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ABSTRACT

For the past 20 years, the GPCRDB (G protein-

coupled receptors database; http://www.gpcr.org/

7tm/) has been a ‘one-stop shop’ for G protein-

coupled receptor (GPCR)-related data. The

GPCRDB contains experimental data on sequences,

ligand-binding constants, mutations and oligomers,

as well as many different types of computationally

derived data, such as multiple sequence alignments

and homology models. The GPCRDB also provides

visualization and analysis tools, plus a number of

query systems. In the latest GPCRDB release,

all multiple sequence alignments, and >65 000

homology models, have been significantly

improved, thanks to a recent flurry of GPCR X-ray

structure data. Tools were introduced to browse

X-ray structures, compare binding sites, profile

similar receptors and generate amino acid conser-

vation statistics. Snake plots and helix box diagrams

can now be custom coloured (e.g. by chemical

properties or mutation data) and saved as figures.

A series of sequence alignment visualization tools

has been added, and sequence alignments can

now be created for subsets of sequences and

sequence positions, and alignment statistics can

be produced for any of these subsets.

INTRODUCTION

G protein-coupled receptors (GPCRs) constitute a large
family of cell surface receptors. They regulate a wide
range of cellular processes, including those associated
with taste, smell and vision, and they control myriad intra-
cellular systems, ranging from neurotransmission to
hormone signalling. GPCRs are major targets for the

pharmaceutical industry, as reflected by the fact that
more than a quarter of all FDA-approved drugs act on
a GPCR (1). At present, only �30 of the �350 genes that
code for non-olfactory receptors in the human species (2)
are truly validated therapeutic targets (3), indicating this
family’s immense potential for future drug development.
An increasing number of drugs have been found to display
polypharmacology, i.e. activity through multiple receptor
targets (4). However, endogenous ligands for �135 of the
so-called orphan receptors have so far eluded researchers.

Early releases of the GPCRDB (5–8) focused on the
compilation and homogeneous presentation of many
types of heterogeneous data, with the aim of providing
the four main facilities needed in an information system:
browsing, querying, retrieval and inference. The first three
of these facilities have been available ever since the start of
the project, but received a major boost when the
GPCRDB was coupled to an intelligent PDF reader (9)
that puts all relevant aspects of the GPCRDB non-intru-
sively in a side-bar in the PDF reader window. Inference
really only started when a number of interactive tools were
added (10), enabling bioinformaticians to interact with
multiple sequence alignments, together with derived data
such as entropy and variability scores, in an integrated
environment. For example, these tools were successfully
applied in the 2010 GPCR-Dock competition (11). In the
past, computing facilities were aimed at expert GPCR
bioinformaticians. In contrast, the new interactive tools
are readily accessible to non-expert users and allow
faster execution of visualization and analysis tasks.

STRUCTURAL DATA AND TOOLS

Crystal structure browser

In recent years, X-ray crystallography of GPCRs has
revealed the sites and mechanisms for binding ligands,
lipids, and G proteins, as well as the conformations of
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activated states. The GPCRDB structure browser includes
manually annotated key data for all ligand–receptor
complexes and at least one (the highest resolution) repre-
sentative file for receptors solved only as apo structures.
The structure browser can select crystal structures based
on a series of filters for receptors, ligands, activation
states, G protein presence, PDB and Pubmed identifiers,
resolution, structure completeness and so forth. Sequence
similarities can be retrieved by specifying a receptor refer-
ence, facilitating template selection for homology
modelling.

Structure-based sequence alignments and homology models

GPCR transmembrane (TM) helices are known to contain
many irregularities. However, it was only recently realized,
with the availability of new crystallographic data, that
GPCRs contain many more �-bulges than those in helix
II and helix V. The �-bulges in GPCRs are relatively non-
conserved. As an example of this non-conservation,
Figure 1 shows the �-bulges in helix V of rhodopsin and
the adenosine 2A receptor, and Figure 2 shows the align-
ment of the middle part of helix II in 60 trace amine re-
ceptors. The receptors are on average 70% sequence
identical, but the bulge is only present in around half of
all family members.

The abundance of �-bulges required a novel residue
numbering approach that involved rewriting the DSSP
secondary structure analysis software (15) and the
GPCR-specific alignment software. This, in turn, meant
that >65 000 homology models had to be constructed
again. All GPCR sequences are now modelled twice-
once using as template the most sequence-similar
inactive form, and once using the most similar active
form. Modelling was done with YASARA (16), aligning
the model with the template contained in the GPCRDB
and using default values for all other parameters and
options. All GPCR alignment profiles were manually
updated to reflect our latest knowledge about the �-
bulges, and all 1272 alignments were regenerated. It
seems likely that this exercise will need to be repeated in
the coming years as new GPCR structure data reveal new
�-bulge patterns.

Translation of generic and receptor-specific residue
numbers

We wanted to take proper care of the �-bulges that are
widely present in six of the seven GPCR TM helices
without excessively changing the commonly used generic
residue numbering schemes. The Oliveira numbering (17)
and the B&W numbers (18) were maintained as far as
possible, whereas bulge residues were given the same
number as the residue directly N-terminal in the
sequence but with a digit added that reflects the number
of the bulge. The Utopia-GPCRDB PDF reader automat-
ically takes these new numbers into account, whereas our
new sequence indexing tool provides computational access
to all generic and receptor-specific residue numbers for
selected receptors.

RECEPTOR SEQUENCE DIAGRAMS

Snake-like and helix box diagrams

Snake-like diagrams now include the full loops and
terminal sequences (Figure 3A). New helix box diagrams
present the TM helices as seen from ‘above’ (Figure 3A).
These diagrams are similar to previously used helical
wheel plots but orient the amino acids in better agreement
with the 3D structures. Hovering the computer mouse
pointer over the TM amino acids displays their residue
numbers. Amino acids can be coloured to illustrate their
physicochemical properties, or the presence of mutation
data or the mutation effects. The diagrams can be down-
loaded as picture files or in scalable vector graphics format
to allow further editing.

Residue conservation and property statistics

In functional or evolutionary studies of specific amino
acids or their properties, it is typically relevant to find

Figure 1. The area around the bulge in helix V. The S1P lipid receptor
[red, PDBid=3v2y (12)] does not have a-bulges in helix V and is
provided as a reference. Rhodopsin [green, PDBid=1f88 (13)] and the
adenosine-2A receptor [purple, PDBid=3eml (14)] have an a-bulge (red
arrow) between positions 5165.46 and 5175.47. The adenosine-2A receptor
has an extra bulge (blue arrow) between positions 5115.41 and 5125.42.
Rhodopsin and the adenosine-2A receptor have a proline at position
5205.50. The S1P lipid receptor, which does not have bulges in helix V,
does not have a proline at position 5205.50. Time will tell whether this
correlation is accidental or causal. Residues are numbered using the
GPCRDB scheme with the B&W numbers given as superscripts.

Figure 2. Alignment of the middle part of TM helix II in 60 trace
amine receptors. The residues 2272.57–2332.63 (GPCRDB numbers
with B&W numbers as superscripts) are shown running vertically
using the GPCRDB numbering scheme.
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out which additional receptors share the conserved amino
acids or properties (e.g. specific charge or hydrophobi-
city). Therefore, sequence alignments are augmented
with a series of statistics. For each position, the following
data are listed: the consensus sequence, the percentage of
each of the 20 amino acids present, and percentages for
relevant properties such as aromaticity, acidity or
hydrogen bonding capability.

(BINDING) SITE-SPECIFIC RECEPTOR
SIMILARITIES

Alignment sub-site/domain selections

The alignment and similarity tools integrated into
GPCRDB offer users the ability to select arbitrary com-
binations of helices, residue positions or predefined sets of
residues, for example, the amino acids in the TM binding
cavity (19). By focusing on a given functional site rather
than the full sequence, the receptor similarities will better
reflect the structural features involved in, for example,
receptor dimerization, ligand binding or G protein
binding.

Similarity search with a reference receptor (one-to-all
similarities)

Similarity searches are conducted by specifying a target of
interest, a set of receptors and the residue positions of
interest. Results are presented as a sequence alignment,
in which the target is followed by a list of hits in order
of sequence identity, similarity or alignment score. The
data can be downloaded as either an alignment file or a
spreadsheet.

Trees (all-to-all similarities)

Neighbour-joining trees (20) can be generated based on
any sub-site/domain and set of receptors. Trees can be
calculated with up to 100 bootstraps, displayed in

circular and ladder representations, and downloaded in
Newick format for use with stand-alone tree software.

Sequence motif search (conserved and non-conserved
separation)

The sequence motif search tool generates more precise and
discriminative results, by allowing residues to be matched
for relevant amino acid properties (21), e.g. their hydro-
phobicity, hydrogen bond donor capability or size.
Relevant applications for this tool include rationalization
of observed polypharmacology, receptor panel selection
for off target screening and ligand inference from old to
new targets.

CONCLUSIONS

The 20th yearly release of the GPCRDB includes a large
number of novel discoveries. The solved structures (see
http://gpcr.scripps.edu/) reveal the presence of many �-
bulges that are not conserved among or even within
GPCR subfamilies. We have updated all the alignments
and homology models, together with the residue number-
ing schemes, to ensure agreement between the contents of
the GPCRDB and new insights obtained by studying all
the available structure data. Additionally, the new
GPCRDB release includes a powerful yet user-friendly
computational toolbox that provides users with crystal
structure browser, receptor visualization and alignment
analysis tools, plus options to study receptor similarity
both quantitatively and graphically.
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Figure 3. Snake-like (A) and helix box (B) diagrams depict GPCRs from the side and top, respectively.
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