difficult for humans to perform it. In order to fill this gap, software services like 
ZTP can be used in governance and sustainable frameworks. The ZTP is used for con-
figuration management in the literature for several network-based services. However, 
the current functionalities of the ZTP could be improved [95]. Extending these services 
can help the user or administrators rectify issues diagnosed through the proposed refer-
ence model. Currently, the ZTP services are running through centralized cloud servers, 
but it is necessary to decentralize them. When working with a large to a vast number of 
computing devices, the distributed ZTP increases its services and rapidly completes its 
assigned tasks. Consequently, by using ZTP, DCCS becomes more autonomous and is 
able to reduce failures or response delays without the involvement of humans.

Privacy preserving

Efficient DCCS monitoring requires the use of diversified information from each device 
that includes sensitive configuration details. The configuration files are sensitive because 
they contain information such as passwords, access keys, or several authors’ informa-
tion that cannot be shared with unauthorized parties. When the models we propose 
are considered to learn or monitor devices, each piece of information can determine 
the quality of the monitoring. So, an efficient monitoring tool can also protect our data 
and must follow privacy rules. Misusing this information can cause a device or net-
work to malfunction. An efficient way to access the configuration details of any device 
is to use encryption mechanisms [96]. There are several secure data or file transmission 
approaches available in the literature, such as Secure FTP (SFTP/FTPS), and Secure 
Shell (SSH), which enable authentication mechanisms before accessing the information 
for learning, version control, etc. The learning process performs only read operations to 
learn from the given input data to monitor the systems, but there is a chance that secret 
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information can be misused when privacy is not enabled. Zero-trust architecture is a 
solution that can protect accessing such sensitive information [97, 98].

Reflect the human-like healing system

From Subsection  , we understand how the human body as a complex system can heal 
itself to sustain the human body longer. Since the behavior and complex functionality 
of DCCS resemble the human body [21], there is a chance to reflect similar healing fea-
tures in DCCS. However, understanding the human body is a challenging task compared 
to the complex behavior of DCCS. Therefore, the information from the DCCS can help 
identify the root cause of the problem in the systems and further use this information 
(see Sect.  "Source of DCCS’s data") to heal a problem without external instructions or 
human interventions. Using efficient, lightweight, and accurate learning algorithms that 
can understand the underlying information from DCCS’s data will further help in under-
standing the root cause. Understanding the root cause of any problem helps to fix the 
problems easily. However, deciding the accuracy of the identified cause is a challenging 
issue.

Conclusion
Generally, DCCS techniques are geared towards computing business data efficiently, 
instead of focusing on sustainability through adequate monitoring and system condi-
tion prediction. But only a healthy DCCS will be able to provide efficient services and 
endure. This paper focuses on the data associated with the computing devices in DCCS, 
and how it helps to govern and achieve sustainability with zero downtime. This paper 
first describes the various formats of data that are available for each device in DCCS. 
Further, we described the complexities inherent in these data due to the heterogeneity 
of the computing devices. Furthermore, it is necessary to associate these data with the 
characteristics of big data, so that their analytics tools can be used to analyze it. In the 
present literature, there exist only tools for monitoring IoT devices that are analyzed and 
provided with their pitfalls, hence, it lacks a tool or model for monitoring or predicting 
the condition of an entire DCCS. To solve this, we introduced a governance and sustain-
ability model, which uses the device data. For monitoring and predicting DCCS condi-
tions, data can be transformed through a variety of stages, such as learning, knowledge, 
notifications, and decision-making. We examine an illustration to gain a better under-
standing of how the model works. Finally, this article summarizes the limitations and 
possible extensions of an efficient DCCS governance model to maintain zero downtime 
over the long term.
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