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Abstract
Motivated by the recent studies on the green bond market, we build a model in which an investor trades

on a portfolio of green and conventional bonds, both issued by the same governmental entity. The government
provides incentives to the bondholder in order to increase the amount invested in green bonds. These incentives
are, optimally, indexed on the prices of the bonds, their quadratic variation and covariation. We show numerically
on a set of French governmental bonds that our methodology outperforms the current tax-incentives systems in
terms of green investments. Moreover, it is robust to model specification for bond prices and can be applied to a
large portfolio of bonds using classical optimisation methods.

Keywords: green bonds, moral hazard, incentives, regulation.

1 Introduction
Green bonds are fixed income products, issued by governments or companies to finance their debt. The only difference
with the so-called conventional bonds is that they finance environmental or climate-related activities. Since its
inception in 2007, the green bonds market has expanded rapidly to reach a total amount issued of $100 billion in
2019. Corporate and finance companies issue more than 70% of the total amount of green bonds, whereas governments
issue approximately 9% of this total, see for example the report of the Financial Stability Board in [11] or the OECD
reports in [36; 37]. The role of financial markets in promoting environmental policies via the green bonds is well
documented in Park [39]. The characteristics of a bond to be defined as ‘green’ is given by the Green Bond Principles,
which are ‘voluntary process guidelines that recommend transparency and disclosure, and promote integrity in the
development of the Green Bond market by clarifying the approach for issuance of a Green Bond’, see the definition
in the guidelines [6], published by the ICMA. These principles led the green bonds to become a standardised asset
class, part of the traditional asset allocation. There is an important literature on the influence of green bonds
on gas emissions and environmental ratings. In Flammer [24; 25], the author shows that the stock of a company
responds positively to the announcement of green bond issues, and these issuances lead to an improvement of the
environmental performance. The pricing and ownership of green bonds in the United States is studied in Baker,
Bergstresser, Serafeim, and Wurgler [8], where the authors show in particular that green municipal bonds are issued
at a premium to otherwise similar ordinary bonds. Similarly, the impact of corporate green bonds on the credit
quality of the issuer and on the shareholders is well documented by Tang and Zhang [48]. In de Angelis, Tankov, and
Zerbib [19], the authors show how green investments can help companies to reduce their greenhouse gas emissions
by raising their cost of capital. In particular, they provide empirical evidence on the US markets that an increase of
assets managed by green investors lead to a decrease of carbon emission by the companies.

The idea of financing renewable projects through green bonds is even more important since institutional investors, in
particular pension funds and asset managers, have been considering the possibility of including sustainable environ-
mental investments in their assets. As such, “sustainable investing” now accounts for more than one quarter of total
assets under management (AUM) in the United States and more than half in Europe, see the report of the GSIA
[3] for a detailed survey on the subject. The motivations of sustainable investing can be the search of higher alpha
or lower risk (see Nilsson [35], Bauer and Smeets [9], Krüger [30]), or the will for a more socially responsible image
(see Hong and Kacperczyk [28]). The two major practices in sustainable investing are exclusionary screening and
environmental, social and governance (ESG) integration. Exclusionary screening involves the exclusion of certain as-
sets from the range of eligible investments on ethical grounds, such as the so-called sin stocks, while ESG integration
involves under weighting assets with low ESG ratings and over weighting those with high ESG ratings. In Zerbib
[51], the author builds a sustainable CAPM based on these two principles and shows how sustainable investing affects
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asset returns. Although the issuance of green corporate bonds has increased over the last years, the public sector
accounts for two-thirds of the investments in sustainable energy infrastructure. This pleads in favour of a greater
issuance of green bonds by public entities to finance their sustainable projects, which will be the focus of the present
paper.
However, there are still several barriers to the development of the green bond market, such as a lack of green
bond definition, framework, and transparency. In that regard, Zerbib [49; 50] investigates the existence of a yield
premium for green bonds. The results show that there exists a small negative premium meaning that the yield of
a green bond is lower than that of a conventional bond. In the existing literature, this negative yield differential is
mainly attributed to intangible asset creation, which is imperfectly captured in the models of rating agencies, see for
example Porter and Van der Linde [40], Ambec and Lanoie [4], or Brooks and Oikonomou [12]. The price difference
between a green and a conventional bond is studied in Hachenberg and Schiereck [26], where the authors show that
financial and corporate green bonds trade tighter than their conventional counterpart, and governmental bonds on
the other hand trade marginally wider. Finally, Ekeland and Lefournier [21] relativize the use of green bonds to
finance the ecological transition. As the green bond principles are by no means legally mandatory, and the investors
are not necessarily motivated by the green transition, there are no intrinsic difference between a green bond and
its conventional counterpart. An important aspect in order to avoid green-washing, that is when the investors use
the funding obtained with the green bonds to finance non-sustainable projects, through green bonds is the issuer’s
reputation or green third-party verifications, as stated in Bachelet, Becchetti, and Manfredonia [7]. These studies
show the several components which slow down the development of the green bonds market. It is therefore important
to put in place practical solutions to overcome these constraints. Some mechanisms are already developed by the
policy makers to facilitate the investment in this market.
Indeed, there are several types of incentives policy-makers can put in place to support green bond issuance, see
Morel and Bordier [34], and Della Croce, Kaminker, and Stewart [20]: support for research and development (R&D),
investment incentives (capital grants, loan guarantees and low-interest rate loans), policies which target the cost
of investment in capital by hedging or mitigating risk, and tax incentives policies.1 In particular, tax incentives
are attractive from a cost-efficiency perspective, as they can provide a big boost to investment with a relatively low
impact on public finances. In Agliardi and Agliardi [1], the authors show that governmental tax-based incentives play
a significant role in scaling up the green bonds market. Finally, tax incentives (accelerated depreciation, tax credits,
tax exemptions and rebates) can be provided either to the investor or to the issuer under the following forms.2

• Tax credit bonds: Bond investors receive tax credits instead of interest payments, so issuers do not pay coupon
interests. Instead, they quarterly accrue phantom taxable income and tax credit equal to the amount of
phantom income to holders, see Klein [29].

• Direct subsidy bonds: Bond issuers receive cash rebates from the government to subsidise their net interest
payments. This type of incentives is mainly used by US municipalities, see for example Ang, Bhansali, and
Xing [5].

• Tax-exempt bonds: Bond investors do not have to pay income tax on interest from the green bonds they hold
(so issuer can get lower interest rate). This type of tax incentive is typically applied to municipal bonds in the
US market, see Calabrese and Ely [13] for a survey of the use of these tax-incentives.

All these incentives can be modelled as a function of the amount invested in green bonds. However, it should be clear
that policy-makers cannot necessarily control or monitor directly the actions of the investor. This leads for example
to the so-called ‘green-washing’ practice, when the investors use the funding obtained with the green bonds to finance
non-sustainable projects, see Della Croce, Kaminker, and Stewart [20]. Moreover, the incentives are not dynamic in
the sense that they do not depend on the evolution of market conditions (for example the price differences between
green and conventional bonds). Thus, the incentives mechanism in the green bonds market is subject to a moral
hazard component. In this article, we propose an alternative to tax incentives policy which is based on contract
theory, and designed so as to increase the investment in green bonds. Moral hazard, whose related theory has been
developed since the early 70’s, occurs when one person or entity (the Agent), is able to make decisions and/or take
actions on behalf of, or that impact, another person or entity: the Principal. The classical continuous-time setting
works as follow: the Principal hires an Agent to manage a ‘risky’ project, represented as a controlled stochastic
differential equation. In exchange for the effort he puts into his work, the Agent receives a salary from the Principal
which takes the form of a ‘contract’. The Principal’s goal is to offer a contract to the Agent allowing him to maximise
its utility as a function of the terminal value of the project. The problem is addressed by solving a Stackelberg game,
in two stages:

1For a complete survey of renewable energy promotion policies, we refer to Table 3 in Della Croce, Kaminker, and Stewart [20].
2The data provided below can be found at https://www.climatebonds.net/policy/policy-areas/tax-incentives.
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(i) With a fixed contract, solve the problem of the Agent and obtain its optimal effort given a contract proposed
by the Principal.

(ii) Inject into the problem of the Principal the effort of better response of the Agent previously found, and solve
the Principal’s problem, providing the optimal contract offered to the Agent.

Our goal is to propose a dynamic incentives model based on the prices and returns of green and conventional bonds
issued by a government. We build a Principal-Agent model in which an investor (the Agent) runs a portfolio of
green and conventional bonds. Without intervention of the government, the Agent has specific investment targets
coming from his strategy. The policy-maker (the Principal) proposes incentives to the investor in order to achieve
two objectives:

(i) Increase the amount invested in green bonds according to a determined target;

(ii) maximise the value of the portfolio of bonds issued by the government.

We show that without loss of utility for the government, we can consider incentives which take the form of stochastic
integrals with respect to the portfolio process, the price of the bonds and their quadratic (co)variation. In order
to propose tractable incentives for a possibly high number of bonds, we propose a form of contract that is based
only on the dynamics of the portfolio process, the green bonds, an index of conventional bonds, and their respective
quadratic (co)variations. In the case of deterministic short-term rates for the green and conventional bonds, both the
Agent and the Principal’s problems can be solved by maximising deterministic functions with classical root-finding
methods. When a one factor stochastic volatility model is used for short-term rates, we have to rely on stochastic
control theory and determining the incentives of the policy-maker is equivalent to solve a high-dimensional, Hamilton-
Jacobi-Bellman equation.

What we propose in this paper is aimed to be used by governments as an alternative to the existing tax incentives,
in order to increase the investment in green bonds. We summarise below the key features of our approach.

• The methodology we develop is completely tractable from a numerical point of view, thus the incentives can
be designed on a large set of bonds.

• The remuneration we propose take into account the moral hazard between the investor and the government:
the amount invested in the bonds is observed but not controlled by the government.

• The form of the optimal incentives is robust to model error: we show numerically that a more complex dynamics
of the short-term rates of the bonds does not lead to an important loss in utility for the government, and causes
minor variations in the form of the incentives.

• On a one-year horizon, the incentives show a rather constant behaviour. By using this, we show that the
optimal incentives can be directly implemented with tradable financial products such as futures, log-contracts
and variance swaps on the bonds.

• We compare our methodology with the current tax-incentives policy and show that, on a one-year period for a
same target in green investments, our incentives policy leads to a higher value of the portfolio of bonds (15%
to 20% on average).

In the numerical experiments, we provide general guidelines for the government to calibrate the model parameters,
in particular the risk aversions, according to its objectives.

This article makes several contributions to the literature. First, to the best of our knowledge, it offers the first
Principal-Agent framework to tackle the design of governmental incentives for green bonds. Contrary to articles like
Zerbib [50] and Febi, Schäfer, Stephan, and Sun [23], where the authors provide a thorough descriptive analysis of
the green bond market (risk premium, liquidity premium, ...) and examine the impact of green investing, our article
focuses on answering a practical incentives problem from a quantitative viewpoint. The comparison with existing
incentives policy on a set of French governmental bonds shows the benefits of our method for the government. The
article contributes also to the Principal-Agent literature with volatility control, of which we give a brief overview.3
Contrary to the papers of Sung [46], Ou-Yang [38], the Principal observes the whole path of the controlled output
process. Moreover, in our framework, moral hazard arises from unobservable sources of risk. In Lioui and Poncet [32],
the authors consider a first-best problem with volatility control and assume that the agent has enough bargaining

3This literature has been growing since the study of the well-posedness of second-order backward stochastic differential equations,
see for example Possamaï, Tan, and Zhou [41], or Soner, Touzi, and Zhang [44]. A rigorous study of the Principal-Agent problem with
volatility control in a general case can be found in Cvitanić, Possamaï, and Touzi [18].
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power to make the contract a linear function of the output and a benchmark risk factor. Another model is the one
of Leung [31] where moral hazard with respect to the volatility arises because of the un-observability of the risk
factors by the Principal and an exogenous source of risk multiplying the volatility of the Agent. These works are
linked to the problem of ambiguity aversion on volatility and drift of the output process, see among others Chen
and Sung [16], Hernández Santibáñez and Mastrolia [27], Mastrolia and Possamaï [33], Sung [47]. There is also
a growing literature on the application of Principal-Agent with volatility control to the electricity market, see for
example Élie, Hubert, Mastrolia, and Possamaï [22], Aïd, Possamaï, and Touzi [2]. Finally, we emphasise that the
modelling framework of this article is directly inspired by the one in Cvitanić, Possamaï, and Touzi [17], where the
authors consider the problem of delegated portfolio management and identify a family of admissible contracts for
which the optimal agent’s action is explicitly characterised. We extend this framework by allowing stochastic drift
of the assets held by the Agent, and adapt it to our context.
The paper is organised as follows. In Section 2, we present our framework and modelling assumptions. In Section 3,
we solve the problems of the investor and the government with moral hazard and deterministic short rates. We
present the numerical results in Section 4. Finally, we write in Appendix A the weak formulation of the control
problem, while in Appendix C we solve the problem in the case of stochastic short rates.
Notations: For (v1, v2) ∈ Rd, v1 · v2 ∈ R denote the scalar product between v1 and v2 whereas v1 ◦ v2 ∈ Rd is the
component-wise multiplication of the vectors. Let N? be the set of all positive integers. For any (`, c) ∈ N? × N?,
M`,c(R) will denote the space of ` × c matrices with real entries. Elements of the matrix M ∈ M`,c are denoted
(Mi,j)(i,j)∈{1,...`}×{1,...c} and the transpose of M is denoted M>. We identify M`,1 with R`. When ` = c, we let
M`(R) := M`,`(R). For any x ∈ M`,c(R), and for any i ∈ {1, . . . `} and j ∈ {1, . . . , c}, xi,: ∈ M1,c(R), and
x:,j ∈ R` denote respectively the i-th row and the j-th column of M . For any d ∈ N?, Sd is the space of d × d-
dimensional symmetric matrices. For any (`, c) ∈ N? × N?, we define I` as the identity matrix of M`(R), and 0`,c
as a matrix in M`,c(R) with all entries equal to zero. We define the function diag : Rd −→ Md(R) such that
for v ∈ Rd, and any (i, j) ∈ {1, . . . , d}2, diag(v)i,j := vi if i = j, and 0 otherwise. For x ∈ M`,c(R), we define
‖x‖2 :=

∑
(i,j)∈{1,...,`}×{1,...,c} x

2
i,j .

2 Framework
Throughout the article, we work on a filtered probability space (Ω,F ,P) under which all stochastic processes are
defined. We refer to Appendix A for the rigorous weak formulation of the problem, and we intend the present section
to have a more accessible (and therefore more heuristic) flavour.
We consider an investor wishing to develop his bonds’ portfolio. He wants to acquire both green and conventional
bonds issued by the same governmental entity or company with possible different amounts issued and different
maturities. We assume that we are given a time horizon T > 0, and positive integers dg and dc. The investor
manages, over the horizon [0, T ], dg green bonds, dc conventional bonds, and an index of conventional bonds of
dynamics given by4

dP g(t, T g) := P g(t, T g) ◦
((
rg(t) + ηg(t) ◦ σg(t)

)
dt+ diag

(
σg(t)

)
dW g

t

)
,

dP c(t, T c) := P c(t, T c) ◦
((
rc(t) + ηc(t) ◦ σc(t)

)
dt+ diag

(
σc(t)

)
dW c

t

)
,

dIt := It
(
µI(t)dt+ σI(t)dW I

t

)
.

(2.1)

In the above equations, T g is an Rdg -valued vector representing the maturities of each green bond and T c is a Rdc-
valued vector representing the maturities of each conventional bond. The functions µI : [0, T ] −→ R, σI : [0, T ] −→ R
represent respectively the drift and volatility of the index of conventional of bonds (It)t∈[0,T ]. Similarly, the functions
rg : [0, T ] −→ Rdg , rc : [0, T ] −→ Rdc represent the vectors of short-term rate of the green and conventional bonds,
and the functions ηg : [0, T ] −→ Rdg , ηc : [0, T ] −→ Rdc represent the vectors of risk premia of the green and
conventional bonds, while functions σg : [0, T ] −→ Rdg

, σc : [0, T ] −→ Rdc represent the vector of volatilities of
the green and conventional bonds. The processes (W g

t )t∈[0,T ], (W c
t )t∈[0,T ], (W I

t )t∈[0,T ] are respectively Rdg

,Rdc and
R-valued Brownian motions. Finally

W :=

W g

W c

W I


4We define the index as an average of the dynamics of the conventional bonds. In practice, the investor may trade a large quantity

of conventional bonds and only a couple of green bonds. Thus, we argue that it is more convenient for the government to index the
remuneration proposed on an average dynamics of conventional bonds in order to have more granularity for the green bonds’ incentives.
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is an Rdg+dc+1-valued Brownian motion, whose co-variance structure is given by d〈W 〉t = Σdt, where

Σ ∈Mdg+dc+1(R), Σ :=

 Σg Σg,c Σg,I
Σg,c Σc Σc,I
Σg,I Σc,I ΣI

 ,

with

Σg ∈Mdg (R), Σgi,j := ρgi,j ∈ [−1, 1] if i 6= j, 1 otherwise, (i, j) ∈ {1, . . . , dg}2,
Σc ∈Mdc(R), Σci,j := ρci,j ∈ [−1, 1] if i 6= j, 1 otherwise, (i, j) ∈ {1, . . . , dg}2,
Σg,c ∈Mdg,dc(R), Σg,ci,j := ρgci,j ∈ [−1, 1], (i, j) ∈ {1, . . . , dg} × {1, . . . , dc},

Σg,I ∈ Rd
g

, Σg,Ii := ρgIi ∈ [−1, 1], i ∈ {1, . . . , dg},
Σc,I ∈ Rd

c

, Σc,Ii := ρcIi ∈ [−1, 1], i ∈ {1, . . . , dc}.

Remark 2.1. All these quantities are assumed to be deterministic, in order to derive a governmental incentive that
is tractable for a large number of bonds. We will show in Appendix C that, at the expense of a higher computational
cost and the use of stochastic control theory, one can also derive incentives for the investor when short-term rates are
stochastic. In Section 4, we show numerically that the use of stochastic short-term rates for the green bonds does not
impact qualitatively our results. In particular, when the short-term rates are driven by Ornstein-Uhlenbeck processes,
the optimal investment policy in this case oscillates slightly around the one obtained with deterministic rates. Thus,
the methodology we propose appears to be robust to model specification.

Throughout the paper, we use the following technical assumption.

Assumption 2.2. The functions rg, rc, ηc, ηg, σg, σc, µI , and σI are uniformly bounded on [0, T ].

The investment policy is defined by a vector of control processes π = (πgt , πct , πIt )t∈[0,T ] ∈ A, representing the amount
of money invested at time t, where

A :=
{

(πt)t∈[0,T ] : K-valued and F-predictable processes
}
.

is the set of admissible control process, where K := [ε, b∞]dg × [ε, b∞]dc × [ε, b∞], for some 0 < ε < b∞
5 and

F := (Ft)t∈[0,T ] is the natural filtration of the process (X,W ) with X defined below. We define the dynamics of the
vectors of returns on the bonds as

dRg(t, T g) =
(
rg(t) + ηg(t) ◦ σg(t)

)
dt+ diag

(
σg(t)

)
dW g

t ,

dRc(t, T c) =
(
rc(t) + ηc(t) ◦ σc(t)

)
dt+ diag

(
σc(t)

)
dW c

t ,

dRIt = µI(t)dt+ σI(t)dW I
t .

For every π ∈ A, one can define a probability measure Pπ6 such that the dynamics of the value of portfolio of bonds
is given by

dXt := πgt · dRg(t, T g) + πct · dRc(t, T c) + πIt dRIt .

We also denote by Eπt the conditional expectation under the probability measure Pπ with respect to Ft for all t ∈ [0, T ].
Throughout the investment period [0, T ], the investor wants to maintain his investment in bonds at some pre-defined
levels, which can be seen as his investment profile. We introduce the vectors α = (αg, αc, αI) ∈ Rdg × Rdc × R and
the cost function k : Rdg × Rdc × R −→ R, where for any p := (pg, pc, pI) ∈ Rdg × Rdc × R

k(p) := 1
2β

g · (pg − αg)2 + 1
2β

c · (pc − αc)2 + 1
2β

I(pI − αI)2,

where β := (βg, βc, βI) ∈ Rdg ×Rdc ×R are what we coin intensity vectors. For instance, at some time t ∈ [0, T ], the
investor pays a cost to move the amount (πgt )i invested in the i-th green bond away from the initial target αgi , and
this cost is equal to 1

2β
g
i

(
(πgt )i − αgi

)2. Thus, (βg, βc, βI) represent the cost intensity of changing the investments
5We force the control processes to be strictly positive so that the density of the canonical process in Appendix A is invertible and we

can define properly the weak formulation of the control problem. Practically, this simply means that the investor ahs to invest in the
index, and in at least one of the conventional and one of the green bonds.

6See Appendix A for the weak formulation of the control problem, which explains how to construct Pπ .
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of the agent: the higher these coefficients, the more incentives the investor will demand to change his investment
profile.
In order to modify an investment policy π ∈ A, the government proposes a remuneration to the investor. It takes
the form of an FT -measurable random variable denoted by ξ, and we will see later that the form of remuneration
considered is an indexation on the value of the portfolio of bonds as well as the sources of risk of each bond.
The optimisation problem of the investor with CARA utility function writes, for a given contract provided by the
government, as

V A(ξ) := sup
π∈A

Eπ
[
UA

(
ξ −

∫ T

0
k(πs)ds

)]
, UA(x) := − exp(−γx),

where γ > 0 is his risk aversion parameter. To ensure that the control problem of the investor is non-degenerate, we
impose the following integrability condition on the contracts

sup
π∈A

Eπ
[

exp(−γ′ξ)
]
< +∞, for some γ′ > γ. (2.2)

Remark 2.3. We emphasise here that the notion of price for a bond is meaningless as it is not quoted on the National
Best Bid and Offer (NBBO): This is an OTC market where the liquidity is provided by one or several dealers. In
particular, even though there is a quantity defined as the bond price on Bloomberg, it serves only as an indication as
the dealers have no obligation to buy or sell at this price. However, especially in the case of treasury bonds, Futures
on the bonds are listed on the Chicago Board Of Trade where the notion of price is meaningful. Thus, throughout the
article, the notion of bond price must be thought as the price of a future on the considered bond.
On the other hand, the government wishes to maximise the portfolio value of the bonds issued while increasing the
amount invested in green bonds. Thus, he wants to maximise, on average, the quantity

XT −
dg∑
i=1

∫ T

0
κ
(
Gi −

(
π̂gt (ξ)

)
i

)2
dt,

where for i ∈ {1, . . . , dg}, Gi is the investment target in the i-th green bond of the government entity, κ > 0 is the cost
of moving away from the targets (G1, . . . , Gdg ) and π̂(ξ) is a best response of the investor to a given contract ξ.7 We
assume that the cost of moving away from the targets is the same for each green bond, meaning that the government
does not have different preferences for each bond (this assumption can of course be relaxed). The government also
subtracts from this quantity the contract ξ offered to the investor. Thus, his optimisation problem with CARA
utility function writes

V P0 = sup
ξ∈C

sup
π̂∈A(ξ)

Eπ̂
[
UP

(
XT −

dg∑
i=1

∫ T

0
κ
(
Gi −

(
π̂gt (ξ)

)
i

)2
dt− ξ

)]
, UP (x) = − exp(−νx), (2.3)

where ν > 0 is the risk aversion parameter of the Principal,

A(ξ) :=
{
π̂ ∈ A : V A(ξ) = Eπ̂

[
− exp

(
− γ
(
ξ −

∫ T

0
k(π̂s)ds

))]}
,

is the set of best-responses of the Agent to a given contract ξ and

C =
{
ξ : R-valued, FT -measurable random variable such that V A(ξ) ≥ R, and (2.2) is satisfied

}
,

is the set of admissible contracts for the government, where R < 0 is the reservation utility of the investor: He will
not accept to work for Principal (and accept the contract ξ) unless the contract is such that his expected utility is
above R.
Remark 2.4. We consider here that the reservation utility corresponds to the utility function of the investor in the
case ξ = 0, that is

R = V A(0) = sup
π∈A

Eπ
[
− exp

(
γ

∫ T

0
k(πs)ds

)]
= −1,

where the supremum is reached by choosing π = (αg, αc, αI). We will see in the following section that the optimal
contract proposed by the government will always saturate this constraint, that is the Principal will provide the Agent
with the minimum reservation utility R he requires.

7We will see later that there might be several best responses of the Agent. Thus, following the tradition in the moral hazard literature,
we assume that the Principal has enough bargaining power to be able to choose the best response of the Agent that maximises his own
utility.
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3 Solving the optimisation problem
3.1 The optimal contract
In this section, we derive the optimal governmental incentives proposed to the investor. As it would be unrealistic
(and hardly tractable) to offer a compensation based on the whole universe of governmental bonds, we suggest a
remuneration based on the green bonds, the value of the portfolio and an index of conventional bonds. This way,
the contract is only indexed on dg + 2 variables. The optimal incentives are obtained by maximising a deterministic
function, which makes the problem easily tractable for a large number of green bonds. We begin this section with
the definition of contractible and non-contractible variables.
Definition 3.1. The set of contractible variables is defined as the Rdg+2-valued process

Bobs :=

 X
W g

W I

 .

The set of non-contractible variables is defined as the Rdc-valued process Bobs := W c, with the following dynamics

dBobs
t := µobs(t, πt)dt+ Σobs(t, πt)dWt, dBobs

t := µobsdt+ ΣobsdWt,

where µobs :=
(
0dc,1

)
, Σobs :=

(
0dc,dg Idc 0dc,1

)
, and the maps µobs : [0, T ] × Rdg × Rdc × R −→ Rdg+2, as well

as Σobs : [0, T ] × Rdg × Rdc × R −→ Mdg+2,dg+dc+1(R) are defined for any p := (pg, pc, pI) ∈ Rdg × Rdc × R and
t ∈ [0, T ] by

µobs(t, p) :=

pg · (rg(t) + ηg(t) ◦ σg(t)
)

+ pc ·
(
rc(t) + ηc(t) ◦ σc(t)

)
+ pIµI(t)

0dg,1
0

 ,

Σobs(t, p) :=

(pg ◦ σ(t)g)> (pc ◦ σ(t)c)> pIσI(t)
Idg 0dg,dc 0dg,1

01,dg 01,dc 1

 .

Finding the optimal contract ξ in the optimisation problem (2.3) is an arduous task, as we search a solution in the
space of FT -measurable random variables. However, see Cvitanić, Possamaï, and Touzi [18], it has been shown that
without reducing the utility of the Principal, we can restrict our study to admissible contracts which have a specific
form. In order to describe this result, we need first to introduce additional notations.
We define the quantities

B :=
(
Bobs

Bobs

)
, µ(t, p) :=

(
µobs(t, p)
µobs

)
, Σ(t, p) :=

(
Σobs(t, p)

Σobs

)
, (t, p) ∈ [0, T ]× Rd

g

× Rd
c

× R.

We also will need to introduce the map h : [0, T ]× Rdg+dc+2 × Sdg+dc+2(R)×K −→ R, with

h(t, z, g, p) = −k(p) + z · µ(t, p) + 1
2Tr

[
gΣ(t, p)Σ(Σ(t, p)>], (t, z, g, p) ∈ [0, T ]× Rd

g+dc+2 × Sdg+dc+2(R)×K.

and for all (t, z, g) ∈ [0, T ]× Rdg+dc+2 × Sdg+dc+2(R),

O(t, z, g) :=
{
p̂ ∈ K : p̂ ∈ argmax

p∈K

{
h(t, z, g, p)

}}
.

is the set of the maximisers of h with respect to its last variable, for (t, z, g) given. Following Schäl [43], there
exists at least one Borel-measurable map π̂ : [0, T ] × Rdg+dc+2 × Sdg+dc+2(R) −→ K such that for every (t, z, g) ∈
[0, T ]× Rdg+dc+2 × Sdg+dc+2(R), π̂(t, z, g) ∈ O(t, z, g). We denote by O the corresponding set of all such maps.
Theorem 3.2. Without reducing the utility of the Principal, we can restrict the study of admissible contracts to the
set C1 where any ξ ∈ C1 ⊂ C is of the form ξ = Y y0,Z,Γ,π̂

T where for t ∈ [0, T ],

Y y0,Z,Γ,π̂
t := y0 +

∫ t

0
Zs · dBs + 1

2

∫ t

0
Tr
[
(Γs + γZsZ

>
s )d〈B〉s

]
−
∫ t

0
h
(
s, Zs,Γs, π̂(s, Zs,Γs)

)
ds, (3.1)

where y0 ∈ R, π̂ ∈ O and (Z,Γ) are respectively Rdg+dc+2- and Sdg+dc+2(R)-valued, F-predictable processes such that
Condition (2.2) is satisfied for Y y0,Z,Γ,π̂

T , and V A(Y y0,Z,Γ,π̂
T ) ≥ UA(y0). We denote by ZG the set of such processes,

which is properly defined in Equation (B.3). Moreover, we have

V A
(
Y y0,Z,Γ,π̂
T

)
= UA(y0), A

(
Y y0,Z,Γ,π̂
T

)
=
{(
π̂(t, Zt,Γt)

)
t∈[0,T ] : π̂ ∈ O, (Z,Γ) ∈ ZG

}
.
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The form of the admissible contracts we study deserves some remarks. The term Zt · dBt is a remuneration indexed
linearly on the state variables. Contrary to the classical Principal-Agent problem where the agent controls the drift
of the output process, see Sannikov [42] for example, the admissible contracts (3.1) are not only linear functions
of the state variables but depend also linearly on their quadratic variation and covariation. This comes from the
fact that by investing in the bonds, the investor controls directly the volatility of the portfolio process X. Using
standard tools of static hedging, this contract can be replicated using futures, log-contracts and volatility products
such as variance swaps, see Section 3.2.2 for details. In particular, this ensures that the contracts we recommend are
practically implementable.
As stated at the beginning of this section, we wish to build an optimal contract based only on the green bonds, the
portfolio process and the index of conventional bonds. In this regard, the form we obtained in Equation (3.1) is too
general, which is why we are now going to restrict our attention to a slightly smaller class of contracts. We thus
define for any (Z,Γ) ∈ ZG

Zt =:
(
Zobs

Zobs

)
, Γ =:

(
Γobs Γobs,obs

Γobs,obs Γobs

)
,

where for Lebesgue-almost every t ∈ [0, T ]

Zobs
t ∈ Rd

g+2, Zobs
t ∈ Rd

c

, Γobs
t ∈ Sdg+2(R), Γobs

t ∈ Sdc(R), Γobs,obs
t ∈Mdg+2,dc(R).

We then consider a simplified Hamiltonian hobs : [0, T ]× Rdg+2 × Sdg+2(R)×K −→ R given by

hobs(t, zobs, gobs, p) = −k(p) + zobs · µobs(t, p) + 1
2Tr

[
gobsΣobs(t, p)Σ(Σobs(t, p)>)

]
,

and for all (t, zobs, gobs) ∈ [0, T ]× Rdg+2 × Sdg+2(R), we define

Oobs(t, zobs, gobs) :=
{
p̂ ∈ K : p̂ ∈ argmax

p∈K

{
hobs(t, zobs, gobs, p)

}}
.

Following again Schäl [43], there exists at least one Borel-measurable map π̂ : [0, T ]×Rdg+2 × Sdg+2(R) −→ K such
that for every (t, zobs, gobs) ∈ [0, T ] × Rdg+2 × Sdg+2(R), π̂(t, zobs, gobs) ∈ Oobs(t, zobs, gobs), and we let Oobs be the
corresponding set of all such maps.
We can now state precisely the class of contracts we are concerned with in this paper.
Assumption 3.3. We consider the subset of contracts

C2 :=
{
Y y0,Z,Γ,π̂
T ∈ C1 : Zobs = 0dc ,Γobs = 0dc,dc ,Γobs,obs = 0dg+2,dc

}
.

In particular, any ξ ∈ C2 is of the form ξ = Y y0,Z
obs,Γobs,π̂

T , where for any t ∈ [0, T ],

Y y0,Z
obs,Γobs,π̂

t := y0 +
∫ t

0
Zobs
s · dBobs

s + 1
2Tr

[(
Γobs
s + γZobs

s (Zobs
s )>

)
d〈Bobs〉s

]
− hobs

(
s, Zobs

s ,Γobs
s , π̂(s, Zobs

s ,Γobs
s ))

)
ds,

(3.2)

where y0 ≥ 0, π̂ ∈ Oobs and (Zobs,Γobs) ∈ ZGobs with

ZGobs :=
{

(Zobs,Γobs) : Rd
g+2 × Sdg+2(R)-valued, F-predictable, s.t. Y y0,Z

obs,Γobs,π̂
T ∈ C2

}
.

The optimisation problem of the government that we now consider is8

Ṽ P0 = sup
y0≥0

sup
(Zobs,Γobs,π̂)∈ZGobs×Oobs

Eπ̂(Z,Γ)
[
UP

(
XT −

dg∑
i=1

∫ T

0
κ
(
Gi −

(
π̂g(t, Zobs

t ,Γobs
t )

)
i

)2
dt− Y y0,Z

obs,Γobs,π̂
T

)]
,

(3.3)

This assumption allows us to consider more tractable contracts for a large portfolio of bonds, even if we consider less
general contracts compared to (3.1). Moreover, as the objective of the government is to encourage the acquisition
of green bonds, it is natural to consider a more granular contract with respect to the green bonds and to use only
the index of conventional bonds as a representative contractible variable of this set of bonds. As we used only
deterministic functions to model the risk premium, short-term rate and volatility processes, the optimal incentives
of the government can be obtained by maximising a deterministic function, which leads to the following theorem.

8We use the notation E(π̂(t,Zt,Γt))t∈[0,T ] [·] =: Eπ̂(Z,Γ)[·]
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Theorem 3.4 (Main result). The optimal contract ξ? ∈ C2 is given by

ξ? = Y 0,z?obs,g?obs,π?

T =
∫ T

0
z?obs(t) · dBobs

t + 1
2Tr

[(
g?obs(t) + γz?obs(t)(z?obs(t))>

)
d〈Bobs〉t

]
− hobs

(
t, z?obs(t), g?obs(t), π?

(
t, z?obs(t), g?obs(t)

))
dt,

(3.4)

where for all t ∈ [0, T ], z?obs(·), g?obs(·), π?
(
·, z?obs(·), g?obs(·)

)
are deterministic functions of time, solving

sup
(z,g,π̂)∈P×Oobs

H
(
t, z, g, π̂(t, z, g)

)
, (3.5)

where P := Rdg+2 × Sdg+2(R) and H : [0, T ]× P ×K −→ R is given by

H(t, z, g, p) :=−
dg∑
i=1

(
Gi − pi

)2 − 1
2Tr

[
(g + γzz>)Σobs(t, p)Σ(Σobs(t, p)>)]

+ hobs(t, z, g, p)+
(
µobs(t, p))

1
− z>µobs(t, p)

− 1
2ν

2
((

Σobs(t, p))
1,:
− z>Σobs(t, p))>Σ

((
Σobs(t, p))

1,:
− z>Σobs(t, p)).

Moreover

Ṽ P0 = UP

(∫ T

0
H
(
t, z?,obs(t), g?,obs(t), π?

(
t, z?,obs(t), g?,obs(t)

))
dt
)
.

Proof. The term in the exponential of the optimisation problem (3.3) is a linear function of y0 hence the reservation
utility of the investor is saturated using y?0 = 0. Define for any martingale M the operator

E(M)T := exp
(
− νMT + 1

2ν
2〈M〉T

)
.

The government has now to solve

sup
(Z,Γ,π̂)∈ZGobs×Oobs

Eπ̂(Z,Γ)

[
UP

(∫ T

0

((
µobs(t, π̂(t, Zt,Γt)

))
1
−

dg∑
i=1

(
Gi − π̂i(t, Zt,Γt)

)2
− 1

2Tr
[(

Γ
(
t, π̂(t, Zt,Γt)

)
+ γZtZ

>
t

)
Σobs(t, π̂(t, Zt,Γt)

)
Σ
(

Σobs(t, π̂(t, Zt,Γt)
))>]

+ hobs(t, Zt,Γt, π̂(t, Zt,Γt)
))

dt
)

× exp
(
− ν

∫ T

0

((
Σobs(t, π̂(t, Zt,Γt)

))
0,:
− Z>t Σobs(t, π̂(t, Zt,Γt)

))
dWt

)]
.

We make appear the stochastic exponential so that the previous supremum becomes

sup
(Z,Γ,π̂)∈ZGobs×Oobs

Eπ̂(Z,Γ)

[
UP

(∫ T

0
H
(
t, Zt,Γt, π̂(t, Zt,Γt)

)
dt
)

× E
(∫ ·

0

((
Σobs(t, π̂(t, Zt,Γt)

))
0,:
− Z>t Σobs(t, π̂(t, Zt,Γt)

))
dWt

)
T

]
.

As the function UP (x) is increasing and the expectation of a stochastic exponential is bounded by one, we obtain

Ṽ P0 ≤ UP
(∫ T

0
sup

(z,g,π̂)∈P×Oobs
H
(
t, z, g, π̂(t, z, g)

)
dt
)
.

We have

H
(
t, z, g, π̂(t, z, g)

)
≤− 1

2Tr
[
γzz>Σobs(t, π̂(t, z, g)

)
Σ(Σobs(t, π̂(t, z, g)

)>)]+
(
µobs(t, π̂(t, z, g)

))
1
.
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As π̂(t, z, g) < +∞ is uniformly bounded and strictly positive, Σ is definite positive and the components of Σobs are
positive, we observe that when ‖z‖2 + ‖g‖2 −→ +∞, the first term goes to −∞ while the second term is bounded.
Therefore, the supremum on Oobs cannot be attained for infinite values.

If we now choose the incentives z?,obs(t), g?,obs(t), π?
(
t, z?,obs(t), g?,obs(t)

)
as the maximisers of H, they are Borel-

measurable deterministic functions of t ∈ [0, T ] thus belong to the set ZGobs and are bounded on [0, T ], so that

E
(∫ ·

0

((
Σobs(t, π?(t, z?,obs(t), g?,obs(t))

))
0,:
− z?,obs(t)>Σobs

(
t, π?

(
t, z?,obs(t), g?,obs(t)

)))
dWt

)
T

is a Pπ? -martingale and we obtain

Ṽ P0 = UP

(∫ T

0
H
(
t, z?,obs(t), g?,obs(t), π?

(
t, z?,obs(t), g?,obs(t)

))
dt
)
.

Static maximisation (3.5) over (z, g) ∈ P can easily be handled with classic root-finding algorithms for a large
portfolio of green bonds.9 Before moving to the numerical experiments, we discuss the form and implementability of
the optimal contract.

3.2 Discussion
3.2.1 On the form of the optimal contracts

The contract consists of the following elements:

• The term Z?obs
X is a compensation given to the investor with respect to the risk associated to the evolution

of the portfolio process. If Z?obs
X > 0 (resp. Z?obs

X < 0), the government encourages to increase (resp. de-
crease) the value of the portfolio: between two times t2 > t1, the investor receives approximately the amount
(Z?obs

X )t1(Xt2 −Xt1).

• For i ∈ {1, . . . , dg}, the term Zi is a compensation given to the investor with respect to the volatility risk
associated to the evolution of the i-th green bond price. Between two times t2 > t1, the investor receives
approximately the amount (Z?obs

i )t1(W i
t2 − W i

t1): if Z?obs
i is close to zero, the government does not give

compensation with respect to the volatility of the i-th green bond and conversely for Z?obs
i far from zero. The

intuition behind Z?obs
I is the same.

• The diagonal terms of Γobs are compensations with respect to the quadratic variation of the portfolio process
and the risk sources of the green bonds and the index. For example if Γ?obs

X > 0, the government provides
remuneration to the investor for a high quadratic variation (which here can be thought of as volatility) of the
portfolio process. If ΓX < 0, the government penalises a high volatility of the portfolio process.

• The non-diagonal terms of Γ?obs are compensations with respect to the quadratic covariation of the portfolio
process and the risk sources of the green bonds and the index. For example, if Γ?obs

X,i > 0 for i ∈ {1, . . . , dg} the
government provides remuneration to the investor for similar moves of the portfolio process and the i-th green
bond. If Γ?obs

X,i < 0, the government encourages opposite moves of the portfolio process and the i-th green bond.

• The term Gobs(t, Z?obs,Γ?obs) is a continuous coupon that is given to the investor. It corresponds to the utility
of the investor in the case ξ = 0.

For reasonable choices of parameters (α, β,G), the supremum of hobs and in (3.5) are strictly concave functions so
that an optimiser is quickly found using root-finding algorithms. Note that the optimal contract is indexed on the
portfolio process X the sources of risk coming from the green bonds W g and the one coming from the index W I .
This can be reformulated as an indexing on X and the prices of the bonds. In this case we define

Bobs,p :=

 X
log(P g)
log(P I)

 , Bobs,p := log(P c),

9In practice, we observe that for the set of parameters we choose for the numerical experiences, the function hobs is strictly concave
with respect to its last variable thus admits a unique maximizer π̂.
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dBobs,p
t := µobs,p(t, πt)dt+ Σobs,p(t, πt)dWt, dBobs,p

t := µobs,p(t)dt+ Σobs,p(t)dWt,

where

µobs,p(t, π) :=

π
g ·
(
rg(t) + ηg(t) ◦ σg(t)

)
+ πc ·

(
rc(t) + ηc(t) ◦ σc(t)

)
+ πIµI(t)

rg(t) + ηg(t) ◦ σg(t)− (σg(t))>Σgσg(t)

µI(t)−
(
σI(t)

)2

2

 ,

Σobs,p(t, π) :=

(πg ◦ σ(t)g)> (πc ◦ σ(t)c)> πIσI(t)
diag

(
σg(t)

)
0dg,dc 0dg,1

01,dg 01,dc σI(t)

 ,

µobs,p(t) :=
(
rc(t) + ηc(t) ◦ σc(t)− (σc(t))>Σcσc(t)

)
, Σobs,p(t) :=

(
0dc,dg diag

(
σc(t)

)
0dc,1

)
.

This leads to minor changes in the computations and the optimal incentives.

3.2.2 On the practical implementation of the contract

We will show in the numerical section that the processes (π?, Z?,Γ?) show a rather constant behaviour through the
period [0, T ]. Thus, the optimal contract does not need a frequent re-calibration throughout the year. This suggests
the following approximation

ξ? ≈ ξ?0 + Z̄?obs ·Bobs
T + 1

2Tr
[
(Γ̄?obs + γZ̄?obs(Z̄?obs)>)〈Bobs〉T

]
−
∫ T

0
hobs

(
t, Z̄?obs, Γ̄?obs, π?(t, Z̄?obs, Γ̄?obs)

)
dt,

(3.6)

where Z̄?obs, and Γ̄?obs are constants corresponding the average of z?obs(t), g?obs(t) over [0, T ] defined by

Z̄?obs =
(
Z̄?obs
X , Z̄?obs

1 , . . . , Z̄?obs
dg , Z̄?obs

I

)> ∈ Rd
g+2, Γ̄?obs =



Γ̄?obs
X Γ?obs

X,1 . . . Γ?obs
X,dg Γ̄?obs

X,I

Γ̄?obs
X,1 Γ̄?obs

1 . . . Γ̄?obs
1,dg Γ̄?obs

1,I
...

... . . . ...
...

...
...

... . . . Γ?obs
dg,I

Γ̄?obs
X,I Γ?obs

1,I . . . Γ?obs
dg,I Γ?obs

I


∈ Sdg+2(R).

In order to provide a practical implementation of the contract, we propose a static replication of its payoff using
financial instruments. First, note that the incentives Z̄?obs

X , and Γ̄?obs
X are indexed on the holdings of the investor,

thus do not need any replication using financial instruments. The portion Z̄?obs · Bobs
T of the contract can be easily

replicated using log-contracts. For example, for i ∈ {1, . . . , dg}, we replicate Z̄?obs
i (Bobs

T )i using a long position of
size Z?obs

i on a log-contract on the i-th green bond with maturity T . In this section, all the derivatives products will
have a maturity equal to T .

The portion of the contract with respect to quadratic variation and covariation terms are more subtle to replicate.
Define the matrix C̃ ∈ Sdg+2(R) whose coefficients are given by

C̃i,j :=
dg+2∑
k=1
Ci,k〈Bobs

k,j 〉T , Ci,j := Γ̄?obs
i,j + γZ̄?obs

i Z̄?obs
j , (i, j) ∈ {1, . . . , dg + 2}.

Then, we can rewrite 1
2Tr
[(

Γ̄?obs + γZ̄?obs(Z̄?obs)>
)
〈Bobs〉T

]
= 1

2
∑dg+2
i=1 C̃i,i. Following the reasoning of Carr and

Lee [14], we note that the quadratic variations and covariations on the logarithm of the green bonds and the index
of conventional bonds can be replicated statically using variance and covariance swaps on the bonds. Finally, the
portfolio process is equivalent to holding π?,g green bonds, π?,c conventional bonds and π?,I index. Thus, the
quadratic covariation between the portfolio process X and the bonds can be replicated using a linear combination of
variance and covariance swaps.

We are now in position to state the replication strategy for the implementation of the contract. The proof is an
application of the no-arbitrage principle and Itō’s formula on the logarithm of the bond prices.

Proposition 3.5. The replication strategy on [0, T ] of the optimal contract in (3.6) is as follow:

• For i ∈ {1, . . . , dg}, hold a position of size Z̄?obs
i in a log-contract on the i-th green bond.
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• Hold a position of size Z̄?obs
I in a log-contract on the index of conventional bonds.

• For i ∈ {2, . . . , dg + 1}, k ∈ {2, . . . , dg + 1}, hold a position of size 1
2Ci,k in a covariance swap between the

(i− 1)-th and the (k − 1)-th green bonds.

• For i = dg + 2, k ∈ {2, . . . , dg + 1}, hold a position of size 1
2Ci,k in a covariance swap between the index of

conventional bonds and the (k − 1)-th green bonds.

• For i = k = dg + 2, hold a position of size 1
2Ci,i in a variance swap on the index of conventional bonds.

• For i = 1, k ∈ {2, . . . , dg + 1}, lg ∈ {1, . . . , dg}, lc ∈ {1, . . . , dc}, hold a position of size 1
2Ci,kπ

?,g
lg in a

(co)variance swap between the (k − 1)-th and the lg-th green bonds, a position of size 1
2Ci,kπ

?,c
lc between the

(k − 1)-th green bond and the lc-th conventional bonds, and a position of size 1
2Ci,kπ

?,I in a covariance swap
between the index of conventional bonds and the (k − 1)-th green bond.

• For i = 1, k = dg + 2, lg ∈ {1, . . . , dg}, lc ∈ {1, . . . , dc}, hold a position of size 1
2Ci,kπ

?,g
lg in a covariance swap

between the index of conventional bonds and the lg-th green bond, a position of size 1
2Ci,kπ

?,c
lc between the index

of conventional bonds and the lc-th conventional bond, and a position of size 1
2Ci,kπ

?,I in a variance swap on
the index of conventional bonds.

The contract can be implemented practically only by using the value of the portfolio of bonds, log-contracts, variance
and covariance swaps on the different bonds.

Remark 3.6. We would like to emphasise that, even though it is possible to replicate in practice the optimal contract
using variance and covariance swaps on the government bonds, these derivatives might be highly illiquid on financial
markets. However, it is possible to replicate these volatility derivatives using the log-contracts and the bonds. Indeed,
a variance swap on a bond Pt (we omit to describe the type of bond for notational simplicity) of maturity T can be
replicated by holding for all t ∈ [0, T ] one log-contract that pays −2 log(PT /P0) and 2/Pt bonds Pt. A covariance swap
on the bonds P 1

t , and P 2
t can be replicated by holding for all t ∈ [0, T ] one log-contract that pays −2 log(P 1

T /P
1
0 ),

one log-contract that pays −2 log(P 2
T /P

2
0 ), short 1

2 variance swap on P 1, and short 1
2 variance swap on P 2, long

1/(P 1
t P

2
t ) bond P 3

t := P 1
t P

2
t . Thus, the optimal contract ξ in (3.4) can be implemented only using bond prices and

log-contracts.

Finally, note that if vanilla options on the futures on the bonds are available on the market, one can use the Carr-
Madan formula, see Carr and Madan [15] to replicate the log-contract payoffs in Remark 3.6. Thus, the optimal
contract in (3.6) can be implemented in practice in three different ways: using the bond prices, the portfolio process,
the variance and covariance swaps on the bonds; using the bond prices, the portfolio process, and the log-contracts
on the bonds; or using the bond prices, the portfolio process, and vanilla options on the bond prices.

4 Numerical results
In the current section, we provide numerical examples illustrating the efficiency of our incentives method.

4.1 Data, key results and remarks for the policy-maker
We illustrate our methodology on an example with real-world data. The dataset is composed of 3 French governmental
bonds, one green bond and two conventional bonds with the following characteristics.

Bloomberg Ticker Valuation date Maturity Amount issued Issue price Coupon
Green bond FRTR 1 3/4 24/01/2017 25/06/2039 27.375b 100.162 1.75
Conv. bond 1 FRTR 6 02/01/1994 25/10/2025 30.654b 95.29 6.
Conv. bond 2 FTRT 4 09/03/2010 25/04/2060 16.000b 96.34 4.

We also define the index of conventional bonds It as a geometric average of the conventional bonds, weighted by the
amount issued. We perform the calibration using the daily prices of the bonds from 10/04/2019 to 10/04/2020 and
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the following affine parametrisation for short-term rates, volatilities and risk premiums:

rg(t) = ar,g + br,g(T g − t), ηg(t) = aξ,g + bξ,g(T g − t), σg(t) = aσ,g + bσ,g(T g − t),
r1,c(t) = ar,c1 + br,c1 (T 1,c − t), η1,c(t) = aξ,c1 + bξ,c1 (T 1,c − t), σ1,c(t) = aσ,c1 + bσ,c1 (T 1,c − t),
r2,c(t) = ar,c2 + br,c2 (T 2,c − t), η2,c(t) = aξ,c2 + bξ,c2 (T 2,c − t), σ2,c(t) = aσ,c2 + bσ,c2 (T 2,c − t)
µI(t) = aµ,I + bµ,I(T I − t), σI(t) = aσ,I + bσ,I(T I − t),

with T g = 19.73, T 1,c = 6.06, T 2,c = 40.58, and T I = 18.29. In order to calibrate the dynamics of the bonds in (2.1)
over the period, we use a classic least-square algorithm and we obtain the following set of parameters

ar,g = −0.07, br,g = 0.66, aξ,g = 0.38, bξ,g = 0.13, aσ,g = 0.41, bσ,g = 0.31,
ar,c1 = −0.05, br,c1 = −0.91, aξ,c1 = 0.01, bξ,c1 = 0.30, aσ,c1 = 0.11, bσ,c1 = 0.26,
ar,c2 = 0.28, br,c2 = 0.02, aξ,c2 = 0.12, bξ,c2 = −0.99, aσ,c2 = 0.10, bσ,c2 = −0.96,
aµ,I = −0.01, bµ,I = 0.53, aσ,I = 0.01, bσ,I = 0.92,

and the correlation matrix is given by

Σ =


1 0.2 0.8 0.8

0.2 1 0.2 0.7
0.8 0.2 1 0.7
0.8 0.7 0.7 1

 .

The time horizon of the investor and the government is equal to one year, i.e T = 1. We define a so-called reference
case, which is a reference to analyze the impact of our incentives policy. In this setting,

ν = γ = 1, G = 0dg , κ = 0, β = (0.4, 0.4, 0.4, 0.4), α = (0.2, 0.2, 0.3, 0.5).

Thus, the investor and the government have the same risk aversion, and the government has no specific incentives
to increase the investments in the green bond. The only objective of the government is to maximise the value of the
portfolio of bonds. The investor has the same cost intensity for every bonds and wishes to invest more in the index
and the second conventional bond compared to the green and the first conventional bond. This corresponds to a
risk-averse investor who prefers a diversified portfolio of conventional bonds, and is reluctant to invest in the green
bonds. Finally, the utility reservation of the investor is set equal to the his utility in the case ξ = 0.

We summarise the important empirical findings coming from the numerical results.

• The methodology we propose outperforms significantly the current tax-incentives policy: for a same result in
terms of green investments, our methodology leads to a value of the portfolio process 15% to 20% higher.

• The optimal investment policy is robust to model specification: by using a one-factor model on the short-term
rates of the green bond, we observe that the investor’s strategy oscillates slightly around the one obtained with
deterministic rates.

• The optimal controls show a rather constant behaviour throughout the year: The government does not have
to frequently recalibrate the optimal contract.

• The government can increase the amount invested in the green bonds by the mean of G and κ. This decreases
his utility as he must provides higher incentives to the investor.

• The most important incentive with respect to the contractible variables is Z?X : The government always encour-
age a higher value of the portfolio of bonds by setting Z?X > 0.

• When the government provides incentives to increase the investment in green bonds, he encourages higher
variations of the value of the portfolio in order to compensate the amount given to the investor.

• At the expense of some substantial utility loss, the government can propose a contract indexed only on the
contractible variables. This results in a higher incentive Z?X .

We also provide some general remarks for the policy-maker.
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• The parameters (α, β) modelling the preferences of the investor should be calibrated using the historical data
on the issuance of bonds. For example, for i ∈ {1, . . . , dg}, the coefficient αi should be equal to the historical
amount invested in the green bond P gi , and βi should be equal to the variance of the amount invested in this
green bond throughout the year. Note however that one historical data on bonds with the same characteristic
may not be available especially for countries with small amounts issued. Thus, the parameters (α, β) might
be re-scaled depending on the maturity and the coupon of the newly issued bond: A risky investor such as
a fixed-income hedge fund might increase his investment in the bond if it offers a higher coupon, whereas
institutional investors such as pension funds will tend to buy bonds with a better rating.

• The risk-aversion parameter γ should be chosen such that, in the case ξ = 0 and with (α, β) chosen as explained
previously, the optimal controls π? correspond roughly to the historical positions of the investor.

• The risk-aversion parameter ν should be chosen heuristically such that the optimal contract offered to the
investor bring the investments closer to the target G and the amount ξ? offered by the government is reasonable.
The terms ‘closer to’ and ‘reasonable’ have to be interpreted by the policy-maker in view of their own budget
constraints and political objectives.

• In the case of a small number of bonds issued, the government can, for sake of simplicity, propose a contract
indexed only on the value of the portfolio.

4.2 Reference case
4.2.1 Optimal controls and comparison with the no-contract case

In the absence of a contract, that is ξ = 0, the investor matches his investments π?(ξ) with the target α as he has
no incentives to deviate. Thus, the optimal investments are given by π?g(0) = 0.2, π?c(0) = (0.2, 0.3), π?I(0) = 0.5.
We can now analyze the influence of the contract on the behaviour of the investor. We first show in Figure 1 the
evolution of the optimal investment policy π? and the optimal incentives Z?, and Γ? through time. One can see
that, even if the risk premia, the short-term rates and volatility processes have a deterministic affine structure with
respect to time, the processes (π?, Z?,Γ?) show a rather constant behaviour through the year. Thus, the optimal
contract does not need frequent recalibration through the year.

Figure 1: Optimal investment policy (upper left), optimal incentives Z? (upper right) and Γ? (bottom) as a function of time.

Compared to the case ξ = 0, we observe that the contract increases the investment in the green bond and the second
conventional bond, while reducing the investment in the index and the first conventional bond. Given the dynamics
of the bonds described previously, as well as the preferences of the investor, it is natural that he invests mostly in
the index and the second conventional bond. As the green bond has a higher short-term rate and risk premium than
the first conventional bond, the traders invests a higher part of his wealth in it.
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The optimal incentives with respect to the sources of risk is as follow: the incentives with respect to the green bond
and the index of conventional bonds are set to zero, whereas the incentive with respect to the value of the portfolio
of bonds is strictly positive. Thus, the government provides incentives only to increase the value of the portfolio. We
observe at the bottom of Figure 1 the incentives with respect to the quadratic variations of the contractible variables.
The government provides no incentives with respect to the quadratic variation of the index and the green bond
while it encourages a high quadratic variation of the portfolio process. The incentives with respect to the quadratic
covariations are as follow: the government penalises a high covariation between the portfolio process and the index
as well as between the green bonds and the index, while encouraging a high covariation between the portfolio and
the green bond.

4.2.2 Trajectory simulation and portfolio value

To illustrate the benefits of the use of a contract, we plot in Figure 2 some simulations of the evolution of the portfolio
process over the year with and without contract (that is when ξ = 0). We observe that the portfolio process is higher
when the government provides a contract to the investor. This is also illustrated in Figure 3 where we show the
cumulated difference between the portfolio processes with and without contract, using 10000 simulations.

Figure 2: Some trajectories of the optimal portfolio process with and without contract.

Figure 3: Average absolute difference of portfolio value over time, for 10000 simulations.

4.2.3 Optimal contract with no indexation on quadratic variation

As the notion of incentives with respect to quadratic variation might not be easy to understand, we present in
Figure 4 the optimal investment and incentives when the government set Γ = 0.
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Figure 4: Optimal investment policy (left) and optimal incentives Z? (right) as a function of time.

Compared to Figure 1, we observe that the government sets a higher incentive on the value of the portfolio, while
the optimal investment policy is slightly higher on every asset, but not materially different compared to a framework
with an optimal contract depending on both the dynamics and the quadratic variations of the contractible variables.
Thus, for sake of simplicity, a government can build an optimal incentives scheme based only on the dynamics of the
green bonds, the value of the portfolio and the index of conventional bonds.

4.2.4 Model robustness

We show that, using a more complex model for the short-term rates of the green bonds, the results are qualitatively
the same. Using the methodology in Appendix C, we assume that the short-term rate of the green bond is driven
by a one-factor stochastic model, that is

drgt = θg(mg − rgt )dt+ σgdW g,r
t , (4.1)

where W g,r is a one-dimensional Brownian and (θg,mg, σg) ∈ R3
+. Using a least-square algorithm, a calibration on

the short-term rate curve of the green bond gives the following parameters

θg = 0.4, mg = 0.04, σg = 0.02.

We show in Figure 5 the optimal investment policy when the short-term rate of the green bond is driven by (4.1). This
is obtained by solving the 4-dimensional HJB equation (C.5) using a fully implicit scheme and locally unidimensional
methods on sparse grids.10 Note that the optimisation is much harder to complete since for every π?(t, z, g, rg) we
have to solve a 4-dimensional HJB equation and iterate until we find the optima (z?,Γ?). We observe that the
optimal policy oscillates around the values obtained in the case of deterministic short-term rates in Figure 1. As
the bonds are all positively but not perfectly correlated, a change of investment in the green bond induces a change
of smaller magnitude in the other bonds. The magnitude of oscillation around the value with deterministic rates is
not high, thus we observe same results from a qualitative point of view. As the use of stochastic rates can only be
viable for a small portfolio of bonds, and as the difference of behaviour is negligible, we can argue that the use of
deterministic short-term rates is more suited to practical applications.

Figure 5: Optimal investment policy with stochastic rates.

10In particular, as the bond prices do not vary drastically during the year, we use 10 time steps, 40 space steps for the cash process,
10 for the stochastic rate and 20 for the risk factors of the green bond and index of conventional bonds.
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4.2.5 Comparison with current tax-incentives policy

The purpose of the paper is to show that a form of incentives based on the value of the portfolio and the prices of the
bonds performs better than the current tax-incentives policy. As stated in the introduction, the incentives policy to
increase investment in green bonds takes the form of tax credit or cash rebate, depending on the amount invested.
Thus, in our Principal-Agent framework, it takes the following form

ξ = c

∫ T

0

dg∑
i=1

πgt dt,

where c > 0 is the amount of cash rebate or tax credit, controlled by the government. We choose c so that the
amount invested in green bonds is the same as in Figure 1. In Figure 6, we plot the average relative difference
between the cash processes of the government using our optimal policy and the actual tax-incentives. We observe
that the difference increases with time, thus for a same result in terms of green investments our optimal contract
increases its utility compared to the actual incentives policy.

Figure 6: Average relative difference (in %) of portfolio value over time for 10000 simulations.

We also show in Figure 7 some trajectories of the value of the portfolio process with the optimal contract and the
optimal policy. We observe that the value of the portfolio process is always (slightly) higher in the presence of the
optimal contract. In the next subsection we show that when the government wants to achieve a specific target in
green investments, the difference between the two policies becomes larger

Figure 7: Some trajectories of the optimal portfolio process with the optimal contract and with the tax-incentives policy
(labeled ‘without contract’).
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4.3 Influence of the green target
4.3.1 Comparison with the reference case

We now study the impact of the incentives policy we propose when the government seeks to achieve a specific
investment target in the green bond. We take G = 3, κ = 0.8 and present in Figure 8 the new optimal controls of
the investor and the government.

Figure 8: Optimal investment policy (upper left), optimal incentives Z? (upper right) and Γ? (bottom) as a function of time.

The behaviour of the investor is drastically different compared to Figure 1. He now invests mostly in the green
bond, while increasing the amount invested in the other assets. This comes from the fact that all assets are positively
correlated so that the additional amount invested in the index is higher than the one invested in the first conventional
bond. The government sets a higher incentive with respect to the value of the portfolio. The incentives with respect
to the quadratic variation are now all positive and higher than in Figure 1. While ΓG and ΓI are still set to zero, the
incentive with respect to every covariations are now positive. In particular, ΓXI has changed from −0.3 to 1 meaning
that the government encourages a higher quadratic covariation between the portfolio and the index of conventional
bonds. So as to maximise the value of the portfolio while giving higher incentives, the government encourages a
higher variance of the portfolio process and positive co-variations between the portfolio and the bond prices.

Note that, while the amount invested in the green bond is higher but not equal to the target of the government.
As αg = 0.2, the government has to provide higher incentives to force the investor to shift his preferences toward a
much higher investment in the green bond. As in the reference case, we show in Figure 9 some simulations of the
evolution of the portfolio process compared to the case without contract. We observe that the higher investment in
green bonds leads to a higher average value of the portfolio process. Moreover due to the higher incentives on the
quadratic variations, the portfolio process with the contract is more volatile, as it can be seen in Figure 10

Figure 9: Average difference of portfolio value over time, for 10000 simulations.
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Figure 10: Some trajectories of the optimal portfolio process with and without contract.

4.3.2 Comparison with the tax-incentives policy

We have seen in Figures 6 and 7 that without specific target in green investments, the optimal contract we propose
leads to a higher value of the portfolio process compared to the tax-incentives policy. Here, we set the tax-incentives
c so that the investor matches the investment in green bonds obtained with the optimal contract in Figure 8. We
plot in Figure 11, and Figure 12 some trajectories and the average relative difference of cash processes obtained with
the optimal contract and the tax-incentives policy.

In this case, the relative differences of value are much higher compared to Figure 6, and Figure 7. Thus, if the
government has a specific investment target in green bonds, the use of the optimal contract we propose guarantees
a much higher value of the portfolio for a similar result than the tax-incentives policy.

Figure 11: Some trajectories of the optimal portfolio process with the optimal contract and with the tax-incentives policy
(labeled ‘without contract’).
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Figure 12: Average relative difference (in %) of portfolio value over time (with the optimal contract and tax-incentives policy),
for 10000 simulations.

4.4 Sensitivity analysis
4.4.1 Influence of G, and κ

In Figure 13, we show that reducing the value of κ makes the government target harder to achieve.

Figure 13: Optimal investment policy (upper left), optimal incentives Z? (upper right) and Γ? (bottom) as a function of
time.

In particular, we observe that the amount invested in all the assets has been reduced and especially the amount
invested in the green bond. In this case, the government proposes a much higher incentive with respect to the
dynamics of the portfolio compared to Figure 8: as the investment target G is less important (because of a lower κ,
he aims at maximising the value of the portfolio Moreover, a high quadratic covariation between the green bond and
the index is now penalised, while a high variance of the portfolio is encouraged in order to maximise its value.

In Figure 14, we show that with the parameters κ = 0.8, G = 1, the investment target of the government can be
reached more easily. In this case, the trader invest roughly the same amount in the the green bond and the second
conventional bond. The government increases the incentive corresponding to the value of the portfolio compared to
Figure 8. Moreover, he encourages a high variance of the portfolio process while keeping the incentives ΓG, ΓI equal
to zero.
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Figure 14: Optimal investment policy (upper left), optimal incentives Z? (upper right) and Γ? (bottom) as a function of time

4.4.2 Influence of α and β

We studied in the previous section the influence of the government’s parameters, that is the target G and the cost
intensity κ. We now show the influence of the targets αg, αc, αI and the cost intensities βg, βc, βI of the investor. In
Figure 15, we place ourselves in the context of the reference case of Figure 1, except that we set αg = 0. This means
that the investor is not willing to put money in the green bond. Compared to Figure 1, we see that in the absence
of specific incentives for green investing, the investor effectively sets πg equal to zero.
The other investment policies are slightly changed, as there is now more investment in the second conventional bond
than in the index. As neither the government nor the investor are interested in the green bond, the government
provides higher incentives ZX in order to maximise the value of the portfolio. The incentive ΓXG become negative
while ΓX becomes positive meaning that the government encourages opposite moves between the price of the green
bond and the portfolio process. Moreover, ΓXI becomes positive: the government encourages similar moves between
the price of the index and the portfolio process. Finally, the incentives corresponding to the quadratic variation of
the green bond and the index remain equal to zero.

Figure 15: Optimal investment policy (upper left), optimal incentives Z? (upper right) and Γ? (bottom) as a function of
time.
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In Figure 16, we compare these results with the case G = 3, κ = 0.8 in order to show the influence of the contract
when the investor and the government have very different investment targets. We observe that the amount invested
in the green bond is clearly higher than in Figure 15 where the investor has αg = 0 but lower than in Figure 8 where
the investor has αg = 0.2. The incentives with respect to the quadratic variations become positive meaning that
the government encourages similar moves of all the contractible variables. In particular, compared to Figure 15, the
government gives higher incentives toward similar moves of the portfolio value and the green bond.
We conclude this section by showing in Figure 17 the influence of the cost intensity. We take the same parameters
as in Figure 16 except that we set βg = 0.5. As the intensity cost for moving the green bond target of the investor
is higher than in Figure 16, the optimal investment policy in the green bond is lower. The government sets a higher
incentive ZX to encourage a higher value of the portfolio. The incentives with respect to quadratic variations are
materially different compared to Figure 16. In particular, the government encourages opposite moves between the
green bond and the index.

Figure 16: Optimal investment policy (upper left), optimal incentives Z? (upper right) and Γ? (bottom) as a function
of time

Figure 17: Optimal investment policy (upper left), optimal incentives Z? (upper right) and Γ? (bottom) as a function
of time
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A Weak formulation of the problem
We work on the canonical spaceQ of continuous functions on [0, T ] with Borel algebra F . The (dg+dc+2)-dimensional
canonical process is

B : =


X
W g

W c

W I


and F = (Ft)t∈[0,T ] is its natural filtration. We define P0 as the (dg + dc + 1)-dimensional Wiener measure on Q.
Thus, B is a (dg + dc + 2)-dimensional Brownian motion where (W g,W c,W I) has a correlation matrix Σ under P0.
We also defineM(Ω) as the set of probability measures on (Q,FT ) and

H2(P0) :=
{

(πt)t∈[0,T ] : B-valued,F-predictable processes such that EP
[ ∫ T

0
‖πt‖22dt

]
< +∞

}
.

We consider the following family of processes, indexed by π ∈ H2(P0)

X πt :=
(∫ t

0 Σobs(s, πs)dBs∫ t
0 ΣobsdBs

)
,

and define the set Pm as the set of probability measures Pπ ∈M(Q) of the form

Pπ = P0 ◦ (X π)−1, for all π ∈ H2(P0).

Thanks to Bichteler [10], we can define a pathwise version of the quadratic variation process 〈B〉 and of its density
process with respect to the Lebesgue measure α̂t := d〈B〉t

dt . As the processes π ∈ A ⊂ H2(P0) have all their coordinates
strictly positive, the volatility of B is invertible, which implies in particular that the process Wt =

∫ t
0 α̂
− 1

2
s dBs is an

Rdg+dc+2-valued, P-Brownian motion with correlation matrix Σ for every P ∈ Pm. According to Soner, Touzi, and
Zhang [45], there exists an FB-progressively measurable mapping βπ : [0, T ]×Q −→ Rdg+dc+2 such that

B = βπ(X π), P0-a.s, W = βπ(B), Pπ-a.s, α̂(B) = π
(
βπ(B)

)
, dt⊗ dPπ-a.e.

In particular, the canonical process B admits the following dynamics for all π ∈ A

Bt =
(∫ t

0 Σobs(s, π(W·))dWs∫ t
0 ΣobsdWs

)
, Pπ-a.s.

The first coordinate of the canonical process is the desired output process, the dg next coordinates are the contractible
sources of risk, that is the dg green bonds and the index of conventional bond, and the last dc coordinates are the
non-contractible sources of risk. Then, we can introduce easily the drift of the output process by the means of
Girsanov theorem. Denote

dQ
dPπ := E

(∫ ·
0

Σ̃(s)dWs

)
T

,

a change of measure independent of the control process π, where Σ̃ : [0, T ] −→Mdg+dc+2(R) is such that

Σ̃(t) :=
(( rg(t)+ηg(t)◦σg(t)

σg(t)
)> ( rc(t)+ηc(t)◦σc(t)

σc(t)
)> µI(t)

σI(t)
0dg+dc+1,dg 0dg+dc+1,dc 0dg+dc+1,1

)
.

We finally obtain the desired dynamics for the output process and the dg + dc + 1 sources of risk.

B Proof of Theorem 3.2
We can define the functions σ : [0, T ] × K −→ Mdg+dc+2,dg+dc+1(R), λ : [0, T ] −→ Rdg+dc+1 such that the set of
contractible variables (Bt)t∈[0,T ] can be rewritten for all π ∈ A as

dBt = σ(t, πt)
(
λ(t)dt+ dWt

)
, (B.1)
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where for all (t, p) ∈ [0, T ]×K,

σ(t, p) :=


(
pgσg(t)

)> (
pcσc(t)

)>
pIσI(t)

diag(σg(t)) 0dg,dc 0dg,1
01,dg 01,dc σI(t)
0dc,dg diag(σc(t)) 0dc,1

 , λ(t) :=
(( rg(t)+ηg(t)◦σg(t)

σg(t)
)> ( rc(t)+ηc(t)◦σc(t)

σc(t)
)> µI(t)

σI(t)

)>
,

Thanks to Assumption 2.2 and the definition of A, the functions σ, and λ are bounded. As the function σ(t, π) is
continuous in time for some constant control process π ∈ A, there always exists a weak solution to (B.1). Thanks
to the boundedness of the function λ, we can use Girsanov’s theorem which guarantees that every π ∈ A induces a
weak solution for

Bt = B0 +
∫ t

0
σ(s, πs)dW ′s,

dP′
dP

∣∣∣∣
FT

= E
(∫ ·

0
λ(s) · dWs

)
T

,

where W ′ is a P′-Brownian motion.

The cost function k : K → R is measurable and bounded by boundedness of the elements of K. We introduce the
norms

‖Ze‖pHp = sup
π∈A

Eπ
[(∫ T

0

∣∣∣σ̃(t, πt)Zt
∣∣∣2dt

)p/2]
, ‖Y e‖pDp = sup

π∈A
Eπ
[

sup
t∈[0,T ]

|Yt|p
]
,

for any F-predictable, Rdg+dc+2-valued process Ze and R-valued process Y e, and for all (t, p) ∈ [0, T ] × K σ̃ :
[0, T ]×K →Mdg+dc+2(R) is such that

σ̃2(t, πt) = σ(t, p)σ>(t, p).

We also define the functions He : [0, T ]×Rdg+dc+2×Sdg+dc+2(R)×R −→ R and he : [0, T ]×Rdg+dc+2×Sdg+dc+2(R)×
R×K −→ R as

He(t, z, g, y) := sup
p∈K

he(t, z, g, y, p)

he(t, z, g, y, p) := −γk(p)y + z · σ(t, p)λ(t) + 1
2Tr

[
gσ(t, p)Σ(σ(t, p))>

]
.

We introduce the set of so-called admissible incentives ZGe as the set of F-predictable processes (Ze,Γe) valued in
Rdg+dc+2 × Sdg+dc+2(R) such that

‖Ze‖pHp + ‖Y e,Z
e,Γe

‖pDp < +∞, (B.2)

for some p > 1 where for ye0 ∈ R,

Y
e,ye

0 ,Z
e,Γe

t := ye0 +
∫ t

0
ZesdBs + 1

2Tr
[
Γesd〈B〉s

]
−He

(
s, Zes ,Γes, Y e,Z

e,Γe

s

)
ds.

Condition (B.2) guarantees that the process (Y e,y
e
0 ,Z

e,Γe

t )t∈[0,T ] is well defined: provided that the right-hand side
integrals are well defined, and by noting that He is Lipschitz in its last variable (since the cost function k is
bounded), (Y e,y

e
0 ,Z

e,Γe

t )t∈[0,T ] is the unique solution of an ODE with random coefficient. Moreover, as K is a
compact set and he is continuous with respect to its last variable, the supremum with respect to p is always attained.
As (Ze,Γe) = (0dg+dc+2,0dg+dc+2,dg+dc+2) ∈ ZGe, this set is non-empty and we are in the setting of Cvitanić,
Possamaï, and Touzi [18]. Using [18, Proposition 3.3 and Theorem 3.6], we obtain that without reducing the utility
of the Principal, any admissible contract admits the representation

UA(ξ) = Y e,Z
e,Γe

T ,

Define for all t ∈ [0, T ] the processes

Zt =: − Zet

γY
e,ye

0 ,Z
e,Γe

t

, Γt := − Γet
γY

e,ye
0 ,Z

e,Γe

t

, Y y0,Z,Γ
t = y0 +

∫ T

0
ZsdBs + 1

2Tr
[(

Γs + γZsZ
>
s d〈B〉s

]
−H

(
s, Zs,Γs

)
ds,

24



where H : [0, T ]× Rdg+dc+2 × Sdg+dc+2(R) −→ R is defined by H(t, z, g) = supp∈K h(t, z, g, p) and

ZG :=
{

(Zt,Γt)t∈[0,T ] : Rd
g+dc+2 × Sdg+dc+2(R)-valued, F-predictable processes s.t

(
− γZtUA(Y y0,Z,Γ

t ),−γΓtUA(Y y0,Z,Γ
t )

)
t∈[0,T ] ∈ ZG

e

}
.

(B.3)

An application of Itō’s formula leads to ξ = Y y0,Z,Γ
T . Thus, we obtain the desired representation for admissible con-

tracts and VA(Y y0,Z,Γ
T ) = UA(y0). The characterisation of A(Y y0,Z,Γ

T ) is a direct consequence of Cvitanić, Possamaï,
and Touzi [18, Proposition 3.3].

C Green investments with stochastic interest rates
C.1 Framework
In the article, we considered a deterministic structure for the short-term rates. However, this omits some important
stylised facts of the yield curve. In this section we show that at the expense of the use of stochastic control, the
government can provide incentives based on short-term rates following a one factor stochastic model.
We now assume that the vectors of short rate dynamics of the green bonds are given by

drgt := ag(t, rgt )dt+ diag(bg)dW g,r
t , (C.1)

where bg ∈ Rdg

+ , ag : [0, T ]×Rdg −→ Rdg and W g,r is a dg-dimensional Brownian motion of correlation matrix Σg,r.

Remark C.1. For notational simplicity, we assume no dependence between the risk sources of the short-term rates
and the ones of the bonds. Allowing such dependence is straightforward and does not lead to a higher dimension of
the control problem.

We contract only on the portfolio process, the risk factors of the green bonds and of the stochastic short-term rate
of the green bonds, and the risk factor of the index of conventional bonds. The new sets of state variables are

Bobs,S =


X
W g

rg

W I

 , Bobs,S = W c,

where the superscript S stands for stochastic, which can be written as

dBobs,S
t := µobs,S(t, πt, rgt )dt+ Σobs,S(t, πt)dWt, dBobs,S

t := µobs,S(t)dt+ Σobs,S(t)dWt,

where for all t ∈ [0, T ], p = (pg, pc, pI) ∈ Rdg × Rdc × R, rg ∈ Rdg

Wt :=


W g
t

W g,r
t

W I
t

W c
t

 , µobs,S(t, p, rg) :=


pg ·

(
rg + ηg(t) ◦ σg(t)

)
+ pc ·

(
rc(t) + ηc(t) ◦ σc(t)

)
+ pIµI(t)

0dg,1
ag(t, rg)

0

 ,

Σobs,S(t, p) :=


(pg ◦ σ(t)g)> 01,dg pIσI(t) (pc ◦ σ(t)c)>

Idg 0dg,dg 0dg,1 0dg,dc

0dg,dg diag(bg) 0dg,1 0dg,dc

01,dg 01,dg 1 01,dc

 ,

µobs,S(t) =
(
0dc,1

)
, Σobs,S(t) =

(
0dc,dg Idc 0dc,1 0dc,dg

)
.

We now specify the new set of admissible contracts that we consider for the incentives proposed by the government.

C.2 Representation of admissible contracts
Define CS as the set of admissible contracts in the case of stochastic short-term rates (the admissibility conditions
are the same as for the set C) and for any π ∈ A we introduce the following quantities

BS :=
(
Bobs,S

Bobs,S

)
, µS(t, π) :=

(
µobs,S(t, π)
µobs,S

)
, ΣS(t, π) :=

(
Σobs,S(t, π)

Σobs,S

)
.
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We define hS : [0, T ]× R2dg+dc+2 × S2dg+dc+2(R)× Rdg ×K −→ R such that

hS(t, z, g, rg, p) = −k(p) + z · µS(t, p, rg) + 1
2Tr

[
gΣS(t, p)Σ(ΣS(t, p))>

]
,

and for all (t, z, g, rg) ∈ [0, T ]× R2dg+dc+2 × S2dg+dc+2(R) we define

OS(t, z, g, rg) :=
{
p̂ ∈ K : p̂ ∈ argmax

p∈K
hS(t, z, g, rg, p)

}
,

as the set of maximisers of hS with respect to its last variable for (t, z, g, rg) fixed. Following Schäl [43], there
exists at least one Borel-measurable map π̂ : [0, T ] × R2dg+dc+2 × S2dg+dc+2(R) × Rdg −→ K such that for every
(t, z, g, rg) ∈ [0, T ]× R2dg+dc+2 × S2dg+dc+2(R)× Rdg , π̂(t, z, g, rg) ∈ OS(t, z, g, rg). We denote by OS the set of all
such maps. By analogy with Theorem 3.2, the following theorem states the form of any admissible contracts in this
setting.

Theorem C.2. Without reducing the utility of the Principal, we can restrict the study of admissible contracts to the
set CS1 where any ξ ∈ CS1 is of the form ξ = Y y0,Z

S ,ΓS ,π̂
T where for all t ∈ [0, T ],

Y y0,Z
S ,ΓS ,π̂

t := y0 +
∫ t

0
ZSs · dBs + 1

2Tr
[(

ΓSs + γZSs (ZSs )>
)
d〈BS〉s

]
− hS

(
s, ZSs ,ΓSs , rgs , π̂(s, Zs,Γs, rgs)

)
ds, (C.2)

where π̂ ∈ OS and (ZSt )t∈[0,T ], (ΓSt )t∈[0,T ] are respectively R2dg+2+dc and S2dg+2+dc(R)-valued, F-predictable processes
satisfying similar conditions as the elements of ZG. We denote the set of admissible incentives as ZGS. Moreover
in the present case of stochastic rates for green bonds

V A(Y y0,Z
S ,ΓS ,π̂

T ) = UA(y0), A
(
Y y0,Z

S ,ΓS ,π̂
T

)
=
{(
π̂(t, ZSt ,ΓSt , r

g
t )
)
t∈[0,T ], π̂ ∈ O

S , (ZSt ,ΓSt )t∈[0,T ] ∈ ZGS
}
.

We now set

ZSt =
(
Zobs,S
t

Zobs,S
t

)
, ΓSt =

(
Γobs,S
t Γobs,obs,S

t

Γobs,obs,S
t Γobs,S

t

)
,

where for all t ∈ [0, T ]

Zobs,S
t ∈ R2dg+2, Zobs,S

t ∈ Rd
c

,Γobs,S
t ∈ S2dg+2(R),Γobs,S

t ∈ Sdc(R),Γobs,obs,S
t ∈M2dg+2,dc(R).

We define hobs,S : [0, T ]× R2dg+2 × S2dg+2(R)× Rdg ×K −→ R such that

hobs(t, zobs,S , gobs,S , rg, p) = −k(p) + zobs,S · µobs,S(t, p, rg) + 1
2Tr

[
gobs,SΣobs,S(t, p)Σ(Σobs,S(t, p))>

]
,

and for all (t, zobs,S , gobs,S , rg) ∈ [0, T ]× R2dg+2 × S2dg+2(R)× Rdg we define

Oobs,S(t, zobs, gobs, rg) :=
{
p̂ ∈ K : p̂ ∈ argmax

p∈K
hobs,S(t, zobs,S , gobs,S , rg, p)

}
.

Using again Schäl [43], there exists at least one Borel-measurable map π̂ : [0, T ]×R2dg+2×S2dg+2(R)×Rdg −→ B such
that for every (t, zobs,S , gobs,S , rg) ∈ [0, T ]×R2dg+2×S2dg+2(R)×Rdg , π̂(t, zobs,S , gobs,S , rg) ∈ Oobs,S(t, zobs,S , gobs,S , rg)
and Oobs,S denotes the set of all such maps. We consider the subset of admissible contracts

CS2 :=
{
Y y0,Z

S ,ΓS ,π̂
T ∈ CS1 : Zobs,S = 0dc ,Γobs,S = 0dc,dc ,Γobs,obs,S = 02dg+2,dc

}
⊂ CS1 ⊂ CS ,

where any contract in CS2 is of the form Y y0,Z
obs,S ,Γobs,S ,π̂

T where for all t ∈ [0, T ],

Y y0,Z
obs,S ,Γobs,S ,π̂

t := y0 +
∫ t

0
Zobs,S
s · dBobs,S

s + 1
2Tr

[(
Γobs,S
s + γZobs,S

s (Zobs,S
s )>

)
d〈Bobs,S〉s

]
− hobs,S

(
s, Zobs

s ,Γobs
s , rgs , π̂

(
s, Zobs,S

s ,Γobs,S
s , rgs

))
ds,

(C.3)

where y0 ≥ 0, π̂ ∈ Oobs,S and (Zobs,S ,Γobs,S) ∈ ZGobs,S with

ZGobs,S :=
{

(Zobs,S ,Γobs,S) : R2dg+2 × S2dg+2(R)-valued, F-predictable s.t Y y0,Z
obs,S ,Γobs,S ,π̂

T ∈ CS2
}
.

We can now formulate the stochastic control problem faced by the government.
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C.3 The Hamilton-Jacobi-Bellman equation

Let us define the process (Qy0,Z
obs,S ,Γobs,S ,π̂

t )t∈[0,T ] where for all (t, y0, Z
obs,S ,Γobs,S , π̂) ∈ [0, T ]×R×ZGobs,S×Oobs,S

Qy0,Z
obs,S ,Γobs,S ,π̂

t := Xt −
∫ t

0

dg∑
i=1

(
Gi − π̂gi (s, Zobs,S

s ,Γobs,S
s , rgs)

)2
ds− Y y0,Z

obs,S ,Γobs,S ,π̂
t .

The optimisation problem of the government that we consider here is

Ṽ P0 = sup
y0≥0

sup
(Zobs,S ,Γobs,S ,π̂)∈ZGobs,S×Oobs,S

Eπ̂(Zobs,S ,Γobs,S)

[
− exp

(
− νQy0,Z

obs,S ,Γobs,S ,π̂
T

)]
. (C.4)

Due to the presence of state variables in the best response of the Agent, the optimal control of the Principal will no
longer be deterministic, and we have to rely on the Hamilton-Jacobi-Bellman formulation of the stochastic control
problem. First, we note that the supremum over y0 is attained by setting y0 = 0. Next, the state variables of the
control problem are

(
t, Bobs,S

t , Q0,Zobs,S ,Γobs,S ,π̂
t

)
and as it is standard in control problems with CARA utility function,

the last variable can be simplified. Define PS = R2dg+2×S2dg+2(R), and the HamiltonianH π̂ : [0, T ]×PS×R×PS −→
R

H π̂(t, z, g, u, ub, ubb) := νu

(
z · µobs,S(t, π̂(t, z, g, rg), rg

)
+

dg∑
i=1

(
Gi − π̂gi (t, z, g, rg)

)2
+ 1

2Tr
[
(g + γzz>)Σobs,S(t, π̂(t, z, g, rg)

)(
Σobs,S(t, π̂(t, z, g, rg)

))>]
− hobs,S(t, z, g, rg, π̂(t, z, g, rg)

))
+ 1

2ν
2uTr

[
zz>Σobs,S(t, π̂(t, z, g, rg)

)(
Σobs,S(t, π̂(t, z, g, rg)

))>]
+ ub · µobs,S(t, π̂(t, z, g, rg), rg

)
+ 1

2Tr
[
Σobs,S(t, π̂(t, z, g, rg)

)(
Σobs,S(t, π̂(t, z, g, rg)

))>
ubb

]
.

The value function of the control problem of the Principal is solution of the following Hamilton-Jacobi-Bellman
equation ∂tU(t, b) + sup

(z,g,π̂)∈PS×Oobs,S

H π̂
(
t, z, g, b, U, Ub, Ubb

)
= 0,

U(T, b) = −1,
(C.5)

where U : [0, T ] × R2dg+2 −→ R and for all (i, j) ∈ {1, . . . , 2dg + 2}, (Ub)i = ∂biU, (Ubb)i,j = ∂bibjU , in the sense
that Ṽ P0 = U(0, b0) where Bobs,S

0 = b0 and y0 = 0. Thus, the incentives provided to the investor are obtained up to
the resolution of a (2dg + 2)-dimensional HJB equation. Although it provides greater flexibility on the modelling of
short-term rates, this approach can only be applied to a small portfolio of bonds using classic numerical schemes on
sparse grids.
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