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Abstract

Social-ecological systems are complex adaptive systems where social and biophysical
agents are interacting at multiple temporal and spatial scales. The main challenge for
the study of governance of social-ecological systems is improving our understanding of
the conditions under which cooperative solutions are sustained, how social actors can
make robust decisions in the face of uncertainty and how the topology of interactions
between social and biophysical actors affect governance. We review the contributions
of agent-based modeling to these challenges for theoretical studies, studies which com-
bines models with laboratory experiments and applications of practical case studies.

Empirical studies from laboratory experiments and field work have challenged the
predictions of the conventional model of the selfish rational agent for common pool
resources and public-good games. Agent-based models have been used to test alter-
native models of decision-making which are more in line with the empirical record.
Those models include bounded rationality, other regarding preferences and heterogene-
ity among the attributes of agents. Uncertainty and incomplete knowledge are directly
related to the study of governance of social-ecological systems. Agent-based mod-
els have been developed to explore the consequences of incomplete knowledge and
to identify adaptive responses that limited the undesirable consequences of uncertain-
ties. Finally, the studies on the topology of agent interactions mainly focus on land use
change, in which models of decision-making are combined with geographical informa-
tion systems.

Conventional approaches in environmental economics do not explicitly include non-
convex dynamics of ecosystems, non-random interactions of agents, incomplete un-
derstanding, and empirically based models of behavior in collective action. Although
agent-based modeling for social-ecological systems is in its infancy, it addresses the
above features explicitly and is therefore potentially useful to address the current chal-
lenges in the study of governance of social-ecological systems.

Keywords

social-ecological systems, agent-based computational models, commons dilemma,
cooperation, non-convex ecosystem dynamics
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1. Introduction

For millennia, human activities have affected their environment. In ancient times, the
use of fire and tools enabled humans to learn to live outside their original environment—
the savannah of eastern Africa. The development of agriculture about ten thousand years
ago, and industrialization during the last two hundred years, have generated massive
population increases and intense uses of natural resources. Now, we live on a human-
dominated planet. Human activities have transformed the land surface, altered the major
biogeochemical cycles, and added or removed species in most of Earth’s ecosystems
(Vitousek et al., 1997).

This chapter reviews the efforts by many scholars to use agent-based computational
models to study the governance of social-ecological systems. This field is truly inter-
disciplinary. It will be difficult, if not impossible, therefore to restrict our focus solely
to economics. Although economics will be our starting point, we will include studies
from other disciplines. To facilitate communication across disciplines we will use an
organizing framework in the second section of this chapter. To structure our chapter, we
identify three main challenges for the study of the interactions between human activities
and ecosystems.

• What conditions enhance the likelihood of cooperative solutions to the massive
number of social dilemmas that confront social-ecological systems? This relates to
the problem of preventing overharvesting of common-pool resources such as fish
stocks, forests, and fresh water.

• How do economic agents make effective and robust decisions given the fundamen-
tal uncertainty of the complex dynamics of the social-ecological system?

• How can the topology of interactions among actors be explicitly included in the
analysis of the first two questions given the importance of interactions to an under-
standing of natural resource dynamics?

The aim of this chapter is to show the contribution of agent-based computational
economics to these challenges. We emphasize the linkages between field research, labo-
ratory experiments, and agent-based modeling. Pure analytical models have proved to be
essential tools for analyzing highly competitive markets and other settings with strong
selection pressures (Ruttan, 2003). When trying to understand how and why individuals
engage in collective action, however, analytical models have not proved as useful. In the
field and in the experimental laboratory, we have observed many settings in which indi-
viduals overcome the incentives to free ride, increase the levels of inter-personal trust,
produce public goods, and manage common-pool resources sustainably (Bromley et al.,
1992; Gibson et al., 2000a; National Research Council, 2002; Ostrom and Walker, 2003;
Dietz et al., 2003). Candidate theories for explaining these surprising empirical results
are too complex to be usefully pursued using only analytical techniques. To understand
these phenomena agent-based modeling has become an essential tool complementing
empirical methods. Other chapters in this volume (Brenner, 2005; Duffy, 2005) also
address the combination of laboratory experiments and agent-based modeling. Their
contribution focuses more on learning models, while our focus is on public goods and
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common-pool resource experiments using several models of human decision-making.
It is important to realize that every method used to study social-ecological systems has
its methodological problems. We will therefore emphasis in this chapter the plurality
of approaches, which may unravel the complexity of the systems when findings are
consistent with all the types of approaches used.

The studies reviewed in this chapter differ from those most frequently addressed by
environmental economists. Conventional economic theory predicts that when agents
have free access to a common-pool resource they will consume ecosystem services to
the point where private costs equal the benefits, whereas externalities are imposed on the
rest of the community. This can lead to the well-known tragedy of the commons (Hardin,
1968). Traditionally, economists study the management of ecosystems in terms of har-
vesting ecosystem services from renewable resources. Substantial progress has been
made during the last 30 years. Prior to 1970, models were mainly static, such as the
seminal work on renewable resource harvesting byGordon (1954). During the 1970s,
the trend shifted toward dynamic systems for the economics of renewable resources. The
resulting optimization problem was addressed by dynamic programming, game theory,
and equilibrium analysis (Clark, 1990; Dasgupta and Heal, 1979; Mäler, 1974). Irre-
versibility and uncertainty have been addressed since the early 1970s (Arrow and Fisher,
1974; Henry, 1974) and remain among the main foci of environmental economics (e.g.,
Chichilnisky, 2000). Recently, economists have started to include non-convexities of
ecosystems into their analysis of optimal management of ecosystems (Dasgupta and
Mäler, 2003; Janssen et al., 2004).

In simple models in mainstream environmental economics, a representative agent
is presumed to have perfect knowledge (or knowledge on the probabilities of out-
comes) and to maximize utility of consumption for an infinite time horizon. Such an
approach results in interesting insights. Representing agents as maximizing known util-
ity functions is, however, of limited use when systems are characterized by non-convex
dynamics, structural uncertainty, heterogeneity among agents, multi-attribute utility,
and spatial heterogeneity. Evidence is accumulating that social-ecological systems fre-
quently do have complex, non-linear dynamics. This affects the type of governance that
may lead to sustainable outcomes (Scheffer et al., 2001). Initial steps has been taken
to include such non-linear dynamics in environmental economics (Dasgupta and Mäler,
2003). Furthermore, increasing evidence exists that agents are able to self-govern some
types of common-pool resources without external governmental intervention but do not
always succeed (Bromley et al., 1992; Ostrom, 1990; National Research Council, 2002;
Ostrom et al., 1994). The question is how to analyze ecosystem management problems
with spatially explicit, non-convex dynamics influenced by multiple stakeholders with
divergent interests and who consume different types of ecosystem services. We need
new tools. Agent-based modeling is a promising tool for the analysis of these complex
problems (Janssen, 2002a).

Several developments outside environmental economics during the last thirty years
have influenced the current state of agent-based modeling of social-ecological systems.
We will briefly discuss some of these developments. Since the early 1970s, scholars
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from system dynamics have developed and used integrated models of humans and their
environment (Ford, 1999). Prime examples are the World 2 and 3 models ofForrester
(1971)andMeadows et al. (1972, 1974). The World 2 and 3 models simulated the long-
term interactions between population, industrial and agricultural production, resource
use, pollution and food supply at an aggregated global level. A core finding was that
continuing early 1970s’ trends would lead to an overshoot and collapse in terms of pop-
ulation and economic development. The World 2 and 3 models were highly criticized for
the subjectivity of the assumptions and the lack of rationality of the decision-making ac-
tors within the model (Cole et al., 1973; Nordhaus, 1973). In fact, the actors, economic
sectors on a global level, reacted in a predetermined way.

The first type of agent-based model for governing social-ecological systems that we
were able to trace in the literature isBossel and Strobel (1978). They developed a model
to address two lacunae in the World 2 and 3 models—namely, their failure to account
for cognitive processes and their usual neglect of normative criteria and changes in these
criteria. In fact, the Bossel and Strobel model is of a cognitive agent interacting with the
global system. Their agent bases its decisions on the state of the global system, using
indicators, so-called system’s orientors, like existence needs, security, freedom of ac-
tion, adaptivity, and effectiveness. This agent receives information about the state of the
system and decides to change priorities or aspirations, which affect the investment de-
cisions of the agent. Inclusion of these “intelligent” agents prevents the preprogrammed
“pollution crisis” from occurring. It also leads to policies producing very satisfactory
overall results, provided the planning horizon and the control sensitivity are sufficiently
large. The current field of integrated modeling of humans and the environment still faces
similar problems, uncertainty, subjective assumptions and lack of behavioral models, to
those of the initial models (Janssen and de Vries, 1999). Core questions remain regard-
ing how to deal with uncertainty and subjective assumptions and how to include human
dimensions.

Another field that contributed to the development of agent-based modeling of social-
ecological systems is individual-based modeling in ecology, which really took off in the
late 1980s (Huston et al., 1988). Individual-based modeling refers to simulation models
that treat individuals as unique and discrete entities who have at least one property, in
addition to age, that changes during the life cycle, e.g. weight, rank in a social hierarchy,
etc. Often motivated by pragmatic reasons, individual-based models are used to study
systematically the behavior of organisms in complex (spatially explicit) environments
(Grimm, 1999).

In the artificial intelligence field since the late 1980s, scholars developed tools for
natural resource management (Coulson et al., 1987). Well known are geographic infor-
mation systems and expert systems, but also a number of models have been developed
that included intelligent agents interacting with their complex environment (Anderson
and Evans, 1994). An interesting early example is the PHOENIX model on fire manage-
ment (Cohen et al., 1989). The model simulates a forest fire and the actions of intelligent
agents, representing bulldozers and airplanes. The model is an event-driven simulation
model, meaning that the agents perform real-time tasks based on events that happen
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in their local environment. Every five simulated minutes of the model, the agents are
synchronized to allow coordination among the agents. The model is aimed at evaluating
fire-fighting plans in various scenarios.

Bousquet et al. (1994)developed an objected-oriented model of natural resource man-
agement of fisheries in the central Niger delta. Based on fieldwork, an artificial world
was created where different scenarios of rules of when and where to fish in a wetland
area were analyzed for this impact on long term viability of the natural resources. The
existence of space-sharing rules was found to be essential to avoid overfishing.

Deadman and Gimblett (1994)constructed a system that handles the complexity of
goal-oriented autonomous human agents seeking recreational opportunities in natural
environments. The model simulates the behavior of three types of visitors and their
interactions in an event-driven GIS environment of a park environment using intelligent
agents: hikers; bikers; and visitors transported in tour vehicles. The results of hiker
interactions with other users have been used to provide feedback about the implications
for alternative recreation management planning.

Complexity science is still another foundation for the study of the governance of com-
plex social-ecological systems. Social-ecological systems can be viewed as complex
adaptive systems—systems in which the components, and the structure of interactions
between the components, adapt over time to internal and external disturbances (Holland,
1992a). Order in complex systems is emergent as opposed to predetermined. The sys-
tem’s history is irreversible, and future behavior is path dependant. The system’s future
is often unpredictable due to the non-linearity of many basic causal relationships. The
variables that affect performance are both fast and slow moving. If information about
slow-moving variables is not recorded for a long period of time, substantial surprises
can occur when a slow-moving variable reaches some threshold. In social-ecological
systems, the key components are individuals and institutions. With institutions we refer
to the formal and informal rules that shape human interactions. Individuals may change
their relations with other individuals, their strategies, and the rules they are using. In
fact, individual strategies and institutional rules interact and co-evolve, frequently in
unpredictable ways. For example, the peasants who were starting to drain the peat mires
on a local level more than 1000 years ago in the precursor of the Netherlands did not
foresee the large-scale consequences in the few hundred years on the larger-scale land-
scape (lowering of the surface by about 2 cm a year), leading to new institutions (like
waterboards), and different practices (livestock instead of agriculture).

From this perspective, the question arises of how to govern social-ecological systems.
In systems that are indeed complex, one needs to understand processes of organization
and reorganization including collapse and the likely processes that happen after col-
lapse. Does a system have one and only one equilibrium to which it returns after a major
shock and temporary collapse? Are there multiple equilibria with different characteris-
tics? How easy is it for a system to flip from a desirable equilibrium to an undesirable
one? These are crucial questions.

The complex adaptive systems perspective provides us the view of individuals within
a variety of situations structured by the biophysical world, the institutional rules, and
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the community in which they interact. Within ongoing structures, individuals search out
perceived advantageous strategies given the set of costs and benefits that exist and the
strategies that others adopt. Boundedly rational individuals trying to do as well as they
can in uncertain situations continuously tinker with their strategies, including trying
to change the rules that affect particular situations. They may look for loopholes in
the law, particularly if they think others are doing the same. They may check out the
level of enforcement by occasionally breaking rules. Those who have responsibility for
changing the rules of an institution also experiment with new rules and try to learn from
others why other institutional arrangements appear to work better than their own.

Agent-based models are a suitable methodology to study these complex social-
ecological systems in a formal manner for the following reasons:

• Agent decisions are based on internal decision rules; this fits very well with the
increasing insights from experimental social science that humans use various types
of heuristics in different situations (Gigerenzer et al., 1999; Gigerenzer and Selten,
2001).

• The explicit inclusion of agent interactions helps to integrate the increasing insight
of the importance of communication in managing social dilemmas (Ostrom et al.,
1994; Ahn et al. 2003, 2004).

• Agent-based modeling shares similarities with models used in ecology, such as
individual-based models, system theory, and the inclusion of space. Therefore,
agent-based modeling facilitates collaborative efforts of ecologists and social sci-
entists.

• Agent-based models are suitable for modeling complex adaptive systems, in which
the interactions of individual units lead to larger-scale phenomena.

• Agent-based modeling makes it possible to address the problem of scale explicitly
(Gibson et al., 2000b).

The perspective of social-ecological systems as complex adaptive systems provides us a
useful stepping stone for using agent-based modeling for the study of social-ecological
systems. In the next section we discuss a general framework of social-ecological sys-
tems that we will use as a guideline to discuss the work done in this field.

2. A framework for social-ecological systems

The social-ecological systems (SESs) to be examined in the rest of this chapter are (1)
systems composed of both biophysical and social components, (2) where individuals
self-consciously invest time and effort in developing forms of physical and institutional
infrastructure that affect the way the system functions over time in coping with (3)
diverse external disturbances and internal problems, and (4) that are embedded in a
network of relationships among smaller and larger components. In other words, humans
have designedsome parts but not all of the overall SES. In most instances, the design has
evolved over time as feedback generated information about how the SES was operating



hescom v.2005/11/24 Prn:23/12/2005; 13:37 F:hescom2030.tex; VTEX/GIT p. 9
aid: 2030 pii: S1574-0021(05)02030-7 docsubty: REV

Ch. 30: Governing Social-Ecological Systems 1473

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

A
ecruoseR

D
cilbuP

erutcurtsarfnI

B
sresU ecruoseR

C
cilbuP

erutcurtsarfnI
sredivorP

6

1

4
3

2

5

Figure 1. A conceptual model of a social-ecological system. Source:Anderies et al. (2004).

and participants in various positions try to improve the operation of the system—at least
from their perspective.

We adopt the general framework proposed byAnderies et al. (2004)that identifies
the relevant parts of a social-ecological system and how they are linked. InFigure 1,
the elements of such a framework are presented. Given that most multi-level SESs are
very complex, we start by focusing first on a single-level SES. We identify four “en-
tities” that are normally involved in SESs utilized by groups of individuals over time.
Two of these entities are composed of humans. First are the resource users (B in Fig-
ure 1), who are the population of those harvesting from the resource (A in Figure 1).
Second are the public infrastructure providers (C in Figure 1), who receive monetary
taxes or contributed labor and make policies regarding how to invest these resources
in the construction, operation and maintenance of a public infrastructure. A substantial
overlap may exist among the individuals inB and inC or they may be entirely different
individuals depending on the structure of the social system governing and managing
the SES.

The public infrastructure (D in Figure 1) combines two forms of capital: human-made
capital (physical capital) and institutional capital (seeOstrom and Ahn, 2003; Costanza
et al., 2001). The physical capital includes a variety of engineered works, for example
the headworks and canals of an irrigation system and the constructed highways of a
transportation system. The institutional capital includes the rules actually used by those
governing, managing and using the system that create opportunities and constraints in
the action-outcome linkages available to participants.
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The resource (A in Figure 1) is most frequently a biophysical system or a form of
natural capital that has been transformed for use byB through the efforts ofC to invest
in D. We will focus on common-pool resources where it is difficult to exclude potential
beneficiaries from receiving the costs or benefits of governance strategies, and where the
resource flows withdrawn from the resource system subtract from the availability of re-
source flows for other users (Ostrom et al., 1994). If one is going to examine robustness
or resilience, one needs to include external disturbances (incoming arrows onFigure 1),
which can include biophysical disruptions (Linkages 7) including floods, earthquakes,
landslides, and climate change which impact onA andD or socioeconomic changes
(Linkages 8) including population increases, changes in economic opportunities, de-
pressions or inflations, and major political changes that impact onB,C andD.

A social-ecological system can be challenged in two ways: (1) by external distur-
bances; and (2) by fluctuations within internal entities and the links between them. The
internal fluctuations may result from the strategic interactions among the resource users
and among the participants in the process of providing the public infrastructure. Further,
strategic interactions exist among resource users regarding the harvesting rate from the
resource (Linkage 1 onFigure 1), the linkages among resource users and the public in-
frastructure providers (Linkage 2 onFigure 1), the public infrastructure providers and
the investments made in the infrastructure (Linkage 3), and potentially, the linkage be-
tween resource users and the public infrastructure (Linkage 6). Further, the linkages
among the ecological entities (Linkages 1, 4 and 5) are also sources of fluctuations that
may challenge the robustness of the overall SES at any particular point in time.

The simplest example of a social-ecological system consistent with the framework is
a small group of actors with relatively homogeneous interests who are in both positions
B andC. Without a medium of exchange other than labor and goods, cooperation must
be undertaken by direct interactions and transparent means. Such a system might be a
small irrigation system where farmers who own relatively similar plots of land meet
regularly to discuss how many days to work on maintenance and how to allocate the
water (seeTang, 1992; Lam, 1998; Ostrom, 1992). A social-ecological system becomes
more complex when task specialization occurs and most actors are either resource users
or public infrastructure providers. This might create incentives for rent seeking, corrup-
tion, and mismanagement due to incomplete or competing knowledge systems. So the
internal stability might become less robust when a system becomes more diverse and
specialized.

External threats may affect the various components and links within the SES. Natural
events, human induced impacts, and accidents can disrupt the resource system. External
sources may change the preferences of resource users as a consequence of new infor-
mation and inward and outward migration of people. The abilities to perform by public
infrastructure providers can be affected due to changes in higher level regulations, and
by the emergence or decline of local champions, those individuals who make a differ-
ence in making things happen. Finally, the public infrastructure can itself be affected
by natural events and accidents (physical infrastructure) and changes in higher level
regulations (institutional rules). These external disturbances interdependently affect the
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activities within the social-ecological system. In fact, there might be interactions across
scales that make SES’s become more or less robust to internal and external challenges.

This general framework lets us rephrase the three puzzles identified in the introduc-
tion. The first set of questions addresses social dilemmas: What kind of institutional
frameworks lead to robust governance of social-ecological systems? What is the influ-
ence of the ecological dynamics? What kind of information do resource users and public
infrastructure providers exchange? What are conflicting and compromising interactions
between the different agents involved? What is the effect of different levels of spatial
and temporal scale? How do institutional rules evolve?

The second type of question addresses uncertainty: What information do resource
users and public infrastructure providers have, and what is the asymmetry of this infor-
mation? How do resource users learn, and how do their learning processes differ from
how public infrastructure providers learn? How do different mental models of agents
affect the use and governance of the resource? Finally, social and biological agents in-
teract in a spatially explicit landscape formulated as maps or networks. How does spatial
heterogeneity affect the functioning of social-ecological systems? How does informa-
tion spread among nodes in a network? Who talks with whom, when and about what,
and how does this affect resource management?

We will now discuss each of the three areas and dig in more deeply to discuss theo-
retical and applied agent-based models, and the relation of laboratory experiments with
agent-based modeling.

3. Social dilemmas

A key theoretical and empirical puzzle in all of the social sciences is how individ-
uals overcome the strong temptation not to cooperate in social dilemmas, in which
individual contributions exceed individual returns, and instead attempt to achieve joint
benefits through cooperation (Axelrod, 2005). Both sets of human actors identified in
Figure 1face multiple social dilemmas. Resources users (B) face common-pool re-
source dilemmas that can, if unresolved, lead to serious over-harvesting and potentially
the destruction of the resource. As one New England fisher recently put it, “I have no
incentive to conserve the fishery, because any fish I leave is just going to be picked up
by the next guy” (cited inTierney, 2000, p. 38). Some users may develop trust (Ostrom
and Walker, 2003) and/or strong reciprocity even when they have heterogeneous inter-
ests (Bowles and Gintis, 2004). Without some agreed-upon and enforced rules, however,
resources users may simply race each other to use up the resource. Public infrastructure
providers(C) also face social dilemmas in their effort to develop effective institutions (a
public good) or efficient infrastructure (usually another common-pool resource). Sim-
ply authorizing some individuals to govern a resource does not guarantee that they will
overcome the temptations to engage in rent-seeking, to accept bribes, or simply to avoid
investing in costly information acquisition.
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Cooperation in social dilemmas can be easily explained when the social agents are ge-
netically related (Frank, 1998) and/or interact repeatedly over a long indeterminate time
(Kreps et al., 1982). The question of why non-related social agents cooperate relates
to a number of important issues in ecological economics, especially to the question of
designing effective institutional configurations for common-pool resources and public
goods.Schlager (2004)reviews the extensive empirical cases where local communities
have developed institutions to deal with social dilemmas. These examples demonstrate
that people have the capacity to organize themselves to achieve much higher outcomes
than predicted by conventional economic theory. Capacity is not, however, sufficient to
ensure that resources are governed sustainably.

Empirical research stimulated in large part by a mid-1980s Committee of the National
Research Council (National Research Council, 1986) and synthesized by a more recent
committee (National Research Council, 2002) has demonstrated that no form of gov-
ernance is guaranteed to change the strong incentives of the pervasive social dilemmas
faced by resource users and public infrastructure providers so as to generate long-term
sustainability. Governing resources successfully is always a struggle (Dietz et al., 2003).
Empirical findings suggest that successful, adaptive governance of natural resources re-
quires: (1) generating substantial information about stocks, flows, and processes within
the resource (the arrows inFigure 1); (2) dealing with conflict that arises among mul-
tiple users and uses of a resource; (3) inducing rule compliance among all participants
so that each has confidence that the others are not cheating; (4) providing effective
physical and institutional infrastructure (C in Figure 1); and (5) preparing for the in-
evitable changes that occur due to external disturbances as well as internal changes in
resource and human dynamics (Dietz et al., 2003). A recent empirical study of over 200
forests located in Africa, Latin America, Asia, and the United States provides strong
evidence that regular rule enforcement is more important in achieving sustainable forest
conditions than the form of organization governing a forest, the level of social capital
existing among users, or the level of dependence of users on a forest (Gibson et al.,
2005).

3.1. Theoretical models

Field research has thus generated substantial evidence that, contrary to earlier economic
theory, no optimal form of governance exists that can be imposed on all SESs with the
expectation that resource users and public infrastructure providers will accept the sys-
tem and make it work. On the other hand, field research has also shown that resource
users and public infrastructure providers have devised an ingenious array of rule con-
figurations that work effectively in specific ecological and social settings. Thus, there is
a lot for theory to explain!

As discussed in more detail byDibble (2005), Axelrod (2005), Young (2005), and
Kollman and Page (2005), agent-based models are being intensely used to derive a
better theoretical understanding of the conditions that lead social agents to cooperate.
Axelrod (1984, 1987)pioneered in this field with his iterated prisoner’s dilemma (IPD)
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tournaments and with his simulation of the evolution of strategies using genetic algo-
rithms. This led to a vast number of human–subject experiments (summarized inDavis
and Holt, 1993; Colman, 1995) and agent-based models on variations of the IPD game
focused on the effects of partner choice, tags, reputation symbols, spatial interactions,
noise, probabilistic choice, and so forth (seeGotts et al., 2003). Multiple theoretical
efforts have been made to provide a coherent, analytical framework for explaining the
repeated finding that cooperation levels in social dilemmas are frequently above the zero
contribution level predicted by non-cooperative game theory (seeBoyd and Richerson,
1992; Bowles, 1998; Gintis, 2000; Camerer, 2003).

Axelrod (1986)was among the first to tackle how norms supporting cooperative
strategies, that were not the strategies leading to a Nash equilibrium, could be sustained
over time. He posited that individuals could adopt norms—meaning that they usually
acted in a particular way and were often punished if they were not seen to be acting in
this manner. He posited that some individuals also developed a norm to punish those
who defected in social dilemmas as well as the concept of a meta norm—a norm that
“one must punish those who did not punish a defection”Axelrod (1986, p. 1109). With
punishment norms backing cooperative norms, and the meta norm of punishing those
who did not punish defectors, Axelrod was able to develop an evolutionary theory of
cooperation consistent with evidence from the field.

Recent evolutionary models byKameda et al. (2003)have developed these ideas
even further. In a formal analysis of a set of simplified strategies, these authors ex-
plore the viability of a “communal sharing strategy” which cooperates when in the role
of resource acquisition and imposes sanctions on others if they engage in non-sharing
behavior. They establish that the communal-sharing strategy is a unique evolutionar-
ily stable strategy that blocks any other strategy from successfully invading for a wide
range of parameters. Kameda et al. also undertook a simulation of the performance
of multiple strategies when ten players are involved and their strategies could evolve
over time. Here they observed that free riding could become the dominate strategy
over multiple generations due to the problem of second-order free riding in regard to
norm enforcement. When they added an “intolerant” norm enforcer who is willing to
bear extra costs for excluding others who are second-order free riders on the enforce-
ment of cooperative norms, simulated ten-person games tended to sustain cooperative
sharing over very large number of generations. In field settings of robust SESs, one
does tend to find some members of self-organized groups who are “fired up” about
the need for everyone to follow the rules and norms they have evolved over time.
Some groups rotate the role of being the local enforcer among their membership, so
no one has to bear the cost of monitoring and enforcing at all times, while each of
them is “super-charged” with the responsibility for local monitoring on a rotating ba-
sis.

Many of the specific rules that empirical researchers have observed in the field have
puzzled theorists. In addition to rotating enforcement responsibilities, elaborate turn-
taking rules have, for example, been observed in robust institutions related to harvesting
fish from inshore fisheries (seeBerkes, 1986) and obtaining water from farmer-governed
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irrigation systems (Ostrom, 1992). Even subjects in repeated common-pool resource
experiments with opportunities to engage in face-to-face communication have devised
rotation systems enabling one set of subjects to gain more in one round and less in the
next (Ostrom et al., 1994). A recent paper byLau and Mui (2003)has now provided a
strong game-theoretic analysis of how such complex rules can be sustained in a repeated
environment characterized by asymmetric payoffs in any one period.

Let us now turn to agent-based models of cooperation.Thébaud and Locatelli (2001),
for example, developed an agent-based model to address a puzzle initially proposed by
Sugden (1989). Sugden observed the emergence of property-right rules of those who
gather driftwood after a storm on the Yorkshire coast. Whoever found an item first
could take it and gather it into piles. By placing two stones on the top of each pile, the
gatherer could mark his property. If a pile had not been removed after two more high
tides, the ownership rights terminated. Thébaud and Locatelli were able to generate the
emergence of piles, whose existence varied with the range of vision (could the agent
steal without being caught?) and the threshold of the size of the pile before it is consid-
ered private property (lower threshold makes it easier to generate private piles). Another
aspect that was found important is the imitation rule. Agents compare their wood pile
with others they encounter and, if the observed pile is larger than their own (including
the wood they are currently carrying), they adopt the strategy of its owner with regard
to the property rule.

Another set of papers discusses the effect of different models of human behavior on
the management of common resources.Jager et al. (2000)discuss the harvesting by a
population of agents of a fish stock and a gold mine (whose pollutants negatively af-
fect the carrying capacity of the fish population). They tested two types of models of
behavior. In the first model, the agents considered all possible actions. In the second,
agents used heuristics mimicking repetition, deliberation, social comparison, and imi-
tation. Which heuristic was active at a certain moment in time depended on the level of
satisfaction and uncertainty.Jager et al. (2000)show that constant deliberation over all
possible options leads to a faster decline of the resources, and an uneven transition from
fishing to gold digging. Several social psychology-based agent-based models on the
collective use of common resources have especially focused on including the effects of
resource uncertainty (Jager et al., 2002; Mosler and Brucks, 2002). Jager et al. (2002),
for example, show that overharvesting is more severe in periods of uncertainty, which
is consistent with laboratory experimental and field evidence. Due to the use of agent-
based models, Jager et al. were able to pin-point three different behavioral processes
that may contribute to this overuse. Another relevant paper is byJanssen and Ostrom
(2005), who study the conditions that are needed for a population of agents to voluntar-
ily restrict their own behavior to avoid collapse of the resource in the longer term. They
show that when agents are able to evolve mutual trust relationships, a proposed rule on
restricted use of the resource will be accepted because the agents trust each other to
follow the rules.
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3.2. Laboratory experiments related to the governance of social-ecological systems

Behavioral game theory has been instrumental in testing the effects of alternative mod-
els of decision-making on social dilemmas (see, for example,Erev and Roth, 1998;
Camerer and Ho, 1999; Camerer, 2003; Duffy, 2005). With regard to the governance
of social-ecological systems, the study of public goods and common-pool resources are
important. The standard linear public-good provision experiment can be characterized
by the number of individuals(N), the marginal per capita return(r), the number of
repetitions(T ), and the initial endowment of token money for each player(ω). An ex-
perimental linear public-good provision game involves a free-rider problem ifr < 1 and
N × r > 1. Suppose, in a given round, individuali contributesxi of ω for the provision
of the public good. The subject’s payoff(πi) is:

πi = ω − xi + r

N∑
j=1

xj .

The equilibrium prediction, assuming individuals maximize own monetary payoffs, is
that the public good will not be provided at all.

For the common-pool resource experiments with a quadratic production function, the
experiments are formulated in the following way. The initial resource endowmentω of
each participant consists of a given set of tokens that the participant needs to allocate
between two markets: Market 1, which has a fixed return; and Market 2, which functions
as a collective resource and which has a return determined in part by the actions of the
other participants in the experiment. Each participanti chooses to invest a portionxi of
his/her endowment ofω in the common resource Market 2, and the remaining portion
ω − xi is then invested in Market 1. The payoff function as used inOstrom et al. (1994)
is:

ui(x) = 0.05 · e if xi = 0
0.05 · (ω − xi) + (

xi/
∑

xi

) · F
(∑

xi

)
if xi > 0

where

F
(∑

xi

)
=

(
23 ·

8∑
i=1

xi − 0.25 ·
(

8∑
i=1

xi

)2)
/100.

According to this formula, the payoff of someone investing allω tokens in market one
(xi = 0) is 0.05× ω, thus 0.5 tokens. The return is like a fixed wage paid according to
the hours invested. Investing a part or all of the tokens in market two(xi > 0) yields
an outcome that depends on the investments of the other players. If the players behave
according to the non-cooperative game theory, they would derive the Nash equilibrium,
where each player maximizes payoff given the strategies chosen by the other players.

A series of laboratory experiments during the last twenty years have shown that sub-
jects do invest in public goods and are able to govern common-pool resources more
sustainably than predicted by theory (Isaac et al., 1984, 1985, 1994; Isaac and Walker,
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1988; Marwell and Ames, 1979, 1980, 1981; Ostrom et al., 1994). Depending on the
return rate from investments in the public good, the initial contribution rate remains the
same or decreases with the number of rounds. Laboratory experiments have consistently
shown that communication is a crucial factor for achieving cooperative behavior (Sally,
1995; Brosig, 2002).

In the common-pool resources, the average harvest approaches the Nash equilibrium
when no communication or sanctioning is allowed, but decreases to a cooperative level
when participants do communicate (cheap talk) or are able to penalize (impose costs on)
those who harvest more than agreed upon. The ability of participants to determine their
own monitoring and sanctioning system is critical for sustaining efficient cooperative
behavior (Ostrom et al., 1994).

3.3. Agent-based models of laboratory experiments

Since the behavior of subjects is not consistent with predictions using a rational choice
model of individual behavior, an important question is what types of models of human
behavior explain the observations. A recent development is the use of agent-based mod-
els to test alternative models that replicate the patterns of the subjects in the laboratory
experiments. PeterDeadman (1999)defined agents who chose a certain strategy and
could update these strategies in an environment that is similar to the common pool ex-
periments run at Indiana University (Ostrom et al., 1999). He modeled their updating
process to be based on the expected and experienced performance of strategies in pre-
vious rounds. The types of strategies he used were based on exit interviews conducted
after a session of common-pool resource experiments had ended (Ostrom et al., 1994).

One strategy attempts to maximize the individual return received in each round by
comparing investments in Market 2 in previous rounds with the resulting returns. If re-
turns on tokens are increasing, then more tokens are placed in Market 2. If returns on
tokens invested in Market 2 are decreasing, then fewer tokens are placed in Market 2.
Another strategy mentioned by subjects is to compare average returns between Market 1
and Market 2, increasing the tokens allocated to the market that performs better. The last
type of strategy directly compares an individual agent’s investment with the investments
of the group as a whole. The agent-based model showed similar fluctuations in aggre-
gated token investment levels in Market 2 as in the laboratory experiments reported in
(Ostrom et al., 1994).

Deadman et al. (2000)introduce communication between agents in their agent-based
model. During communication, agents are assumed to pool their experience in regard
to the various strategies they have used. In this way, all agents derive a similar map of
which strategies work well. As in the laboratory experiments where communication was
allowed, investment levels moved closer to the optimal level of full cooperation.

Like Deadman (1999), Jager and Janssen (2002)used agent-based models to provide
a possible explanation of observed patterns in common-pool experiments without com-
munication. The agents in Jager and Janssen are based on a meta-theoretical framework
of psychological theories. An agent is assumed to have different type of needs, includ-
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ing subsistence, identity and exploration. Depending on whether the needs of the agent
are satisfied or not, and whether the agent is uncertain or not, an agent uses one of four
decision rules: deliberation; social comparison; repetition; and imitation. An unsatis-
fied agent spends more cognitive energy (e.g., deliberation or social comparison) than
a satisfied agent (who relies more on repetition and imitation). An uncertain agent uses
information from other agents (social comparison or imitation) instead of relying on
individual information (deliberation or repetition). The difference between social com-
parison and imitation is that during social comparison an agent checks whether copying
the strategy of another agent leads to an expected improvement of the utility.

Jager and Janssen found that agent-based models of individual behavior in common-
pool resource settings needed to include

• social value orientation,
• preferences one has for a particular distribution of outcomes for oneself and others,
• satisfying behavior,
• exploratory behavior when payoffs of an agent remain the same for a number of

rounds, and
• heterogeneity of needs among the agents.

All five individual characteristics are needed in the analysis to derive token investment
patterns at the group level similar to those resulting in the human–subject experiments.
The investment patterns were evaluated by taking into account the average investment
level, the differences between the agents in a group, and the changes of investment levels
across rounds.

Castillo (2002)investigates the decision rules individuals used during field experi-
ments of common-pool resources conducted by (Cárdenas among coastal communities
in the Colombian Caribbean Sea (Cardenas et al., 2000). The model is based on the
theory of collective action ofOstrom (1998)and implemented from a systems dynam-
ics perspective. As in previous studies, Castillo simulates the experiments describing
the actions of individual agents. By using response functions, Castillo is able to esti-
mate the theoretical framework ofOstrom (1998)without describing the mechanisms
of reputation, trust, and reciprocity explicitly.

We are aware of two additional papers that use agent-based model to understand the
behavior of agents in public-good experiments.Iwasaki et al. (2003)examined a rein-
forcement learning model to explain patterns of behavior observed in their threshold
public-good experiments. In such an experiment, a minimum threshold of investments
in the public good must be contributed before the public good is provided. Their model
of reinforcement learning was only partly able to explain the observed data. It did
reproduce cooperative patterns, but was not able to reproduce non-cooperative pat-
terns.

Janssen and Ahn (2005)compare the empirical performance of two decision mak-
ing models to explain the outcomes in a large set of public-good experiments without
communication (Isaac and Walker, 1988; Isaac et al., 1994), namely, the experienced
weighted attraction learning model ofCamerer and Ho (1999), and the best-response
model with signaling based onIsaac et al. (1994). In contrast with the previous studies,



hescom v.2005/11/24 Prn:23/12/2005; 13:37 F:hescom2030.tex; VTEX/GIT p. 18
aid: 2030 pii: S1574-0021(05)02030-7 docsubty: REV

1482 M.A. Janssen and E. Ostrom

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Janssen and Ahn focus on the problems on parameter calibration and the evaluation of
the model performance on individual and group level statistics. Both models outperform
the selfish rational actor model as an explanation of observed behavior. Furthermore, the
learning model was found to give the best performance using the individual level cal-
ibration, while the best response model was found to calibrate best at the group level.
The essential elements of the model that enhances its performance is the inclusion of
other regarding preferences and satisficing behavior, similar toJager and Janssen (2002)
for common-pool resources.

The strategy method, where human subjects develop strategies based on their ex-
perience in laboratory experiments, is an interesting method which links agent-based
models and experiments (Selten et al., 1997). Keser and Gardner (1999)apply the strat-
egy method to common-pool resources. Their common-pool resource game consisted of
a constituent game played for twenty periods. Sixteen students, all experienced in game
theory, were recruited to play the game over the course of six weeks. In the first phase of
the experiment, they played the common-pool resource game on-line three times. In the
second phase of the experiment, the tournament phase, they designed strategies which,
after implementation as agents, were then played against each other. As for human sub-
jects, a Nash equilibrium was found at the aggregate level, but at the individual level,
fewer than 5% of subjects played in accordance with the game equilibrium prediction.

Combining agent-based modeling and laboratory experiments of complex dynamic
social dilemmas has just started (seeDuffy, 2005 for a more general discussion on
agent-based modeling and laboratory experiments). The current publications demon-
strate considerable potential to test alternative theories of human behavior. Huge
methodological challenges still exist, however, in regard to parameter estimation and
model comparison. For example,Salmon (2001)showed that identification of the cor-
rect learning models using econometrics techniques leads to potential problems. Salmon
generated experimental data by simulation of normal-form games using a number of
learning models so that he could test four different econometric approaches in their ac-
curacy of distinguishing the individual models by which the data was generated.Wilcox
(2003)did a similar experiment to test the implication of the assumption of homogene-
ity of the subjects. If the agent population is heterogeneous in parameter values, serious
problems in accuracy of parameter estimation are created.

Model selection is an important line of research in cognitive science (Pitt and Myung,
2002). Various approaches have been developed to test models in regard to goodness of
fit and generalizability. These approaches penalize models with increasing complexity.
Approaches based on maximum likelihood depend on the assumption that the obser-
vations are statistically independent. This is not the case when multiple actors interact
over time in experiments with public goods and common-pool resources. Interdepen-
dence in a complicated fashion definitely exists when communication, monitoring, and
sanctioning are allowed.
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3.4. Applications to social-ecological systems

An early application of agent-based modeling to study the coordination among resource
users is the study of the irrigation systems of Bali (Lansing and Kremer, 1993). The ir-
rigators have to solve a complex coordination problem (Lansing, 1991). On one hand,
control of pests is most effective when all rice fields in a watershed have the same
schedule of planting rice. On the other hand, the terraces are hydrologically interdepen-
dent, with long and fragile systems of tunnels, canals, and aqueducts. To balance the
need for coordinated fallow periods and use of water, a complex calendar system has
been developed that details what actions should be done on each specific date in each
organized group of farmers—called asubak. These actions are related to offerings to
temples, ranging from the little temples at the rice terrace level to the temples at the
regional level and all the way up to the temple of the high priest Jero Gde, the human
representative of the Goddess of the Temple of the Crater Lake. Crater Lake feeds the
groundwater system, which is the main source of water for irrigating in the entire water-
shed. These offerings were collected as a counter gift for the use of water that belonged
to the gods.

The function and power of the water temples were invisible to the planners involved
in promoting the Green Revolution during the 1960s. They regarded agriculture as a
purely technical process. Farmers were forced to switch to the miracle rice varieties,
which were predicted to lead to three harvests a year, instead of the two of the traditional
varieties. Farmers were stimulated by governmental programs that subsidized the use of
fertilizers and pesticides. After the governmental incentive program was started, the
farmers continued performing their rituals, but they no longer coincided with the timing
of rice-farming activities. Soon after the introduction of the miracle rice, a plague of
plant-hoppers caused huge damage to the rice crop. A new variety was introduced, but
then a new pest plague hit the farmers. Furthermore, there were problems of water
shortage.

During the 1980s, an increasing number of farmers wanted to switch back to the old
system, but the engineers interpreted this as religious conservatism and resistance to
change. It wasLansing (1991)who unraveled the function of the water temples, and
was able to convince the financers of the Green Revolution project on Bali that the irri-
gation was best coordinated at the level of the subaks with their water temples. Lansing
built an agent-based model of the interactions of subak management strategies and the
ecosystem, and the local adaptation of subaks to strategies of neighboring subaks, and
showed that for different levels of coordination, from farmer level up to central con-
trol, the temple level was the level of scale where decisions could be made to maximize
the production of rice (see alsoLansing and Kremer, 1993). He also showed how the
coordination might have been evolved as a result of local interactions (Lansing, 2000).

In Lansing and Miller (2003), a simple game-theoretic model is used to provide a
compact explanation for many of the most salient features observed in the system.
While externalities caused by either water scarcity or pests in isolation would be ex-
pected to cause a serious failure in the system, they find that the ecology of the rice
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farming system links these two externalities in such a way that cooperation, rather than
chaos, results. The reason for this, depending on the underlying ecological parameters
in the system, is that regimes exist in which the farmers would like to coordinate their
cropping patterns (in particular, have identical fallow periods) so as to control pest pop-
ulations. In other regimes, coordination is not an equilibrium, even though coordinated
farming would result in greater aggregate crop output. Lansing and Miller identified
two indirect mechanisms by which the system can reach cooperation. The first is to
have the upstream farmers share their water with the downstream farmers. The second
is that increases in pest damage can drive the system into a coordinated equilibrium,
enhancing aggregate output. The Balinese rice temples would have played a facilitat-
ing role in deriving coordination in this complex system. In an earlier game-theoretical
paper,Ostrom (1996)also examined how differences between head-end and tail-end
farmers could be the foundation for extensive mutually productive coordination in the
maintenance of irrigation infrastructure.

Bousquet and his colleagues (Bousquet et al., 1998) developed a modeling plat-
form, CORMAS, dedicated to the study of common-pool resources through agent-based
modeling. They have performed many applications and work together with local stake-
holders, often in Africa and Asia, to develop agent-based models for practical natural
resource management problems.1 Barreteau and Bousquet (2000), for example, study
the underutilization of irrigated systems in the Senegal River Valley in North Sene-
gal. An agent-based model was developed to simulate an archetypal irrigation sys-
tem. The agents represent farmers, credit access, and water allocation groups. The
processes represented deal with the circulation of water and credit and with interac-
tions about their allocation and access to them. The model was used in role-playing
experiments to test its potential as a negotiation support tool and to test the model with
the agents they try to simulate (Barreteau et al., 2001). The use of a role-playing game
was found very useful for testing the model and interacting with local stakeholders.
This led Bousquet et al. (2002)to the idea ofcompanion modeling, which interac-
tively combines agent-based modeling and role-playing games and uses the latter to
acquire knowledge, build and validate the agent-based model, and use the model in
the decision-making process. This has been applied to a number of case studies, as re-
viewed in Bousquet et al. (2002). We come back to role-playing games later in this
chapter.

Rouchier et al. (2001)discuss a coordination problem of nomad herdsmen securing
their access to the rangelands in Cameroon. Herdsmen who need the grass and water
from the villages negotiate with village leaders to get access to the land of the farmers.
The herdsmen choose which leaders to approach. Those leaders may reject offers if they
are lower than a minimum acceptance level. Herdsmen need to sell some of their animals
to derive the resources to pay the fee. Three types of choice processes are simulated:
(1) herdsmen make offers to place their animals on random spots; (2) they make offers

1 Seehttp://cormas.cirad.fr.

http://cormas.cirad.fr
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for the cheapest spots; or (3) they make offers to the villages with the best friendship
relations that take into account past refusals of offers. Rouchier et al. found that choices
based on costs lead to the lowest number of animals that the simulated system could
sustain, because considerable resources are lost by negotiation and refusals when all
herdsmen try to enter cheapest village. Since the herdsmen do not learn in this model,
they continue losing productivity by aggregating around the same village every time
period. Other applications of the CORMAS group include collaborative forest manage-
ment in East Kalimantan in Indonesia (Purnomo et al., 2003) and the management of
livestock effluents in Réunion, France (Farolfi et al., 2002).

3.5. What have we learned?

In regard to the governance of common-pool resources, agent-based modeling has been
able to draw on a foundation of extensive fieldwork and laboratory experiments as well
as extending our theoretical understanding of cooperation in social dilemma settings.
Since both forms of empirical research had already challenged the capacity of simple,
analytical theory based on non-cooperative game theory to explain empirical results,
the field was ripe for the use of agent-based models. We have learned from agent-based
models of the processes linking resource users, public infrastructure providers, and their
resources and infrastructures that much of the data reported by field researchers is con-
sistent with a complex, adaptive systems view of social dilemmas.

From the combination of research methods examining factors enhancing levels of
cooperation, we have learned that devising rules that allocate benefits to resource users
in a legitimate, fair, and enforceable way is essential to overcome incentives to free
ride. Rarely can external authorities devise rules that are well tailored to a local ecol-
ogy and culture and also invest substantial resources in monitoring patterns of resource
use and sanctioning those who do not follow rules. Thus, the repeated finding that in-
dividuals can devise agreed-upon norms for governing a resource that they themselves
can monitor and enforce has changed our scientific understanding of these processes.
Unfortunately, public policies have all too frequently relied on simple panaceas that
either recommend government, private property, or decentralized governance of SESs.
We have strong evidence that simplistic solutions that are imposed by external agen-
cies on resource users rarely work (National Research Council, 2002; Dietz et al.,
2003). And, fortunately, we now have methods—agent-based models—that facilitate
the analysis of complex SESs by stakeholders and officials. No longer do we need to
throw up our hands in despair because the system is so complex! We do, however, need
to continue a sense of modesty. Even with agent-based models of complex SESs, we
rarely can prescribe “the” optimal solution for any complex setting. Those involved
have to learn over time by experimenting with local ideas, with what they can learn
from others and with ideas from the literature describing what has worked well in other
settings.
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4. Dealing with uncertainty

Understanding of the processes of social-ecological systems is incomplete and is likely
to remain incomplete. Given the persistent uncertainty facing resource users and public
infrastructure providers in the field, researchers need to incorporate uncertainty explic-
itly in their analyses (Ludwig et al., 1993). Agent-based models can address uncertainty
by analyzing the consequences of how people make decisions under uncertainty and by
assessing the impact of different types of hypotheses about these processes in social-
ecological systems.

Models of human decision-making under uncertainty have traditionally been ap-
proached from a probabilistic standpoint: human performance was compared to prob-
abilistic prescriptions. Any divergence was interpreted as a deviation from the optimal
behavior. Laboratory experiments of human decision-making, however, show that fre-
quently people do not make decisions under uncertainty that are consistent with the
probabilistic perspective (Kahneman and Tversky, 1979). Further, many decision prob-
lems cannot be characterized by a closed set of probabilities (Ludwig et al., 1993).

If agents do not have complete knowledge of a complex ecological system, how do
their mental models of the system affect their actions? How can they learn to derive a
more accurate mental representation? These questions refer to the general problem in
agent-based modeling that agents do not have perfect knowledge of the system. They
make their decisions based on the perceptions they have of the problem. These per-
ceptions do not have to include correct representations of reality and may vary among
agents. The focus in this section is on the uncertainty of agents about the ecological
dynamics.

4.1. Theoretical models

An important source of uncertainty in the governance of social-ecological systems is the
fundamental uncertainty of the functioning of the biophysical system. One of the uses
of agent-based models is to explore the consequences of agents who have incomplete
perceptions of reality. Different perceptions of reality can be visualized by different
perspectives of stability (Figure 2). According to the equilibrium perspective, systems
are in equilibrium. External effects can push the system briefly out of equilibrium, but
it automatically returns to the previous equilibrium situation. This perspective corre-
sponds very well with the Newtonian-modeling paradigm. The perspective of stability
can be represented graphically as a ball at the bottom of a valley (Figure 2c). Perturba-
tions only temporarily knock the ball away from the bottom of the valley. An implicit
assumption of this perspective is that systems have the capacity to dampening all kinds
of disturbances.

An alternative perspective is the obverse: namely, the perspective of instability. Sys-
tems are assumed to be very sensitive to disturbances. Every disturbance can lead to
a catastrophe. Applied to environmental issues, the perspective of instability explains
why some people argue that human activities are not supposed to disturb the natural
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Figure 2. Perspectives of nature: (a) nature is unstable; (b) nature is stable within limits; (c) nature is stable;
(d) nature has different stability domains (afterJanssen, 2002b).

system. Any degree of pollution or increase of extractions can lead to a collapse of the
system. This perspective can be visualized by a ball on a peak (Figure 2a). Any pertur-
bation can cause the ball to roll down the slope. A third perspective is in-between the
perspectives of stability and instability: namely, a system is assumed to be stable within
limits. When the system is managed well, the system can absorb small perturbations.
This perspective can be visualized as a ball in a valley between two peaks (Figure 2b).

A more advanced framework is to consider multiple stable states (Scheffer et al.,
2001). As depicted inFigure 2d, this perspective can be represented as a number of
peaks and valleys. The ball is resting in a valley and is able to absorb a certain degree
of disturbance. However, a severe disturbance can push the ball over a peak such that
it will rest in another valley, an alternative equilibrium. Examples of these multiple
states are lakes that can flip from an oligotropic state to a eutrophic state due to inputs
of phosphates, and rangelands that can flip from a productive cattle-grazing system
into unproductive rangeland dominated by woody vegetation, triggered by variability in
rainfall.

A perspective of systems that is more advanced, and lies in line with the complex
adaptive system modeling paradigm, is the perspective of resilience. The perspective
of resilience not only considers the balls moving up and down the peaks and valleys,
but also considers possible movements of the peaks and valleys themselves. In this evo-
lutionary picture, stability domains can shrink, and disturbances that previously could
be absorbed might now dislodge the system. This view has important implications for
managing systems. In the previously discussed perspective, systems could be known
perfectly. Surprises could lead to changes of management, because the balls move into
another valley; but, in principle, management is simply a matter of controlling the sys-
tem. From the perspective of an evolving ‘landscape,’ however, one has to manage a
system in the face of fundamental uncertainty about the functioning of the system. One
continually needs to observe the system in order to respond adequately. Moreover, small
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human-induced perturbations are recommended in order to learn from the system over
time.

Various concepts called worldviews are designed to classify different perceptions of
reality. Michael Thompson and his colleagues give a general description of perspectives
on natural and human systems and social relations in their Cultural Theory (Thompson
et al., 1990). This theory was used during the 1990s to classify different types of in-
stitutional designs in relation to global environmental change. Cultural Theory is even
used in various mathematical models, when suitable, because it includes perspectives
on human and natural systems that claim generality and includes the determinism of ex-
plaining the rationality of each perspective. Cultural Theory combines anthropological
and ecological insights, and results in multiple types of culture.

The three main worldviews in Cultural Theory are:
• Hierarchists assume that nature is stable in most circumstances but can collapse

if it crosses the limits of its capacity. Therefore, central control is advocated as a
management style.

• Egalitarians assume that nature is highly unstable and that the least human in-
tervention could lead to its complete collapse. A preventive management style is
preferred.

• Individualists assume that nature provides an abundance of resources and believe
it is stable with human interventions. A responsive management style is advocated.

Human-induced climate change is a topic surrounded with many uncertainties and is
therefore an excellent example to illustrate how worldviews can be quantified to sim-
ulate alternative futures based on different perceptions of reality. Such an analysis was
made byJanssen and de Vries (1998), who developed three versions of a simple model
of a social-ecological system based on alternative assumptions about climate sensitiv-
ity, technological change, mitigation costs, and damage costs due to climate change.
Egalitarians, for example, assume high climate sensitivity, high damage costs, low tech-
nological development, and low mitigation costs. For management styles, they assume
different strategies for investments and reductions of emissions of carbon dioxide. The
individualist, for example, assumes a strategy that maximizes economic growth and
assumes emissions are reduced only if a certain threshold of economic damage is ex-
ceeded.

Suppose the agents in a model world are all hierarchists, all egalitarians, or all indi-
vidualists. If agents are assumed to have perfect knowledge of their world, their utopia
can be simulated. If their worldview is incorrect and they still apply their preferred man-
agement style, their dystopia can be simulated. An example is presented inFigures 3a
and 3b. In the egalitarian utopia, emissions of carbon dioxide will be reduced to zero
within a few decades, leading to a modest temperature change. However, if the individ-
ualistic worldview manages a world that actually operates according to the egalitarian
worldview, emissions increase until climate change causes such an economic disaster
that an emission reduction policy is unavoidable.

By introducing a population of agents with heterogeneous worldviews, a complex
adaptive system is produced. It is assumed that the better an agent’s worldview ex-
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Figure 3. (a, b) Expected carbon dioxide emissions and temperature increase according to the egalitarian
utopia an a possible dystopia (individualistic management style in an unstable global system). (c, d) Expected
carbon dioxide emissions and temperature increase according to different views on the functioning of the

global system. (Based onJanssen and de Vries, 1998).
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Figure 3. (Continued.)

plains the world’s observed behavior, the greater is the chance that it will be stable.
A genetic algorithm is used to simulate a battle between perspectives (Holland, 1992b).
The better a worldview explains observations, the more it is likely to be followed by a
larger proportion of the population. They simulate a learning process where agents may
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adjust their mental models when they are surprised by observations, and may make ad-
justments in their decisions according to their new perceptions of the problem. Agents
tolerate some level of error, however, before they change their worldviews. The ini-
tial distribution of worldviews is therefore important for the long-term evolution of the
social-ecological system. On aggregate, worldviews tend to change to the worldview
that explain the observations in the most convincing way. Suppose that reality is one of
the three possible worlds, and an agent obtains information over time that causes it to
adjust (or not) its perspective on the problem of climate change. Three sets of projec-
tions are derived in which agents adapt to climate change (Figures 3c and 3d). Prior to
year 2040, the observed climate change does not lead to domination of one of the world-
views. After 2040, the climate signal becomes clear enough that one of the worldviews
begins to dominate. In the event of the world functioning according to the egalitarian
worldview, the emissions growth stabilizes in the coming decades and decreases to a
level below half of the present amount of emissions. However, this reduction cannot
avoid a global mean temperature increase of about 2.5◦C in the coming century.

The explicit inclusion of subjective perceptions of reality has led to a rich variety of
possible futures. This approach has also been applied to lake management (Carpenter
et al., 1999a, 1999b; Janssen and Carpenter, 1999; Janssen, 2001; Peterson et al., 2003)
and rangeland management (Janssen et al., 2000). Lakes are a favorite ecosystem for the
study of social-ecological systems, because the multiple stable states are well studied
and simple, empirically based models are available (Carpenter et al., 1999b). The typi-
cal lake model focuses on phosphorus pollution. Phosphorus flows from agriculture to
upland soils, and then on to surface waters where it cycles between water and sediments.
The lake ecosystem has multiple locally stable equilibria and moves among basins of
attraction depending on the history of pollutant inputs. Lakes are often classified as
oligotrophic or eutrophic depending on their productivity. Oligotrophic lakes are char-
acterised by low nutrient inputs, low to moderate levels of plant production, relatively
clear water, and relatively high economic value of ecosystem services. Eutrophic lakes
have high nutrient inputs, high plant production, murky water with problems including
anoxia and toxicity, and relatively low value of ecosystem services. When mitigating
eutrophication, lakes can respond differently to reduced phosphorus inputs, which is
mainly related to recycling of phosphorus from sediments to the overlying water.

In Carpenter et al. (1999a), an agent-based model is developed in which agents form
expectations about ecosystem dynamics, markets, and/or the actions of managers, and
they choose levels of pollutant inputs accordingly. Agents have heterogeneous beliefs
and/or access to information. Their aggregate behavior determines the total rate of pol-
lutant input. As the ecosystem changes, agents update their beliefs and expectations
about the world they co-create. They modify their actions accordingly. For a wide range
of scenarios, Carpenter et al. observe irregular oscillations among ecosystem states and
patterns of agent behavior. These oscillations resemble some features of the resilience
of complex adaptive social-ecological systems.Janssen and Carpenter (1999)applied
the same framework of worldviews as used inJanssen and de Vries (1998)to the man-
agement of lakes. The agents learn and adapt to unexpected changes in the state of the
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lake, and a mix of perspectives is required to manage the resilience of the system. Al-
though low levels of phosphorus in the lake will not be reached, the lake is prevented
from flipping to catastrophically high phosphorus levels.

The agents are always learning, but never get it exactly right. They come close
enough, however, to sustain the social-ecological system. InJanssen (2001), the agents
were enriched with a mix of various cognitive processes, such as imitation, deliberation,
and repetitive behavior, in their decisions about how much phosphorus to use. Analyses
with the model showed that the dominating type of cognitive processing was a relevant
factor in the response to uncertainty and policy measures. When agents are easily unsat-
isfied with their economic performance, it leads to a more intensive use of phosphorus
and to higher levels of phosphorus in the lake. Simulated farmers used phosphorus more
intensively in situations with high natural variability. A tax on phosphorus had little ef-
fect on the behavior of the farmers when they felt uncertain and were easily satisfied.

Peterson et al. (2003)describe the management of a lake as a learning process. The
agents consider two management models of the lake, one for an oligotrophic lake and
the other for a eutrophic lake. As agents observe the lake varying from year to year,
they estimate how well each of the two management models is supported by the ob-
served data. Management policies maximize the expected net present value of the lake.
Even under optimistic assumptions about environmental variation, learning ability, and
management control, conventional decision theory and optimal control approaches fail
to stabilize ecological dynamics. Rather, these methods drive ecosystems into cycles of
collapse and recovery.

Weisbuch and Duchateau-Nguyen (1998)study fisheries where fishers do not have
complete understanding of the underlying (logistic) resource dynamics. Historical in-
formation about catches, capital amounts, and the fraction of the income used for
consumption, are used by the agents to predict future catches. Incremental learning is
used to update the weights on the various sources of information. The agents were able
to learn to manage the system and could cope with sudden shocks to the system.

In the rangeland model ofJanssen et al. (2000), agents do not learn but may go bank-
rupt, leave the system, and be replaced by a random, new pastoralist. The agents have
incomplete understanding of the complex rangeland system. They tend to overgraze
their property by putting too many sheep on their land, and suppress fire too much so
woody shrubs can start dominating. Janssen et al. analyzed the consequence of different
government regulations on the evolution of types of agents. Agents who evolve under
a regime of limited grazing do not have a proper understanding of the dynamics of the
system. Agents who evolve without regulations, experience the whole spectrum of pos-
sible events. In the latter case, many properties are unproductive for a longer period,
but those agents who evolve have a good understanding of the system. This example
shows the importance of exploring the possible dynamics of a regime and the effects of
precautionary policies to avoid overuse of the resource.

Bodin and Norberg (2005)examine the principal impact of information sharing in
(social) networks of artificial natural resource managers capable of experimenting, sim-
ple information processing, and decision-making. All managers adaptively manage their
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own local ecological resources. All properties are close to a threshold at which the eco-
logical system flips into an unproductive state. Aggregate properties of the coupled
social-ecological system are analyzed in relation to different network structures. Bodin
and Norberg find that the network structures have a profound effect on the system’s
behavior. Networks of low- to moderate-link densities significantly increase the sustain-
ability of the ecological resource. However, networks of high-link densities contribute
to a highly synchronized behavior of the managers, which causes occasional large-scale
ecological crises between meta-stable periods of high production. It is demonstrated
that in a coupled social-ecological system the system-wide state transition occurs not
because the ecological system flips into the undesired state, but because the managers
loose their capacity to reorganize back to the desired state.

4.2. Laboratory experiments

We will discuss the work of scholars who test different types of heuristics to ex-
plain experimental observation of decision-making in different situations (Gigerenzer
et al., 1999). In a similar vein, we will analyze the comparative analysis of quantitative
learning models on experimental data of subjects learning to find good solutions for
allocation problems in complex environments (Rieskamp et al., 2003). For a broader
discussion on agent-based models, laboratory experiments, and learning we refer to
Brenner (2005)andDuffy (2005)in this volume.

Gigerenzer et al. (1999)argue that humans use fast and frugal heuristics to make
satisfying decisions about a set of alternatives that respect the limitations of human
time and knowledge. Complexity and uncertainty of the environment have led in the
evolution of the brain to smart solutions that are “ecologically rational.” The authors
discuss a large number of experiments in which they test simple heuristics such as one-
reason decision-making (e.g., “take the last,” “take the best”), elimination heuristics, or
recognition heuristics. A drawback of this research program, so far, is that the decision-
making experiments are very simple, like what city has the largest population, compared
to the more dynamic decision environments with social interactions as is characteristic
of social-ecological systems.

Rieskamp et al. (2003)used experiments to compare two learning models related
to long-term decisions made under uncertainty. One learning model is reinforcement
learning, a global search model that assumes that decisions are made probabilistically
based on the experience aggregated across all past decisions. The other learning model
is hill-climbing, a local search model that assumes a new decision is made by com-
paring the preceding decision with the most successful decision up to that point. One
application of their model is explaining the decisions made by resource users about di-
verse strategies of land use. In the laboratory experiment, participants were asked to
allocate three financial assets in a repeated session of two hundred rounds. The optimal
allocation was often not found, but a learning effect was still measurable.Rieskamp et
al. (2003)conclude that the hill-climbing model best describes their observations.
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Goldstone and Ashpole (2004)performed experiments where a large number of hu-
man participants interacted in real time within a shared virtual world. Two resource
pools were created with different rates of replenishment. The participants’ task was to
obtain as many resource tokens as possible during an experiment. Besides variation in
the rate at which consumed tokens were replaced, Goldstone and Ashpole manipulated
whether agents could see each other and the entire token distribution, or had their vi-
sion restricted to tokens in their own location. The optimal solution for participants is to
distribute themselves in proportion to the distribution of resources. The human subjects
did not to distribute themselves in this optimal fashion. Rather, they systematically al-
located themselves more to the relative scarce resource, leading to an underutilization
of the resources. Furthermore, especially when the vision of the subjects was restricted,
oscillations in the harvesting rates of the resources across time were observed. Per-
ceived underutilization of a resource resulted in an influx of agents to that resource.
This sudden influx, in turn, resulted in an excess of agents, which then led to a trend
for agents to depart from the resource region. Thus, uncertainty about the availability of
resources increased instability of the distribution of the subjects, which itself enhanced
uncertainty.

4.3. Applications

In the spirit of adaptive management (Holling, 1978), various researchers develop their
agent-based models together with the stakeholders of the problem. Like the participa-
tory modeling approach, such as practiced in systems dynamics (e.g.,Costanza and
Ruth, 1998), they use the model as a tool in the mediation process with stakeholders
and as a way for the stakeholders to learn strategies that might solve the dilemmas they
face in complex environments. In Bousquet et al.’s (Bousquet et al., 2002) companion
modeling, the role-playing games are meant to reveal some aspects of social relation-
ships by allowing the direct observation of interactions among players, the stakeholders.
Barreteau et al. (2003)argue that such role-playing games are good communication
tools among stakeholders, but it is difficult to reproduce the results. Systematic compar-
ison of the results is difficult since many factors are uncontrolled. When players play
again, they may change the context of the game due to their learning experience in the
previous experiment.

In Etienne et al. (2003), for example, an agent-based model was developed to simu-
late strategies of natural resource management in the Causse Méjan, a limestone plateau
in southern France dominated by a rare grassland-dominated ecosystem endangered by
pine invasion. To facilitate discussion of alternative long-term management strategies
for the sheep farms and the woodlands, contrasting perspectives on land resources from
foresters, farmers, and rangers of the National Park of Cévennes were designed at differ-
ent spatial scales. A series of exercises with different stakeholder groups was performed
to confront the consequences of their viewpoints, and that of the other stakeholders. As
a result of this iterative process it was possible to select a set of feasible scenarios
stemming from the current actors’ perceptions and practices and to suggest alterna-
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tive sylvopastoral management based on innovative practices.D’Aquino et al. (2003)
describe their project on irrigation systems in Senegal. Since 1997 they have experi-
mented at an operational level (2500 km2) in the Senegal River valley with agent-based
modeling intertwined with role-playing games. Their self-design approach is aimed to
include as much as possible the knowledge of the local participants. This develop-
ment of methodology may contribute to additional tools of resource users and public
infrastructure providers to self-govern their common resources.

Pahl-Wostl (2002)discusses a similar development that she calls participatory agent-
based social simulation. This modeling technique inputs social processes into integrated
models that are developed in participatory settings.Hare and Pahl-Wostl (2002)illus-
trate in a Swiss case study how card-sorting can be used to categorize stakeholders to
inform the design of agent-based models.

An interesting application of learning models to natural resource management is the
work of Dreyfus-Leon on fisheries.Dreyfus-Leon (1999)presents a basic model to
mimic the search behavior of fishers. It is built on two neural networks to cope with
two separate decision-making processes in fishing activities. One neural network deals
with decisions to stay in current fishing grounds or move to new ones. The other is
constructed for the purpose of finding prey within the fishing grounds. Reinforcement
learning is used to derive expectations of catches from previous neural network-based
decisions. Feedback about catches is used to update the weights of the neural networks.
Some similarities with the behavior of real fishers were found: the concentrated local
search once a prey has been located to increase the probability of remaining near a prey
patch and the straightforward movement to other fishing grounds. Also, they prefer ar-
eas near the port when conditions in different fishing grounds are similar or when there
is high uncertainty in their world.

The observed behavior of the artificial fisher in uncertain scenarios can be described
as a risk-aversion attitude. InDreyfus-Leon and Kleiber (2001), the model of fishers’
behavior was applied to yellow-fin tuna fishing in the eastern Pacific Ocean. In contrast
to Dreyfus-Leon (1999)—where the schools of fish were located at fixed points—in
this study, movements of schools of fish were simulated with artificial neural networks,
based on relative habitat comfort. LikeDreyfus-Leon (1999), the individual fishing ves-
sels were represented with artificial neural networks. The tuna vessels searched for the
tuna schools during a fishing trip. An interesting Turing experiment was performed to
test the performance of the model by asking experts, fishers, and tuna researchers to
identify which tracks were simulated and which were real. The experts were not able to
provide the correct answer more frequently than random choice. This provided the mod-
elers some confidence in their results. Two scenarios were considered in the analysis:
one with no fishing regulation and another with an area closure during the last quarter
of the year. In the scenario without regulation, fishing effort was allocated, particularly
in higher levels nearer the coast and where high concentrations of tuna were detected. In
the scenario with regulation, redistribution of effort was uneven but increased in neigh-
boring areas or in areas relatively near the closure zone. Decrease in effort was evident
only in the closed area. Effort redistribution when regulations were implemented is not
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well understood, but this modeling approach can help fishery managers to envisage
some regulation effects in the fishery.

4.4. What have we learned?

Uncertainty and limited knowledge about ecological processes are crucial elements in
the study of social-ecological systems. Agent-based modeling provides us a tool to
test the consequences of the limitations of knowledge of various actors in decision-
making processes on the governance of natural resources. Theoretical models focused
on mental models match very well the applications that use role-playing games and
the participatory approach. These applications provide stakeholders instruments to test
the consequences of different perceptions of the systems, which enable them to identify
compromises and conflicts. The participatory use of models, such as systems-dynamics,
already existed. Agent-based models enable researchers to be more explicit about the
behavioral and spatial aspects of social-ecological systems.

The experimental work related to natural resource management and uncertainty re-
lates primarily to heuristics and learning models. In that respect there is a mismatch
with the theoretical and applied agent-based models. A considerable challenge remains
to develop experimental work to test the consequences of various mental models for the
management of natural resources.

5. Topology of interactions

The importance of non-random and non-uniform topologies of interactions between
agents can be an important reason to use agent-based models. As discussed byDibble
(2005), Wilhite (2005), andVriend (2005), the role of the structure of interactions has
been found important in various areas of agent-based computational economics. In this
chapter we mainly focus on exogenous structures of interactions, especially as they are
caused by ecological processes. In fact, when we include space, many questions arise
related to the structure of interactions.

Explicit inclusion of space in the analysis of environmental economic problems leads
to the questions of how to allocate a scarce amount of space, how to manage land given
uncertainty of the dynamics of the system, how to deal with spatial externalities and re-
sulting spatial conflicts, and how information spreads in a spatially explicit system. The
area of land-use and land-cover change addresses these issues, and agent-based mod-
eling has been applied in this area. Agent-based modeling for land-use and land-cover
change combines a cellular model representing the landscape of interest with an agent-
based model that represents decision-making entities (Parker et al., 2003). Due to the
digitalization of land-use/cover data, i.e. remotely sensed imagery, and the development
of geographic information systems, cellular maps can be derived for analysis.

Since the 1980s, cellular automata have been used to model land use/cover over time
(Couclelis, 1985). Human decision-making was taken implicitly into account in the
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transition rules, but not expressed explicitly. Sometimes the cells represent the unit of
decision-making. In most applications, however, the unit of decision-making and the
cell are not the same. The desire to include more comprehensive decision rules, and
the mismatch between spatial units and units of decision-making, led to the use of
agent-based modeling for land-use and land-cover change. By including agents, one
can express ownership explicitly, as the property about which an agent can make deci-
sions. An agent can make decisions on the land use in a number of cells—for example,
by allocating cells to derive a portfolio of crops.

Another rapid development is the study of the structure of networks (Watts and Stro-
gatz, 1998; Barabasi and Albert, 1999). Since agent-based models are characterized by
the interactions of agents, it is important to understand the consequences of the effects of
different network structures on the collective behavior in social-ecological systems. We
will review some of this literature from the perspective of governing social-ecological
systems.

5.1. Theoretical models

In a number of examples,Axtell (2000)shows that changes in the interaction topology
can have important consequences for the outcomes in agent-based simulations, since
the topology affects the speed at which information is processed among agents. For
example, havingX interactions in each time step, or onaverage, may lead to different
aggregated results, depending on the nonlinear behavior of the agent-based model. In
a similar vein,Flache and Hegselmann (2001)investigated the sensitivity of two main
processes in social science, migration dynamics and influence dynamics, to different
spatial relationships among the agents. They concluded that most of the insights are
robust to alternative spatial patterns, but some interesting differences do exist. Irregular
grids, for example, result in path-dependent processes, leading to lock-ins of certain
patterns.

Within the theoretical studies of social dilemmas, the paper ofNowak and May
(1992)simulated the study of social dilemmas in a spatial context. In their study, agents
play a Prisoner’s Dilemma game with their nearby neighbors in a rectangular cellular
automata environment. The players defect or cooperate, and update their strategy each
round, by imitating the strategy with the highest payoff in their neighborhood. The de-
terministic model led to spatially chaotic patterns of cooperation and defection. Thus,
without memory, patterns of cooperation can be derived in a spatial context.

We will not review the comprehensive literature on spatial games here, but focus on
public-good games because of their relevance for natural resource management. Hauert
and colleagues study the evolution of cooperation in spatial public-good games (Hauert
et al., 2002; Brandt et al., 2003; Hauert and Szabo, 2003). They show that when agents
are able to leave a game, defectors, cooperators, and non-players co-exist in a dynamic
environment (Hauert et al., 2002). The possibility of costly punishment of defectors
significantly increases the level of cooperation (Brandt et al., 2003). Hauert and Szabo
(2003) tested the consequence of different geometries of interactions. Cooperation is
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higher on honeycomb versus square interactions. Also, larger neighborhoods, and thus
larger groups who share the pubic good, reduce the level of cooperation.

5.2. Laboratory experiments

Laboratory experiments with regard to the importance of the structure of interactions are
rare, especially with respect to the governance of social-ecological systems. This may
change in the near future since new laboratories for experimental studies have been
established at the University of Rhode Island and Indiana University. Both laboratories
will focus on spatially explicit experiments with human subjects.

An interesting set of experiments that is of particular interest for this chapter seeks
to understand how information from other agents affects decision-making.Kameda and
Nakanishi (2002, 2003)performed experiments to analyze the consequences when hu-
man subjects had the choice to solicit information on the choices of other participants
in the experiment. The experiment was called “Where is the rabbit?” and simulated a
fluctuating uncertain environment in a laboratory setting. In this game, participants were
asked to judge in which of two nests a rabbit was currently located based on stochastic
information. Participants played the game for a total of sixty rounds. They were in-
structed that the rabbit (environment) had a tendency to stay in the same nest over time,
but this tendency was not perfect: The rabbit might change its location between any two
consecutive rounds with a probability of 20%. Thus, the location of the rabbit in a given
round corresponded to the current state of the fluctuating environment. In one half of the
experiments, subjects did not derive information from the choices of other participants.
In the other half of the experiments, subjects in six-person groups derived information
of three others (randomly chosen) in their group. In both cases, the subject could derive
information about the location of the rabbit by a costly information search. Kameda and
Nakanishi showed that the subjects who were able to derive information from others
in their group derived a higher payoff than those who could only learn individually.
A simulation was developed that mimicked the observed findings.

5.3. Applications

Balmann (1997)studied structural change in agricultural activities. He developed a
model that was based on a number of individually acting farms located at different
points in an agricultural region. Like a cellular automaton, the region was subdivided
into a number of spatially ordered plots. The farms competed for these plots and
competed in different markets. Farms were allowed to engage in different production
possibilities and could use several investment alternatives. They optimized their activi-
ties with respect to their objective function by considering their expectations, financial
state, and existing assets. The model was applied to a hypothetical region and studied
how agricultural development was path dependent. InBalmann et al. (2002), an ap-
plication of the model is presented with data from a region in Germany. The model
consists of approximately 2600 farms, distinguishing twelve farm types, as observed in
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the data. In their application of the model, heterogeneity among the agents resulted in
diversity of adjustment costs to policy interventions. The model provides insights into
the distribution and dynamics of the impacts of policy changes on incomes.

Building on the work ofBalmann (1997), Berger (2001)developed an agent-based
model for an agricultural region in Chile. The farm-household decision-making was
represented as a linear programming problem solved for each simulated year. Berger
analyzed the adoption of new export-oriented agricultural activities using a network-
threshold framework (Valente, 1995). Empirical studies provided the foundation for the
type of networks and the heterogeneity of threshold values. The analysis showed that a
governmental policy to stimulate export-oriented agricultural activities was effective to
double the income from agriculture in a twenty-year period, compared to a stabilization
of the income level if the policy intervention was not implemented.

Deffuant et al. (2002)present another agent-based model of innovation among farm-
ers. Their model is based on an in-depth survey and interviews with farmers in various
locations in Europe. The empirical model presented about Allier, France, tried to un-
derstand how organic farming was diffused. A positive attitude toward organic farming
was necessary but not sufficient to get adoption started. Positive information in the press
stimulated farmers to exchange opinions, and stimulated adoption of organic farming.

Allen and McGlade (1987)developed a spatially explicit model of fishers. These
fishers could have different strategies, based on the information available to them, such
as fishing only at the location from which they expected the highest catch, or moving
around randomly. Inclusion of stochastic behavior for some fishers was necessary to
discover the location of fish stocks and to maintain the fish industry.

Hoffmann et al. (2002)present a pilot study of land-use change in south-central Indi-
ana, USA. This part of the state was primarily forested prior to the arrival of settlers from
Europe in the early 1800s. These settlers cleared substantial areas of land for agricultural
production (crops and pasture) and for forest products used for construction materials.
The process of clearing land continued until the early 1900s, at which time areas mar-
ginal for agricultural production were gradually abandoned, resulting in a pattern of
forest regrowth in areas of low agricultural suitability. The agents (private landowners)
made decisions regarding their portfolio of land-use products that affected their utility.
The utility depended on components such as income from timber, income from farm-
ing, and aesthetic enjoyment of the forests. Using scenarios of prices for agricultural
commodities, Hoffmann et al. were able to reproduce land-cover dynamics in line with
observed stylized facts (agriculture on the flat land, reforestation on the slopes).

Evans and Kelley (2004)tested an elaborated version of the Hoffmann et al. model on
Indian Creek Township, located in southwest Monroe County, Indiana. This area is ap-
proximately 10×10 km, with private landholders as the primary actors in the landscape.
Indian Creek Township is characterized by a series of rolling hills with bottomland ar-
eas suitable for agricultural production interspersed between ridges/hills that are largely
forested. Landowners are a mix of households that derive a portion of their household
income from extraction practices (agriculture, farming, haying, timber harvesting) and
other households that derive all their income from non-farm activities. Evans and Kel-
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ley analyzed the consequences of using different scales of modeling the decisions of the
private landowners. The best fit of the calibrated model was derived at the highest reso-
lution, and declined non-monotonically with scale. The authors argue that agent-based
models of land use need to be analyzed at different levels of scale.

Parker and Meretsky (2004)focus on externalities of land use, and their affect on
land-use composition and pattern. Their model was used to analyze interactions be-
tween urban use and agricultural use, and how externalities of the use of the property
affected spatial patterns if agents made rational decisions to maximize their utility. The
assumption was that when agents adopt NIMBY (not in my back yard) strategies related
to urban activities, inefficient urban sprawl results.

Brown et al. (2005)present a model of urban sprawl applied to Washtenaw County,
Michigan, USA. The agents entering the county weigh aesthetics, distance to the service
center, and neighborhood density to make decisions about where to live. In addition to
their empirical landscape, Brown et al. used artificial landscapes to test the ability of
the model to predict certain spatial patterns generated by a known model. It was not
always possible to predict settlement patterns with the model, illustrating the difficulty
of getting a good fit in spatially explicit models. Nevertheless, they were able to derive
good fits withaggregated spatial metrics.

The study areas ofBrown et al. (2005)andEvans and Kelley (2004)are similar in
some aspects (agents are households making decisions on a detailed, real landscape), but
differ in others (urban vs. rural, residential choice vs. allocation of land-use activities).
It is important to note the difference between the two modeling approaches as applied.
Brown et al. developed an extremely stylized model. By keeping it as simple as possible,
they were able to explore the parameter space in a comprehensive way. The agents and
decision-making processes in the Evans and Kelley model were more sophisticated, and
the model was calibrated on the observed detailed pattern of land-cover changes. Both
approaches are defended as being more appropriate to understanding the underlying
processes. More work definitely needs to be done to define the right type of model for
the research question at stake.

5.4. What have we learned?

Agent-based models offer various new aspects to spatially explicit modeling. By ex-
plicitly including decision-making processes we may be able to test the consequences
of various behavioral theories on spatial processes, such as land-use change and urban
sprawl. We recognize a lacuna in the availability of laboratory experiments that may
inform the choice of behavioral theories, but new laboratories at Indiana University and
the University of Rhode Island are currently conducting such experiments.

Spatially explicit processes in landscapes and networks of interactions are important
to investigate, since agent-based models are defined by the topology of interactions
among agents. Much more work needs to be done to address how the structures of
interactions and networks affect aggregated outcomes.
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6. Challenges ahead

The use of agent-based computational modeling to understand the governance of social-
ecological systems is rapidly developing. We identify a number of challenges for the
coming years that are fundamental to the further development of this field.

• Throughout this chapter we have discussed theoretical and applied models in rela-
tion to laboratory experiments. Such a triangular approach is an exception within
most research groups. We stress the importance of using multiple methods to ana-
lyze a common set of puzzles. No one method guarantees the right answer. When
similar answers are derived from methodological triangulation, we can have more
confidence in our findings.

• The Internet provides us new opportunities to study social-ecological systems from
an agent perspective. Users need to make decisions in a complex, interlinked envi-
ronment. Most of the information used during this process can be recorded. This
leads to interesting opportunities to perform experiments in cyberspace, such as
the experiment ofDodds et al. (2003)to identify social networks at a global scale.

• Significant progress has been achieved to understand the evolution of strategies and
norms in collective-action situations, given a fixed set of commonly understood
rules. What is currently lacking is a formal model of the process of rule change
and the evolution of institutional rules, although some initial models have been
developed (Janssen, 2005; Janssen and Ostrom, 2005).

• During the last few years considerable progress has been achieved in understanding
the structure of networks. This has also been explored by those who are interested
in the governance of social-ecological systems. An interesting development is the
formal modeling of co-evolving networks, such as the work ofBörner et al. (2004)
in information science. From the perspective of social-ecological systems, it would
be interesting to explore the co-evolution of social and ecological networks.

Agent-based models often have a tendency to become complicated and detailed,
which reduces the ability for rigorous analysis of the model. How to find a balance be-
tween detail and simplicity is an important question. Therefore, evaluation techniques
for the balance between complexity of the model and explanation of the empirical
phenomena need to be developed. In a broader sense, we need to develop appropri-
ate methodologies for model testing, model selection, and model validation (Durlauf,
2003).

7. Discussion and conclusions

The governance of social-ecological systems has been dominated during the last century
by a top-down control paradigm. Concepts and tools from environmental economics
generate the maximum sustainable yield of fish stocks, the optimal time to harvest
forests, and the optimal allocation of water in irrigation systems. Empirical studies have
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shown that such a top-down perspective is often ill-suited and can stimulate unsus-
tainable use of the resource. Empirical studies also have shown that complex, nested
governance systems operating at multiple levels can govern similarly complex ecologi-
cal systems at multiple scales more efficiently than single, large units lacking knowledge
of many specific structures and processes. Social-ecological systems are complex, adap-
tive systems in which heterogeneity, multiple scales, multiple domains of attraction,
surprise, and fundamental uncertainty of the functioning of the ecosystem need to be
explicitly considered. Agent-based modeling may provide new tools to address im-
portant questions of how to govern our common resources now that we have a better
appreciation of the complexity of social-ecological systems and the multiple dilemmas
facing resource users and public infrastructure providers at multiple scales. However,
the development of agent-based modeling is in its infancy. Whatever the future may
bring, agent-based models need to be used as one of the tools in a pluralistic toolbox of
concepts, frameworks, and methods in understanding and improving the governance of
social-ecological systems.
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