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Abstract. Multiagent systems may be elegantly modeled and designed
by enhancing the role of the environment in which agents evolve. In par-
ticular, the environment may have the role of a governing infrastructure
that regulates with laws or norms the actions taken by the agents. The
focus of modeling and design is thus shifted from a subjective view of
agents towards a more objective view of the whole multiagent system.
In this paper, we apply the idea of a governing environment to model
and design a multi-agent system that micro-simulates the Swiss highway
network. The goal of the simulation is to show how traffic jams and ac-
cordion phenomena may be handled with appropriate local regulations
on speed limits. A natural modeling would give segments the capacity
to regulate the speed based on observed local events. We developed the
simulation platform from scratch in order to accommodate our design
choices and a realistic complexity. This paper presents in details our
modeling choices, and first experimental results.

1 Introduction

Agent-based micro-simulations are becoming a popular application area of mul-
tiagent systems (MAS), in areas such as social sciences, traffic management,
biology, geography, or environmental sciences. Agent technology has opened a
whole new methodology for studying real-world complex systems by simulating
every individual through an autonomous agent. Individual behavior can thus be
easily modeled, and the MAS captures the aggregated behavior of the collective.
These agent-based micro-simulations help understanding better an emergent re-
ality or allows trying virtually some settings that would be very costly to test in
reality. Traffic management is a typical example. For instance, a micro-simulation
may help to visualize the effect of constructing new roads on the overall traffic.

Some multiagent systems (and a fortiori agent-based micro simulations) may
be elegantly modeled and designed by enhancing the role of the environment
in which agents evolve. In particular, the environment may have the role of a
governing infrastructure that regulates with laws or norms any action within the



system. This has the strong advantage of a flexible modeling and design, where
the focus is shifted from a subjective view of agents towards a more objective
view of the whole multiagent system.

In this paper, we show first experiments on how we apply the governing envi-
ronment to the modeling and design of a micro-simulation of the Swiss highway
network. The goal of the simulation is to show how accordion phenomena and
traffic jams may be handled with appropriate local regulations on the speed
limit. For example, adaptive speed limitations my be implemented in order to
maximize the throughput of the network.

A natural model gives segments the capacity to regulate the speed based
on locally observed events. Therefore, regulating highway segments perfectly
captures the design of a governing environment. Because of the complexity of
the simulation and our choice in the above described modeling, we developed a
simulation platform from scratch. This paper presents in details our modeling
choices for the simulation platform. First experimental results of our implemen-
tation are also eluded. The adaptive distributed speed regulation will however
be the subject of another paper, as it is still under development.

The paper is organized as follows. Section 2 introduces and explains the
notion of governing environment. Sec. 3 explains our problematic of traffic sim-
ulation in Switzerland. After discussing our global modeling in Sec. 4 following
the governing idea, we describe how we model the agent behaviors in Sec. 5. In
section 6, we discuss experiments. Section 7 concludes the paper.

2 The Governing Environment

Most research in multiagent systems (MAS) has focused on the internal capac-
ities of agents, and not on the medium in which they evolve. This vision is
however changing towards enhancing the function of the environment in MAS
(see for instance [10,1]). Actually, such a vision was already implicit in the early
days of software agent research. This is shown by a definition of an autonomous
agent as a system situated within and a part of an environment that senses that
environment and acts on it, over time, in pursuit of its own agenda and so as to
effect what it senses in the future [3]. This description stresses the importance of
the environment as the living medium, the condition for an agent to live, or the
first entity an agent interacts with. Thus an agent is part of the environment.
But it remains autonomous, so that the environment may not “force” the agent’s
integrity. It is in this environment that an agent (autonomously) senses and acts.
The acting of the agent on the environment directly influences its future sensing,
because the environment is changed by the agent actions.

Even if the notion of environment was stressed as a main component of MAS,
most approaches have viewed it as something being modelled in the “minds” of
the agents, thus using a minimal and implicit environment that is not a first-
order abstraction, but rather the sum of all data structures within agents that
represent an environment. This is a typical subjective view of the multiagent
system inherited from distributed artificial intelligence, which contrasts with



an objective view that deals with the system from an external point of view
of the agents [7]. This objective point of view sees the environment as a central
component for the modeling and design of MASs. Multiagent simulations belong
to the type of systems that most explicitly model the environment.

An appealing way to exert the necessary level of control out of agents is the
use of a governing infrastructure to structure and shape the space of actions
within a MAS [5]. This governing perspective mainly allows managing agent in-
teractions from an external point-of-view. This has the strong advantage that
agents may be defined independently, and that some control is overtaken ex-
ternally. In the area of virtual organizations, the Electronic Institutions (EI)
approach [4] does this by defining so-called governors which are middle agents
that mediate all (communicative) actions within a MAS 3. This solution has,
however, important disadvantages. Providing each agent with a governor puts
a heavy computational burden on the infrastructure. But, more importantly,
middle agents do not capture a natural modeling for the functionality they are
expected to fulfill, i.e. mediation of communication. The governing or regulating
responsibility should be transferred from specialized middle agents to the envi-
ronment of a MAS, calling for the environment as a governing infrastructure [8].
This can be done with the idea of a programmable coordination medium [2],
which essentially defines reactions to events happening in a shared dataspace.
This schema has the strong advantage to allow the definition of laws that not
only regulate agent interactions, but also any happening within an environment.
Overall, we expect that viewing the environment as a governing infrastructure
simplifies the design of multiagent systems. We will show this in the area of
agent-based micro-simulation applied to traffic management.

3 Micro-Simulation of the Swiss Highway Network

We modeled, designed and implemented an agent-based micro-simulation that
captures the ideas of governing environment. The application area is the simu-
lation of the whole highway traffic in Switzerland of about 1700 km (see Fig. 1).
The platform is bound to a geographical information system4 that allows zoom-
ing from the global country view to the local view of each vehicle. We did not
develop over an existing platform for agent-based simulation, because the com-
plexity of the problem is much too big. Furthermore, it would be difficult to
capture our modeling. We therefore built a new platform from scratch.

Our final goal is to study adaptive and decentralized speed limitation to
have an optimal car throughput. Actually, there are some settings in which
modern highways perform very poorly. First, the accordion is a transient mode
in which cars accelerate to a given speed S, only to brake to almost a full stop
immediately after reaching the speed S. Secondly, traffic jams usually occur
in highway segments preceding a bottleneck (e.g. tunnels or accidents). Our
goal of the simulation is to show that adaptive distributed speed limitations
on the highway segments preceding (and including) the one where problems
might appear will drastically decrease the negative effects previously discussed.
3 All actions that the EI approach accounts for are communicative by nature.
4 http://www.geotools.org



Therefore we want to investigate whether speeding restrictions can increase the
efficiency of highways, and to determine automatic speeding restrictions that
optimize highway utilization. As a methodology we decided to develop an agent-
based micro-simulation to investigate the above hypothesis and to determine
optimal speeding policies. A distributed speed regulation needs to split highways
into segments with constant length so that on each segment one speed limitation
can be imposed. Constraints between the speed limit on neighboring segments
have to ensure that the vehicles do not have to break too abruptly.

An adequate modeling of a micro-

Fig. 1. Swiss national roads with limits
of the cantons, as displayed in our sim-
ulation platform

simulation allowing distributed deci-
sion making on segments can elegantly
use the paradigm of a governing envi-
ronment. Actually, the segment nat-
urally build the environment of the
MAS. Each segment has a set of rules
that regulate the state of the high-
way segment (number of cars, aver-
age speed, etc) and can decide on the
speed limitation for that segment. Neigh-
boring segments can propagate events
to one another. Each vehicle is mod-
eled by one agent which takes deci-

sions based on a local view: a driver wants to get to the destination as fast as
possible and guides her action depending on the traffic in her immediate vicinity.
We further assume that drivers respect the speed limits (within certain bounds).

This paper reports the modeling of our simulation platform, and not the dis-
tributed adaptive decision process for optimal speed regulation. Actually, we are
currently working on this with the DPOP [6] algorithm for distributed constraint
satisfaction. This will be reported in a future paper.

4 Modeling

We describe in this section the modeling of the MAS of the micro-simulation.
According to the governing environment paradigm, laws are defined within the
environment. The environment reacts to raised events according to the rules that
we define. Unlike the agents, the environment has no behavior and does not act
itself: it can just react to events which are intercepted.

Static Model We identified two types of agents that are organized around
highway segments that represent the environment (see Fig. 2). The Vehicle class5

has three state attributes : its position (relative to its current segment), its speed
and its lane position. Each vehicle has : a Plan which is an ordered collection
of HighwaySegment telling it which way to take; a Behavior which describes

5 We use the UML profile described in [9], where rounded rectangles are agents



Vehicle

− position : double

− speed : double

− lane : int

Plan

Behavior

HighwaySegment

− length : double

− numberOfLanes : int

− currentSpeedLimit : int

− maxLawSpeedLimit : int

− nationalRoad : boolean

− slope : double:

− curve : double

− flow : double

− density : double

− meanSpeed : double

previous+

*

next+

*

segments+
1..*

{ ordered }vehicles+ *

segment+

VehicleCreator

− nbAliveVehicles : int

Policy

segment+

Fig. 2. Agent diagram of the system

its acceleration, deceleration and lane changing behavior. VehicleCreator is a
dedicated agent which takes care of creating new agents in the system.

The highway is divided in segments. Each Vehicle lives in a HighwaySegment
which can be considered as a continuous space. Each one is connected to its next
following segments and its previous preceding segments. Vehicles can only move
from their current segment to one of the next segments. HighwaySegment has a
few constant attributes (length, numberOfLanes, maxLawSpeedLimit, national-
Road, slope, curve) and a few variable attributes (currentSpeedLimit, flow,
density, meanSpeed). All these attributes are part of the environment and can
be perceived by agents.

Dynamic Description The time of the simulation is discrete. We send a time
step message to every agent at each step of the simulation, and they return an ac-
tion depending on their perception and their internal behavior. The environment
has a governor role and can react to some events.

The environment generates events. SpeedPolicyChangedEvent is generated by a
segment each time the speed restriction is changed in a segment. The governing
environment will tell the neighbor segments to reconsider their current speed
limit. StepBeginEvent is an internal event which is generated by the environment
itself to warn the segment that a time step has begun. StepEndEvent is the same
type of event as StepBeginEvent, but it warns the segment against the end of a
time step event. VehicleDestructedEvent is raised by the environment each time a
vehicle finished its planning and should die. VehicleDensityChangedEvent is raised
by a segment each time the density of the segment has changed. It tells the
environment to reconsider its speed limit.



Agent actions generate events. VehicleCreatedEvent is launched by VehicleCre-

ator each time it creates a new vehicle. VehicleChangedLaneEvent is posted by Ve-
hicle every time it changes its lane position. VehicleChangedSegmentEvent is posted
by Vehicle every time it leaves a segment and enters a new one.

5 Behavior Models

Vehicle behaviors are described by two different but connected models: i) the
car following model describes how a car speeds up and brakes, and the ii) the
lane changing model describes how a driver decides to change lane.

Car Following Model Our model is inspired by the Intelligent-Driver Model
(IDM) from Martin Treiber6, which makes the vehicle accelerate to its speed
objective (see Alg. 1). it does not have a constant acceleration. It decreases from
the initial acceleration (a) to zero when approaching the speed objective (so).
The deceleration value increases from b and is not limited in the theoretical
model. Because of this, the vehicles can have unrealistic deceleration, but the
system is collision free.

Algorithm 1 IDM car following model (acceleration computation)
Require: v, vf , s, T , vlimit, a, b, smin

1: vo ← humanizeSpeed(vlimit)
2: ∆v ← vf − v
3: s∗ ← max{smin, smin + vT + v∆v
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5: return max{−3b, min{ac, a}}

In Alg. 1, T is a the safety time with the ahead vehicle, values can be from
0.8 to 2 seconds. Here we use a normal distribution (µ = 1.5, σ = 0.5) for this
value. a is the maximum acceleration (0.8 m/s2 for cars, 1.5 m/s2 for trucks). b
is the minimum deceleration (−2.5 m/s2 for cars and trucks).

This model has interesting advantages since it is not based on the fact that
vehicles will always keep a safe distance with the vehicle ahead. On the other
hand, deceleration can be high and this can lead to bizarre behaviors, like when
cars drive at a high speed and suddenly brake down with a high deceleration
because of a traffic slow-down or a slowest car.

Lane Changing Model Each vehicle must at each iteration consider changing
lane or not. This decision is based on two main criterions for the agent : is it
safe to go on the other lane? (safety criterion) and do I get a reward to go on
the other lane? (incentive criterion). In our model, the safety criterion just says
that the car behind would be able to brake in order to avoid a collision. We also
6 http://www.traffic-simulation.de



check that the car ahead is not to close and that if it brakes, we will have the
time to avoid a collision. The incentive criterion is quite simple. Vehicles change
lane every time they can increase their speed on the other lane. Furthermore we
add a few biases to make vehicles go to the right lane whenever the highway is
going to change from a N lanes to N-1 lanes. Informally, this gives algorithm 2.

Algorithm 2 Basic lane changing model (incentive criterion)
1: if lane will end soon and already on the correct lane then
2: ← do not change lane
3: end if
4: if lane will end soon AND not on the correct lane then
5: ← go to right lane with an increasing probability when approaching to the end

of the lane
6: end if
7: if already changed lane in the last 10 seconds then
8: ← do not change lane
9: end if

10: if distance to car ahead is more than 200 meters then
11: ← do not change lane
12: end if
13: ← change lane if we can increase speed on the other lane

The two first conditions make the vehicle go to the right lane if its lane will
end soon. The third condition (line 8) avoids an oscillation movement from a
lane to another. Imagine five vehicles on the right lane, and no vehicles on the
left lane. They all have an incentive to go the left lane, once they changed, there
is no vehicles on the right lane, so they all have an incentive to change for the
right, and so on. They will all change at each step to the other lane. Condition
at line 10 tries to avoid cars going to the left lane when they have no other car
in front of them.

Combining the Car Following and the Lane Changing Models Alg. 3
presents how to execute the car following and the lane changing models together.
It ensures that all agents will have the same information when taking the deci-
sions. A problem can occur when two vehicles compete for the same lane and
think it is safe. They both will have an incentive to change for the target lane
and both think that it is safe. To avoid it, we only change to the right at odd
time steps and change to the left at even time steps.

Generation of Vehicles and plans For the generation of vehicles, we used
the number of registered vehicles in the canton (swiss regions) where the segment
is. We put a defined percentage of vehicles (N) on highways. We also generate
trucks on the basis of country statistics. Concerning the starting place, vehicles
are created uniformly in the canton. Therefore every canton generates a prede-
fined flow of vehicles in respect to its registered car population. Because official



Algorithm 3 Vehicle state update loop
1: for all the vehicles do
2: state← current state of the environment
3: decide to change lane or not according to state
4: end for
5: for all the vehicles do
6: change lane if decided
7: end for
8: for all the vehicles do
9: newState← current state of the environment

10: acceleration← compute the new acceleration according to newState
11: end for
12: for all the vehicles do
13: update the speed
14: update the position
15: end for

data from the Swiss Federal Roads Authority7 were not of sufficient granularity,
we decided to create cars continuously. A realistic simulation should take into
account different timing.

Each generated vehicle immediately has a deterministic assigned route plan,
which can not change. This plan is however generated randomly. In future work,
we will use demographic statistics and short-path algorithms to generate more
realistic plans.

6 Experiments

Vehicle Generation As said in section 5, we can calibrate the simulation to
generate a percentage of the registered vehicles. This is difficult since knowing
how many vehicles can drive simultaneously on Swiss highways is not obvious.

Swiss highways are composed of 1’855 km of roads. Since these roads have
two possible directions and can have multiple lanes, the total length of lanes
is about 7’550 km. Supposing a high congestion of 40 vehicles/km everywhere
(this means one car each 25 meters on every lane and every highway segment),
this leads to an estimation of 302’000 vehicles. It means that N = 6% of the
Swiss vehicles would be on the highways. It can seem very low but, we should
not forget that all the cars are never used at the same time and that there is
a lot of other roads than highways in Switzerland. And of course, in reality at
some place there is much more vehicles than at others, 40 vehicles/km is just an
overestimated value of what could be a maximal congestion level.

We have made tests with different values of N (the maximal percentage
of alive vehicles at a precise time). Table 1 shows how many vehicles can be
simultaneously alive and how much time it costs to simulate a certain time. The
first remark is about the theoretical value which is not equal to the practical
7 http://www.verkehrsdaten.ch/downloads/AVZ-StandorteStand012005.pdf



one. It comes from the way of generating vehicles. Each creator segment has a
physical maximum flow of vehicles and depending of the local conditions (i.e. a
traffic jam on this segment), it can be lower that what it should be to ensure
the theoretical production of cars. Thus it is absolutely normal to have a lower
value.

N Theoretical Practical Simulated time [h] Real time [h]8

10 % 492’230 249’000 1:30 24:00
5 % 246’115 192’000 2:35 60:00
2 % 98’445 95’000 1:00 8:00

Table 1. Maximum number of vehicles with respect to N

Tests of the Models We ran the simulation with different values of N and
looked at some randomly chosen place to see if the flow of vehicles we simulate
is near reality or not. Vehicles were not always perceiving the current reality and
were basing their decision on a partial future state. This was leading to many
collisions, but since they are automatically cleared9, the simulation was realistic.
Table 2 shows the measures we found depending on the N value. The simulated
time is the value given in table 1.

Place Real flow N = 10% N = 5%

Muttenz 10700 4140 4551
Wuennewil 2342 3318 3533
Grandvaux 5662 3941 3798

Monte Ceneri 3243 3432 3732
Giessbachtunnel 983 2053 2103

Erstfeld 2192 2143 1366
Bardonnex 3656 1834 1783
Oftringen 5928 3304 3625

Table 2. Mean flow measurements with respect to N

Values are very far from reality. However we remark that where there is a
high mean flow value in reality, there is also a relative high mean flow in the
simulation. This lets us think that even if our vehicle generation method is not
realistic, it does not give arbitrary values.

7 Conclusion

We developed a micro-simulation of the Swiss highway network in order to show
that the governing environment can be useful for MAS development. In our
simulation platform, the design has shown to be very flexible. Future work will
consist in improving the vehicle behavior modeling and the performance of the
platform, and in actually implementing the adaptive and distributed speed limit
regulations in order to achieve an optimal car throughput. We shortly explain
hereafter those points.

The model of a vehicle should become more realistic. Collisions should be
avoided when two segments merge in one, including highway entries. We think
8 Tests made on a 4 x 3 Ghz 64-bits processors computer with 4 Gb RAM.
9 The vehicle which causes the collision (the vehicle at the back) is deleted and every-

thing continues as if nothing happened.



this is very tricky to solve since road granularity information is not detailed
enough to let us have finer grained models. The lane changing model should also
be improved, especially at the end of lanes (when N ways merge to N-1 ways).
Our model is not yet very good and produces unrealistic traffic jams.

Running a simulation with hundreds of thousands of agents is not costless.
To simulate a real scenario with many vehicles in a reasonable time, we have
to make deeper changes in the architecture. A way to do it is to distribute the
computation on several computers. We estimate that our architecture should be
easily transformable into a distributed one, for instance with segment distribu-
tion and asynchronous events.

However, the most important remains the realization and testing of an in-
telligent distributed speed restriction policy. We are currently working on this
using a distributed constraint optimization algorithm called DPOP [6].
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