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69, 4 (2019) 1897-1913

GOWERS NORMS FOR THE THUE–MORSE AND

RUDIN–SHAPIRO SEQUENCES

by Jakub KONIECZNY

Abstract. — We estimate Gowers uniformity norms for some classical au-
tomatic sequences, such as the Thue–Morse and Rudin–Shapiro sequences. The
methods are quite robust and can be extended to a broader class of sequences.

As an application, we asymptotically count arithmetic progressions of a given
length in the set of integers 6 N where the Thue–Morse (resp. Rudin–Shapiro)
sequence takes the value +1.

Résumé. — Nous estimons les normes de Gowers de suites automatiques clas-
siques telles que les suites de Thue–Morse et de Rudin–Shapiro. Les méthodes
utilisées sont assez robustes, et peuvent être étendues à des familles de suites plus
générales.

Nous en déduisons une estimation asymptotique du nombre de progressions
arithmétiques d’une longueur donnée parmi l’ensemble des indices 6 N où la suite
de Thue–Morse (respectivement, la suite de Rudin–Shapiro) prend la valeur +1.

1. Introduction

The Thue–Morse sequence is among the simplest automatic sequences.

It can be described by the recursive relations:

t(0) = 1, t(2n) = t(n), t(2n + 1) = −t(n),

or by the explicit formula t(n) = (−1)s2(n), where s2(n) denotes the sum of

digits of n base 2. Arguably, the Thue–Morse sequence is very structured.

In particular, its subword complexity (i.e. number of distinct subsequences

of a given length) has linear rate of growth (this is a general feature of

automatic sequences). On the other hand, there are also ways in which it

can be construed as pseudorandom.

Keywords: Gowers norm, automatic sequence, Thue–Morse sequence, Rudin–Shapiro
sequence.
2010 Mathematics Subject Classification: 11B85, 11B30.



1898 Jakub KONIECZNY

Mauduit and Sarközy [19] studied several measures of pseudorandom-

ness for the Thue–Morse sequence, and showed that t(n) is highly uniform

according to some but not all of those measures. In particular, it is shown

that for any positive integers a, b, M, N with a(M − 1) + b < N , we have

(1.1)

M−1
∑

n=0

t(an + b) = O(N log 3/ log 4),

where the implied constant is absolute. In fact, this easily follows from the

bound obtained by Gelfond [9]:

(1.2) sup
α∈R

∣

∣

∣

∣

∣

N−1
∑

n=0

t(n)e(αn)

∣

∣

∣

∣

∣

= O(N log 3/ log 4),

where as usual e(x) := e2πix. However, for all sufficiently large integers N ,

there exist positive integers M and h with M + h 6 N such that

(1.3)

∣

∣

∣

∣

∣

M−1
∑

n=0

t(n)t(n + h)

∣

∣

∣

∣

∣

> cN,

where c > 0 is an absolute constant. (We may take c = 1/12 and h = 1.)

Thus, the Thue–Morse sequence does not correlate with arithmetic pro-

gressions but can have some large self-correlations.

In a different direction, t(n) is believed to look highly random when

restricted to certain subsequences. Several conjectures to this effect, in a

slightly more general situation, are known as the Gelfond Problems [9].

Let P denote the set of prime numbers and π(N) = |P ∩ [N ]|. Gelfond

conjectured that it should hold that

(1.4) |{p ∈ [N ] ∩ P | t(p) = +1}| =
1

2
π(N) + O(N1−c),

where c > 0 is an absolute constant. This was proved only recently by

Mauduit and Rivat [17].

Let p(x) ∈ Q[x] be a polynomial with p(Z) ⊂ Z, and extend t(n) to Z

by putting t(−n) = t(n). Another of Gelfond’s conjectures asserts that we

should have

(1.5) |{n ∈ [N ] | t(p(n)) = +1}| =
1

2
N + O(N1−c),

for an absolute constant c > 0. This is only known for polynomials of

degree 2 by work of Mauduit and Rivat [16]. In fact, for p(n) = n2, a much

stronger result is shown in [4], implying in particular that t(n2) is normal
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GOWERS NORMS FOR TM AND RS 1899

(i.e. that each block of ±1’s of length l appears in t(n2) with frequency

1/2l). Namely, for each l and each ǫ0, . . . , ǫl−1 ∈ {−1, +1} we have

(1.6)
∣

∣

{

n ∈ [N ]
∣

∣ t((n + i)2) = ǫi for 0 6 i < l
}

∣

∣ =
1

2l
N + O(N1−c),

where the constant c > 0 depends only on l.

Finally, let α ∈ R>0 \Z. It is conjectured (see e.g. [3]) that the sequence

t(⌊nα⌋) should be normal for any such α. This is confirmed in the quan-

titative sense by Müllner and Spiegelhofer [21], who showed that for any

1 < α < 3/2, for any l and ǫi ∈ {−1, +1} for 0 6 i < l it holds that

(1.7) |{n ∈ [N ] | t(⌊(n + i)α⌋) = ǫi for 0 6 i < l}| =
1

2l
N + O(N1−c),

where the constant c > 0 depends on l and α.

In general, it is believed that t(n) restricted to any of the aforementioned

sequences should be a normal sequence (we refer e.g. to [3], which is also

an excellent reference for related results).

Here, we consider a different notion of pseudorandomness related to Gow-

ers uniformity norms. First introduced by Gowers in his work on a new

proof of Szemeredi’s theorem [11], these norms now play a crucial role

in additive combinatorics. For exposition of the relevant theory, we refer

to [12] and [22].

Definition 1.1. — Fix s ∈ N. For N ∈ N and f : [N ] → R, the s-th

Gowers uniformity norm of f is defined by

(1.8) ‖f‖2s

Us[N ] := E
n,h

∏

ω∈{0,1}s

f(n + ω · h)

where ω·h =
∑s

i=1 ωihi, and the expectation is taken over all n ∈ Z, h ∈ Zs

for which the cube {n + ω · h | ω ∈ {0, 1}s} is contained in [N ].

A sequence is (informally) said to be Gowers uniform of order s if its

Us[N ]-norm is small. We show that t(n) is highly Gowers uniform of all

orders, in the sense that for each s it is Gowers uniform of order s and

we have good bounds on its Us[N ]-norm. This makes the Thue–Morse

sequence one of the simplest sequences known to be Gowers uniform of all

orders.

Theorem A. — Let t : N0 → {±1} denote the Thue–Morse sequence.

For any s ∈ N, there exists c = c(s) > 0 such that ‖t‖Us[N ] = O(N−c) as

N → ∞.

A key reason for interest in the Gowers uniformity norms is their useful-

ness in counting linear patterns. In particular, as a corollary of Theorem A

TOME 69 (2019), FASCICULE 4



1900 Jakub KONIECZNY

we conclude via the Generalised von Neumann Theorem [11, Thm. 3.2]

and some standard reductions (see e.g. [11, Cor. 3.3]) that the number of

k-term arithmetic progressions in {n ∈ [N ] | t(n) = +1} is the what one

would expect for a random set of comparable size up to an error controlled

by the corresponding Gowers norm, that is N2/(2k+1(k − 1)) + O(N2−c),

where c > 0 is a constant dependent only on k.

We also remark that sequences with small Gowers norms do not correlate

with polynomial phases: if p ∈ R[x] with deg p = s − 1 then

E
n<N

f(n)e(p(n)) ≪ ‖f‖Us[N ] .

Hence, Theorem A implies that t(n) is a fully oscillating sequence in the

terminology of [7]. As an application, for any dynamical system with quasi-

discrete spectrum (X, T ) and any f1, . . . , fl ∈ C(X), q1, . . . , ql ∈ Q[x] with

qi(N0) ⊂ N0 for 1 6 i 6 l, we have

(1.9) lim
N→∞ E

n<N

t(n)

l
∏

i=1

fi(T
qi(n)x) = 0

for any point x ∈ X; see [7] for details.

A subtly different type of uniformity norms ‖·‖U(s) on l∞(Z) is intro-

duced and studied in [14]. In fact, it follows from results obtained there

that ‖t‖U(s) = 0 for all s ∈ N (cf. Proposition 2.21), and Theorem A can be

construed as an analogue of this result. As an example application (cf. re-

marks after Theorem 2.25), this implies that for any measure preserving

system (X, T, µ), any f1, . . . , fl ∈ L∞(X) we have

(1.10) E
n<N

t(n)

l
∏

i=1

fi(T
inx) → 0 in L2(µ) as N → ∞.

A slightly more complicated sequence we deal with carries the name of

Rudin–Shapiro. It is recursively given by

r(0) = 0, r(2n) = r(n), r(4n + 1) = r(n), r(4n + 3) = −r(2n + 1),

or explicitly by r(n) = (−1)f11(n), where f11(n) denotes the number of times

the pattern 11 appears in the binary expansion of n.

Much like in the case of the Thue–Morse sequence, various pseudoran-

domness properties of the Rudin–Shapiro sequence have long been studied.

In [19] it is shown that r(n) does not correlate with arithmetic progressions,

but has large self-correlations. More precisely, we have

(1.11)
M−1
∑

n=0

r(an + b) = O(N1/2),

ANNALES DE L’INSTITUT FOURIER
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for any a, b, M with a(M −1)+b < N , while there exist M, h with M +h 6

N such that

(1.12)

∣

∣

∣

∣

∣

M−1
∑

n=0

r(n)r(n + h)

∣

∣

∣

∣

∣

> cN,

where one can take c = 1/6 if N is sufficiently large.

There also exist results asserting pseudorandomness of the restrictions

of r(n) to certain subsequences. In the case of the primes, in analogy

with (1.4), we have

(1.13) |{p ∈ [N ] ∩ P | r(p) = +1}| =
1

2
π(N) + O(N1−c),

where c > 0 is an absolute constant [18]. In analogy to the results in [4],

the sequence r(n2) is normal [20]. Likewise, in analogy to (1.7), it follows

as a special case from results in [2] that

(1.14) |{n ∈ [N ] | r(⌊nα⌋) = +1}| =
1

2
N + o(N).

for any 1 < α < 7/5. (It is not known if r(⌊nα⌋) is normal.)

We show that r(n) is highly Gowers uniform. As an application we con-

clude that the number of k-term arithmetic progressions in {n ∈ [N ] |

r(n) = +1} is N2/(2k+1(k − 1)) + O(N2−c).

Theorem B. — Let r : N0 → {±1} denote the Rudin–Shapiro sequence.

For any s ∈ N, there exists c = c(s) > 0 such that ‖r‖Us[N ] = O(N−c) as

N → ∞.

While we focus our attention on these two specific sequences, many of

the observations apply to more general automatic sequences. A sequence

a : N0 → C is k-automatic if a(n) can be computed by a finite automaton

taking the k-ary expansion of n as input. For comprehensive background,

we refer to [1].

Notation. — We write N = {1, 2, . . .} and N0 = N∪{0}. We use standard

asymptotic notation. For any expressions X, Y , we write X = O(Y ) or

X ≪ Y if there exists a constant c > 0 such that X < cY . We consistently

use boldface letter x to denote vector with coordinates (xi); and also write

|x| :=
∑

i |xi|. By [N ] we denote the interval {0, 1, . . . , N − 1}.

Acknowledgements. The author is grateful to Tanja Eisner for her

hospitality during his stay in Leipzig when the work on this project began;

to Jakub Byszewski for many long and productive discussions; to Christian

Mauduit, Clemens Müllner, and Aihua Fan for helpful comments; to Ben
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Green for his encouragement and valuable advice; and to the anonymous

referee for the careful reading of this paper.

2. Thue–Morse sequence

The purpose of this section is to prove Theorem A, asserting that the

uniformity norms of the Thue–Morse sequence t(n) = (−1)s2(n) are small.

Throughout this section, let s ∈ N>2 be fixed. (We may assume that s > 2

since ‖t‖U2[N ] ≫ ‖t‖U1[N ], [22, 1.3.39].) It will be convenient to study

somewhat more general averages

(2.1) A(L, r) := E
n,h

∏

ω∈{0,1}s

t(n + ω · h + rω),

where n, h parametrize the cubes {n + ω · h | ω ∈ {0, 1}s} ⊂ [2L], L ∈ N0

and r = (rω)ω∈{0,1}s with rω ∈ Z. Note that if r = 0, then (2.1) defines

‖t‖2s

Us[2L].

Lemma 2.1. — The averages A(L, r) satisfy the recursive relation

(2.2) A(L, r) = (−1)|r|E
e

A(L − 1, δ(r; e)) + O(2−L),

where the average is taken over e = (ei)
s
i=0 ∈ {0, 1}s+1 and δ(r; e) is given

by

(2.3) δ(r; e)ω =

⌊

rω + (1, ω) · e

2

⌋

=

⌊

rω + e0 +
∑s

i=1 ωiei

2

⌋

.

Proof. — For any cube Q = {n + ω · h | ω ∈ {0, 1}s}, there exists a

unique choice of a cube Q′ = {n′ + ω · h′ | ω ∈ {0, 1}s} and a vector e ∈

{0, 1}s such that Q = {2(n′ + ω · h′) + (1, ω) · e | ω ∈ {0, 1}s}; we simply

take n = 2n′ + e0 and hi = 2hi + ei. Moreover, if Q ⊂ [2L] is chosen

uniformly at random, then Q′ ⊂ [2L−1] with probability 1 − O(2−L), and

conversely if Q′ ⊂ [2L−1] and e ∈ {0, 1}s are chosen uniformly at random

then Q ⊂ [2L] with probability 1 − O(2−L). It follows that

A(L, r) =E
e
E

n′,h′

∏

ω∈{0,1}s

t(2n′ + 2ω · h′ + (1, ω) · e + rω) + O(2−L)

=E
e
E

n′,h′

∏

ω∈{0,1}s

(−1)(1,ω)·e+rω t(n′ + ω · h′ + δ(r; e)ω) + O(2−L)

=E
e

(−1)S(e)A(L − 1, δ(r; e)) + O(2−L),

ANNALES DE L’INSTITUT FOURIER
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where δ(r; e) is defined by (2.3) and S(e) =
∑

ω rω +2se0 +2s−1
∑s

i=1 ei ≡

|r| mod 2 (expectation is over e ∈ {0, 1}s and {n′ + ω · h′ | ω ∈ {0, 1}s} ⊂

[2L−1]). �

Lemma 2.1 motivates us to introduce a random walk WTM on a directed

graph G = (V, E) defined as follows. The set of vertives is V = V+ ∪ V−

where V± =
{

(r, ±1)
∣

∣ r ∈ Z{0,1}s}

. The transition probabilities are given

by

(2.4) P
(

(r, ±1); (r′, ±(−1)|r|
)

= Pe (δ(r; e) = r′) ,

where e = (ei)
s
i=0 is uniformly distributed in {0, 1}s+1

and δ(r; e) is given

by (2.3). (By convention, the two occurrences of the symbol ± both denote

the same sign.) The remaining transition probabilities (i.e. those where the

signs do not agree) are declared to be identically 0.

The set E of (directed) edges of G consists of the pairs (v, v′) ∈ V 2

with P (v, v′) > 0; hence the edge (r, ±1) → (r′, ±(−1)|r|) is present if and

only if there exists e ∈ {0, 1}s+1 such that δ(r; e) = r′ (with δ(r; e) given

by (2.3)). We will be particularly interested in the graph G0 supported on

the vertices V0 reachable from the initial vertex v0 = (0, +1).

We note that WTM comes with a natural symmetry R : V → V given by

(r, ±1) 7→ (r, ∓1). We have R(R(v)) = v and P (R(v), R(v′)) = P (v, v′)

for all v, v′ ∈ V . In particular, R preserves the edges of G.

Denote further by P (l)(v, v′) the probability of reaching vertex v′ after l

steps, starting from v. Iterating Lemma 2.1 we obtain the following formula.

Corollary 2.2. — The averages A(L, r) satisfy for any l < L the

recursive relation

A(L, r) =
∑

r′,σ

P (l)
(

(r, +1), (r′, σ)
)

σA(L − l, r′) + O(2−(L−l)),(2.5)

where the sum runs over all pairs (r′, σ) ∈ V which are reachable from

(r, +1). In particular,

(2.6) ‖t‖2s

Us[2L] =
∑

r′

(

P (l) (v0, (r′, +1)) − P (l) (v0, (r′, −1))
)

A(L − l, r′)

+ O(2−(L−l)),

where the sum runs over all r′ such that at least one of (r′, ±1) belongs

to V0.

TOME 69 (2019), FASCICULE 4
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Proof. — Apply Lemma 2.1 l times. Note that the recurrence relation

(2.2) can be equivalently written as

A(L, r) =
∑

r′,σ

P
(

(r, +1), (r′, σ)
)

σA(L − 1, r′) + O(2−L),

which is the same as (2.5) for l = 1. For general l ∈ N, the main term

follows directly from how P (l)(v, v′) are defined. The total error term is

≪ 2−L + 2(−L−1) + · · · + 2−(L−l) ≪ 2−(L−l). �

Recall that a directed graph is strongly connected if there exists a di-

rected path from any vertex to any other vertex. A graph is aperiodic if the

greatest common divisor of the lengths of all cycles present in the graph

equals 1.

Proposition 2.3. — Let G0 be the graph constructed above. Then G0

is finite, strongly connected, aperiodic, and preserved by R.

Proof. — Aperiodicity follows immediately from the observation that G0

contains a loop at (0, +1) since δ((0, +1); 0) = (0, +1).

If G contains an edge from v = (r, ±1) to v′ = (r′, ±1) then r′
ω =

δ(r; e) =
⌊

rω+(1,ω)·e
2

⌋

for some e ∈ {0, 1}s+1, and in particular 0 6 (1, ω) ·

e 6 |ω| + 1. An elementary inductive argument now shows that if (r, ±1) ∈

V0 then 0 6 rω 6 |ω|, which proves finiteness.

Similarly, taking e = 0 ∈ {0, 1}s+1, we see that any vertex v = (r, ±1)

has an edge to some v′ = (r′, ±1) with |r′| 6 |r| /2. Repeating this ar-

gument, we may find a path from any v ∈ V0 to one of (0, +1), (0, −1).

Thus, to prove that G0 is strongly connected, it will suffice to show that

there exists a path from (0, −1) to (0, +1), which (in light of symmetry)

is equivalent to (0, −1) ∈ V0. Since G is symmetric under R, this will also

imply that R(V0) = V0.

It remains to show that (0, −1) ∈ V0. We do this by explicitly con-

structing the path from (0, +1) to (0, −1). Let r(0) = r(s+1) = 0, and for

j = 1, 2, . . . , s let r(j) = (r
(j)
ω ) be given by

r(j)
ω =

{

1 if ω1 = ω2 = · · · = ωj = 1,

0 otherwise.

We claim that for each j = 0, 1, . . . , s−1, there is an edge from (r(j), +1) to

(r(j+1), +1), and for j = s there is an edge from (r(s), +1) to (r(s+1), −1).

For j = 0, define e(0) by e
(0)
0 = e

(0)
1 = 1 and e

(0)
i = 0 for i 6= 0, 1.

Direct computation shows that δ(r(0); e(0))ω =
⌊

1+ω1

2

⌋

= 1 if ω1 = 1 and

ANNALES DE L’INSTITUT FOURIER
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0 otherwise. We also have
∣

∣r(0)
∣

∣ = 0. Hence, G contains an edge from

(r(0), +1) to (r(1), +1).

For 1 6 j 6 s−1, let e
(j)
j+1 = 1 and e

(j)
i = 0 for i 6= j+1. We compute that

δ(r(j); e(j))ω =
⌊

r(j)
ω +ωj+1

2

⌋

= 1 if ωj+1 = 1 and r
(j)
ω = 1, and 0 otherwise.

Also,
∣

∣r(j)
∣

∣ = 2s−j ≡ 0 (mod 2). Hence, G contains an edge from (r(j), +1)

to (r(j+1), +1).

Finally, for j = s, let e(s) = 0. Computation similar to the one above

shows that G contains an edge from (r(s), +1) to (r(s+1), −1). �

Corollary 2.4. — There exists a constant c > 0 such that ‖t‖Us[2L] =

O(2−cL).

Proof. — Because G is aperiodic and strongly connected, the Perron–

Frobenius Theorem (see e.g. [13, Sec. 8.2], [10, Sec. 8.8] or [8, Vol. 2,

Chpt. XIII, Sec. 2]) implies that there exists a stationary distribution

π : V0 → [0, 1] such that for each v, v′ ∈ V0 we have P (l)(v, v′) → π(v′)

with exponential convergence rate:

(2.7) max
v,v′∈V0

∣

∣

∣
P (l)(v, v′) − π(v′)

∣

∣

∣
= O(2−ηl)

for some η > 0. Because R(V0) = V0, by symmetry we have π(R(v)) = π(v)

for all v ∈ V0. Combining this with (2.7), we obtain

(2.8) max
v,v′

∣

∣

∣
P (l)(v, v′) − P (l)(v, R(v′))

∣

∣

∣
= O(2−ηl).

Using this estimate and the trivial bound |A(L, r)| 6 1 in (2.6), we arrive

at

(2.9) A(L, 0) = O(2−ηl + 2−(L−l)).

It remains to put l = L/2 (say) to conclude that ‖t‖Us[2L] = A(L, 0)1/2s

=

O(2−cL) with c > 0. �

Remark 2.5. — Computation of the constant c in the result above is

essentially equivalent to computing the spectral gap for the matrix

(P (v, v′))v,v′∈V0
. In particular, for fixed s, this is a computationally tract-

able problem.

Proof of Theorem A. — Split [N ] into intervals Ij = [mj2Lj , (mj +

1)2Lj ) where ⌊log2 N⌋ > L1 > L2 > · · · > 0. We then have by the triangle

inequality for Gowers norms [22, 1.3.39] that

(2.10) ‖t‖Us[N ] =

∥

∥

∥

∥

∥

∥

∑

j

1Ij
t

∥

∥

∥

∥

∥

∥

Us[N ]

6
∑

j

∥

∥1Ij
t
∥

∥

Us[N ]
.
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The cubes {n + ω · h | ω ∈ {0, 1}s} ⊂ Ij are precisely the translations of

the cubes {n + ω · h | ω ∈ {0, 1}s} ⊂ [2Lj ] by 2Lj mj . Since t(2Lj mj +n) =

t(2Lj mj)t(n) for n ∈ [2Lj ], we conclude that

(2.11)
∥

∥1Ij
t
∥

∥

Us[N ]
=

∥

∥1[Ij ]

∥

∥

Us[N ]
·‖t‖Us[2Lj ] ≪

(

2Lj /N
)(s+1)/2s

‖t‖Us[2Lj ] ,

where the estimate ‖1I‖Us[N ] ≪ (|I| /N)
(s+1)/2s

for an interval I fol-

lows directly from Definition 1.1 and elementary geometry. Inserting (2.11)

into (2.10) and applying Corollary 2.4 yields (with c′ = min(c, (s + 1)/2s)

using notation therein):

‖t‖Us[N ] ≪

⌊log2 N⌋
∑

L=0

(2L/N)(s+1)/2s

2−c′L ≪ N−c′

. �

3. Rudin–Shapiro sequence

We now move on to the Rudin–Shapiro sequence r(n) = (−1)f11(n), and

embark upon the proof of Theorem B. Our argument is similar to the one

in Section 2, although slightly more technical. Complications arise because

of the fact that the 2-kernel

N2(r) =
{

n 7→ r(2ln + m)
∣

∣ 0 6 m < 2l
}

= {±r(n), ±r(2n + 1)}

contains other functions apart from ±r(n), which forces us to deal with

averages more general than those in (2.1).

A key feature of r(n) which allows our argument to work is that N2(r) is

symmetric, i.e., N2(r) = −N2(r). Denote N +
2 (r) = {r(n), r(2n + 1)}, and

fix from now on the value of s ∈ N>2. We will study the averages

(3.1) A(L, a, r) := E
n,h

∏

ω∈{0,1}s

aω(n + ω · h + rω),

where {n + ω · h | ω ∈ {0, 1}s} ⊂ [2L], L ∈ N0, a = (aω)ω∈{0,1}s with

aω ∈ N2(r) and r = (rω)ω∈{0,1}s with rω ∈ Z. (We will usually assume

that aω ∈ N +
2 (r).)

We record a recurrence relation analogous to Lemma 2.1. Now, it will be

more convenient to consider l consecutive steps.

Lemma 3.1. — For any l, the averages A(L, a, r) obey the recursive

relation:

(3.2) A(L, a, r) =E
e

A(L − l, δ(l)(a; r, e), δ(l)(r; e)) + O(2−(L−l)),
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where the average is taken over e = (ei)
s
i=0 ∈ [2l]s+1, δ(l)(a; r, e) is given

by

(3.3) δ(l)(a; r, e)ω(n) = aω

(

2ln +
(

rω + (1, ω) · e mod 2l
))

,

and δ(l)(r; e) is given by

(3.4) δ(l)(r; e)ω =

⌊

rω + (1, ω) · e

2l

⌋

.

Proof. — Fix the value of l. Any cube Q = {n + ω · h | ω ∈ {0, 1}s}

can be uniquely written as
{

2l(n′ + ω · h′) + (1, ω) · e
∣

∣ ω ∈ {0, 1}s
}

, where

e ∈ [2l]s+1. Up to errors of the order of O(2−(L−l)), choosing Q ⊂ [2L]

uniformly at random is equivalent to choosing e ∈ [2l]s+1 and Q′ =

{n′ + ω · h′ | ω ∈ {0, 1}s} ⊂ [2L−l] uniformly at random, hence

A(L, a, r)

=E
e
E

n′,h′

∏

ω∈{0,1}s

aω(2l(n′ + ω · h′) + (1, ω) · e + rω) + O(2−(L−l))

=E
e
E

n′,h′

∏

ω∈{0,1}s

δ(l)(a; r, e)ω(n′ + ω · h′ + δ(l)(r; e)ω) + O(2−(L−l)),

which is precisely the stated formula. �

For l = 1, we write δ for δ(1). Note that the symbol δ is used to denote

several different functions, but this will not lead to ambiguity because it

can always be inferred from the arguments which function is meant.

Like in the previous section, we introduce a random walk WRS on a

graph G = (V, E), which is associated to the averages A(L, a, r). The set

of vertices V consists of triples (a, r, ±1), where aω ∈ N +
2 (r) and rω ∈ Z.

For v = (a, r, σ) ∈ V , we write A(L, v) = σA(L, a, r).

Using the fact that N2(r) = N +
2 (r) ∪ (−N +

2 (r)), we see that for any a

with aω ∈ N2(r), we can find ā = (āω)ω∈{0,1}s with āω ∈ N +
2 (r) and σ =

±1, such that
∏

ω aω(xω) = σ
∏

ω āω(xω) for all (xω)ω ∈ N2s

0 . In particular,

for any r we have A(L, a, r) = A(L, v) for any L, where v = (ā, r, σ) ∈ V .

Let l ∈ N be fixed. Then, for e ∈ [2l]s+1 and v = (a, r, σ) ∈ V , we let

δ(l)(v; e) ∈ V denote the vertex constructed above, corresponding to the

averages A(L, δ(l)(a; r, e), δ(l)(r; e)). (In other words, δ(l)(v; e) = (a′, r′, σ′),

where a′
ω = ±δ(l)(a; r, e)ω, r′

ω = δ(l)(r; e) and σ′ = ±1 is chosen so that

σ′
∏

ω a′
ω(xω) = σ

∏

ω δ(l)(a; r, e)ω(xω) for all (xω)ω ∈ N2s

0 ).

The transition probabilities are given by P (v, v′) = Pe∈{0,1}s+1(δ(v; e) =

v′) for v, v′ ∈ V , so that (3.2) for l = 1 is equivalent to

(3.5) A(L, v) =
∑

v′∈V

P (v, v′) A(L − 1, v′) + O(2−L).
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The edge from v to v′ is present in the edge set E of G if P (v, v′) > 0.

More generally, for arbitrary l ∈ N we have

(3.6) A(L, v) =
∑

v′∈V

P (l) (v, v′) A(L − l, v′) + O(2−(L−l)),

where P (l) (v, v′) = Pe∈[2l]s+1(δ(l)(v; e) = v′) denotes the probability of

transition from v to v′ in l steps. Accordingly, a path of length l from

v = (a, r, +1) to v′ ∈ V exists if and only if the average A(L − l, v′) is

present on the right hand side of (3.2), meaning that there exists e =

(ei)
s
i=0, 0 6 ei < 2l, such that δ(l)((a, r, +1); e) = v′. Following the same

reasoning as before, we note that G has a natural symmetry R : V → V

given by (a, r, σ) 7→ (a, r, −σ), which preserves the transition probabilities.

We will denote by V0 the set of vertices reachable from the initial vertex

v0 = ((r)ω∈{0,1}s , 0, +1) and by G0 the induced graph.

Proposition 3.2. — Let G0 be the graph constructed above. Then G0

is finite, strongly connected, aperiodic, and preserved by R.

Proof. — Finiteness, aperiodicity, strong connectedness and preservation

under R follow from essentially the same argument as in Propositions 2.3,

under the assumption that R(v0) is reachable from v0. Hence, it remains

to prove that R(v0) is reachable from v0.

Pick any l > s + 2, and ei = 2i−1 for i = 1, 2, . . . , s; we leave 0 6 e0 < 2s

undefined for the time being. It follows from Lemma 3.1 and subsequent

discussion that G0 contains a path of length l from v0 to v1 = (a, r, σ)

equal to δ(l)(v0; e).

We will now identify the vertex v1. As for a = (aω)ω, we notice that

(3.7) aω(n) = ±r(2ln + (1, ω) · e) = ±r(n)r((1, ω) · e) = r(n).

Above, we use that fact that (1, ω) · e < 2l−1. Next, r = (rω)ω is given by

rω =

⌊

(1, ω) · e

2l

⌋

= 0,

by virtue of the same estimate as before. Finally, σ is the product of the

±1 factors implicit in (3.7), hence

σ =
∏

ω∈{0,1}s

r((1, ω) · e) =

2s−1
∏

m=0

r(m + e0).

Thus, v1 is equal to R(v0), provided that σ = σ(e0) defined above is equal

to −1, and v1 = v0 otherwise. It remains to find e0 for which σ(e0) = −1.

In fact, it will suffice to show that σ(e0) is not constant with respect to e0.
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Since σ(e0 + 1)/σ(e0) = r(2s + e0)/r(e0), we have σ(e0 + 1) = −σ(e0) for

any choice 2s−1 6 e0 < 2s, which finishes the argument. �

Corollary 3.3. — There exists a constant c > 0 such that ‖r‖Us[2L] =

O(2−cL).

Proof. — Direct adaptation of the argument in Corollary 2.4. �

Proof of Theorem B. — We begin by splitting the interval [N ] into a

disjoint union of intervals Ij of the form [mj2Lj+1, mj2Lj+1 + 2Lj ), and

a remainder part J so that |J | ≪ log N and each exponent L appears

≪ log N times among the Lj ’s. This can be accomplished as follows.

Note that an interval I = [m2L+1, m2L+1 + 2L) consists of integers with

specified binary digits at positions > L. In particular, any pair I, I ′ of

such intervals is comparable in the sense that I ⊆ I ′ or I ′ ⊆ I. Let Ij be

an enumeration of maximal intervals of aforementioned form contained in

[N ], and let J = [N ] \
⋃

j Ij . Because of maximality of the Ij ’s, one can

check using an elementary combinatorial argument that for each j, either

the binary expansion of mj consists only of 1’s, or the binary expansions of

mj2Lj+1 and N agree on positions > Lj +1. By a similar reasoning, if n ∈ J

then the binary expansion of n consists only of 1’s. These observations easily

lead to the required bounds.

For each of the intervals Ij and for any n + mj2Lj+1 ∈ Ij , n ∈ [2Lj ], we

have r(n + mj2Lj+1) = r(n)r(mj), whence

∥

∥1Ij
r
∥

∥

Us[N ]
≪

(

2Lj /N
)(s+1)/2s

‖r‖Us[2Lj ] .

Using Corollary 3.3 and the trivial bound ‖1Jr‖Us[N ] ≪ (|J | /N)
1/2s

(ob-

tained directly from Definition 1.1 by estimating all but one appearances

of 1J by 1[N ]), we may now conclude that

‖r‖Us[N ] 6
∑

j

∥

∥1Ij
r
∥

∥

Us[N ]
+ ‖1Jr‖Us[N ]

≪ log N

⌊log2 N⌋
∑

L=0

(

2L/N
)(s+1)/2s

2−cL + (log N/N)1/2s

≪ N−c′

,

where 0 < c′ < min(c, 1/2s) is arbitrary. �

Remark 3.4. — We make a conscious attempt to keep the above argu-

ments elementary and combinatorial. It is generally true that for f : [N ] →

C and any s > 2 we have ‖f‖Us[N ] ≪ ‖f‖Lp[N ] where p = 2s/(s + 1) (see

e.g. [6]), which we could have used to estimate Gowers norms of indicator

functions. One can also show using Fourier analysis that if f : N → C is
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a bounded function with ‖f‖Us[2L] ≪ 2−cL with c > 0, then ‖f‖Us[N ] ≪

N−c′

with c′ = c′(s, c) > 0. (To this end, consider the Fourier expansion

of a smoothed version of 1[N ] as a function on [2L] for L = ⌈log2 N⌉ and

exploit phase invariance of Gowers norms, [22, 1.3.21].)

4. Closing remarks

Our argument in Section 3 dealing with the Rudin–Shapiro sequence

can be generalised to other automatic sequences. We hope to address this

in an upcoming paper with Jakub Byszewski and Clemens Müllner. Here,

we discuss some simple generalisations which can be obtained by slight

adaptations of the existing argument, as well as the key obstacles which

need to be overcome for further progress to be made.

A crucial feature of the Rudin–Shapiro sequence which we exploited was

the symmetry of the kernel, so for the time being let us restrict our attention

to 2-automatic sequences a(n) with N2(a) = −N2(a). Natural examples of

such sequences are the given by the “pattern counting” sequences of the

form a(n) = (−1)fπ(n), where π is a word over the alphabet {0, 1} and

fπ(n) denotes the number of times π appears in the binary expansion of

n. (Hence, π = 1 for Thue–Morse and π = 11 for Rudin–Shapiro. To avoid

technical complications, assume that π begins and ends with 1.)

The recursive relation analogous to (3.2) from Lemma 3.1 holds in full

generality, and similarly the corresponding random walk can be constructed

without any significant modifications. It remains true that the underlying

graph is symmetric, and that the analogue of (3.6) holds. Provided that

the graph has the properties mentioned in Proposition 3.2, the analogue of

Corollary 3.3 stating that ‖a‖Us[2L] = O(2−cL) follows immediately. To ob-

tain the bound ‖a‖Us[N ] = O(N−c) for general N , one can apply a decom-

position of [N ] analogous to that in the Proof of Theorem B. For pattern

counting sequences introduced above, this construction is repeated almost

verbatim, except one uses intervals of the form [2L(2|π|m), 2L(2|π|m + 1)),

where |π| denotes the length of the pattern.

The key difficulty lies in proving the analogue of Proposition 3.2, as-

serting that the graph supported on the vertices reachable from the origin

in the random walk is finite, aperiodic, strongly connected and preserved

under the natural symmetry. Finiteness is clear in full generality, by the

same reasoning as in Proposition 2.3. We expect that aperiodicity should

be easy to check; for pattern counting sequences we simply have a loop la-

belled 0 at the origin. Strong connectedness does not appear to be crucial,
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since we may consider the strongly connected components independently;

for pattern counting sequences continuing from any vertex along the edges

labelled 0 leads to either the origin or its symmetric image.

Proving the symmetry is presumably the most difficult part. However,

in the case of pattern counting sequences, it can be carried out by a slight

modification of the argument in Proposition 3.2. The only difference is that

(with the notation taken from the proof of Proposition 3.2) we need to take

l > s + |π| now, and notice that σ(e0 + 1)/σ(e0) = a(2s + e0)/a(e0) = −1

for suitable choice of e0. Hence, we expect that for a pattern counting

sequence such a(n) = (−1)fπ(n) we have ‖a‖Us[N ] = O(N−c) for a constant

c = c(a, s) > 0.

Conversely, one may ask about the minimal conditions under which it can

be shown that ‖a‖Us[N ] = o(1). It is well-known that a sequence with small

uniformity norms cannot correlate with a polynomial phase ([22, 1.3.21]),

or indeed with a nilsequence ([22, 1.6.12]). While it would be surprising to

find an automatic sequence correlating with (say) a quadratic phase e2πiαn2

(with α ∈ R\Q), it is certainly possible to have automatic sequences which

correlate with periodic sequences. In fact, in the situation above it is not

hard to show thatEn<N
a(n)e2πiαn2

= o(1) as N → ∞. This follows easily

from [15] and an application of van der Corput inequality (we thank the

anonymous referee for pointing this out), and is a special case of a result

in [5].

Motivated by our main theorems and the above discussion, we are led

to suspect the following. The suspicion is especially strong in the case of

sequences with symmetric kernel.

Conjecture. — Let a(n) be a 2-automatic sequence such that

E
n<N

a(qn + r) → 0 as N → ∞

for any q ∈ N, r ∈ N0. Then, ‖a‖Us[N ] → 0 as N → ∞ for any s ∈ N.
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