
JSS Journal of Statistical Software
March 2015, Volume 64, Issue 12. http://www.jstatsoft.org/

GPfit: An R Package for Fitting a Gaussian Process

Model to Deterministic Simulator Outputs

Blake MacDonald

Acadia University
Pritam Ranjan

Acadia University
Hugh Chipman

Acadia University

Abstract

Gaussian process (GP) models are commonly used statistical metamodels for emulating
expensive computer simulators. Fitting a GP model can be numerically unstable if any
pair of design points in the input space are close together. Ranjan, Haynes, and Karsten
(2011) proposed a computationally stable approach for fitting GP models to deterministic
computer simulators. They used a genetic algorithm based approach that is robust but
computationally intensive for maximizing the likelihood. This paper implements a slightly
modified version of the model proposed by Ranjan et al. (2011) in the R package GPfit.
A novel parameterization of the spatial correlation function and a clustering based multi-
start gradient based optimization algorithm yield robust optimization that is typically
faster than the genetic algorithm based approach. We present two examples with R codes
to illustrate the usage of the main functions in GPfit. Several test functions are used for
performance comparison with the popular R package mlegp. We also use GPfit for a real
application, i.e., for emulating the tidal kinetic energy model for the Bay of Fundy, Nova
Scotia, Canada. GPfit is free software and distributed under the General Public License
and available from the Comprehensive R Archive Network.

Keywords: computer experiments, clustering, near-singularity, nugget.

1. Introduction
Computer simulators are often used to model complex physical and engineering processes
that are either infeasible, too expensive or time consuming to observe. Examples include
tracking the population for bowhead whales in Western Arctic (Poole and Raftery 2000),
monitoring traffic control system (Medina, Moreno, and Royo 2005), dynamics of dark energy
and dark matter in cosmological studies (Arbey 2006), and the tidal kinetic energy in the
Bay of Fundy, Nova Scotia, Canada (Ranjan et al. 2011). Realistic computer simulators can
still be computationally expensive to run, and they are often approximated (or emulated)
using statistical models. Sacks, Welch, Mitchell, and Wynn (1989) proposed emulating such

http://www.jstatsoft.org/

2 GPfit: Gaussian Process Model Fitting in R

an expensive deterministic simulator as a realization of a Gaussian stochastic process (GP).
This paper presents the R (R Core Team 2014) package GPfit (MacDoanld, Chipman, and
Ranjan 2014) for robust and computationally efficient fitting of GP models to deterministic
simulator outputs.

The computational stability of GP estimation algorithms can depend critically on the set of
design points and corresponding simulator outputs that are used to build a GP model. If
any pair of design points in the input space are close together, the spatial correlation matrix
R may become near-singular and hence the GP model fitting procedure computationally
unstable. A popular approach to overcome this numerical instability is to introduce a small
“nugget” parameter δ in the model, i.e., R is replaced by Rδ = R+ δI, that is estimated along
with the other model parameters (e.g., Neal 1997; Booker, Dennis, Frank, Serafini, Torczon,
and Trosset 1999; Santner, Williams, and Notz 2003; Gramacy and Lee 2008). However,
adding a nugget in the model introduces additional smoothing in the predictor and as a result
the predictor is no longer an interpolator. Thus, it is challenging to choose an appropriate
value of δ that maintains the delicate balance between the stabilization and minimizing the
over-smoothing of the model predictions. Ranjan et al. (2011) proposed a computationally
stable approach by introducing a lower bound on the nugget, which minimizes unnecessary
over-smoothing and improves the model accuracy. Assuming space-filling designs are used for
fitting the GP models, the nugget based approach is useful in problems with large n (size of
the training data) and small d (input dimension).

Instead of trying to interpolate the data, one may argue that all simulators are noisy and the
statistical surrogates should always smooth the simulator data (e.g., Gramacy and Lee 2012).
In spite of the recent interest in stochastic simulators (e.g., Poole and Raftery 2000; Arbey
2006), deterministic simulators are still being actively used. For instance, Medina et al. (2005)
demonstrate the preference of deterministic traffic simulators over their stochastic counter-
parts. The model considered in GPfit assumes that the computer simulator is deterministic
and is very similar to the GP model proposed in Ranjan et al. (2011).

The maximum likelihood approach for fitting the GP model requires optimizing the log-
likelihood, which can often have multiple local optima (Yuan, Wang, Yu, and Fang 2008;
Schirru, Pampuri, Nicolao, and McLoone 2011; Kalaitzis and Lawrence 2011; Petelin, Filipič,
and Kocijan 2011). This makes the model fitting procedure computationally challenging.
Ranjan et al. (2011) uses a genetic algorithm (GA) approach, which is robust but computa-
tionally intensive for likelihood optimization. GPfit uses a multi-start gradient based search
algorithm that is robust and typically faster than the GA used in Ranjan et al. (2011). A
clustering based approach on a large space-filling design over the parameter space is used for
the multiple starts, i.e., choosing the initial values of the gradient search algorithm. Further-
more, we propose a new parameterization of the spatial correlation function that simplifies
likelihood optimization.

The remainder of the paper is organized as follows. Section 2 presents a brief review of the
GP model in Ranjan et al. (2011), the new parameterization of the correlation function and
the proposed optimization algorithm implemented in GPfit. In Section 3, the main functions
of GPfit and their arguments are discussed. Two examples illustrating the usage of GPfit

are presented in Section 4. Section 5 compares GPfit with other popular R packages. This
includes an empirical performance comparison with the popular R package mlegp (Dancik and
Dorman 2008; Dancik 2013). Section 6 shows the usage of GPfit for emulating tidal energy
model outputs. The paper concludes with a few remarks in Section 7.

Journal of Statistical Software 3

2. Methodology

Section 2.1 reviews the GP model proposed in Ranjan et al. (2011) (for more details on
GP models, see Santner et al. 2003 and Rasmussen and Williams 2006). We propose a new
parameterization of the correlation function in Section 2.2 that facilitates optimization of
the likelihood. The proposed optimization algorithm implemented in GPfit is presented in
Section 2.3.

2.1. Gaussian process model

Let the i-th input and the corresponding output of the computer simulator be denoted by
a d-dimensional vector, xi = (xi1, . . . , xid)

⊤ and yi = y(xi) respectively. The experimental
design D0 = {x1, . . . , xn} is the set of n input trials stored in an n× d matrix X. We assume
xi ∈ [0, 1]d. The outputs are held in the n×1 vector Y = y(X) = (y1, . . . , yn)

⊤. The simulator
output, y(xi), is modeled as

y(xi) = µ+ z(xi); i = 1, . . . , n,

where µ is the overall mean, and z(xi) is a GP with E(z(xi)) = 0, VAR(z(xi)) = σ2,
and Cov(z(xi), z(xj)) = σ2Rij . In general, y(X) has a multivariate normal distribution,
Nn(1nµ,Σ), where Σ = σ2R is formed with correlation matrix R having elements Rij , and 1n
is a n× 1 vector of all ones. Although there are several choices for the correlation structure,
we follow Ranjan et al. (2011) and use the Gaussian correlation function given by

Rij =
d
∏

k=1

exp{−θk|xik − xjk|
2}, for all i, j, (1)

where θ = (θ1, . . . , θd) ∈ [0,∞)d is a vector of hyper-parameters. The closed form estimators
of µ and σ2 given by

µ̂(θ) = (1n
⊤R−11n)

−1
(1n

⊤R−1Y) and σ̂2(θ) =
(Y − 1nµ̂(θ))

⊤R−1(Y − 1nµ̂(θ))

n
,

are used to obtain the negative profile log-likelihood (from here onwards referred to as de-
viance)

−2 log(Lθ) ∝ log(|R|) + n log[(Y − 1nµ̂(θ))
⊤R−1(Y − 1nµ̂(θ))],

for estimating the hyper-parameters θ, where |R| denotes the determinant of R.

Following the maximum likelihood approach, the best linear unbiased predictor at x∗ (as
shown in Sacks et al. 1989) is

ŷ(x∗) = µ̂+ r⊤R−1(Y − 1nµ̂) =

[

(1− r⊤R−11n)

1n
⊤R−11n

1n
⊤ + r⊤

]

R−1Y = C⊤Y,

with mean squared error

s2(x∗) = E
[

(ŷ(x∗)− y(x∗))2
]

= σ2(1− 2C⊤r + C⊤RC) = σ2

(

1− r⊤R−1r +
(1− 1n

⊤R−1r)2

1nR−11n

)

,

4 GPfit: Gaussian Process Model Fitting in R

where r = (r1(x
∗), . . . , rn(x

∗))⊤, and ri(x
∗) = COR(z(x∗), z(xi)). In practice, the parameters

µ, σ2 and θ are replaced with their respective estimates.

Fitting a GP model to n data points requires the repeated computation of the determinant
and inverse of the n× n correlation matrix R. Such correlation matrices are positive definite
by definition, however, the computation of |R| and R−1 can sometimes be unstable due to
near-singularity. An n × n matrix R is said to be near-singular (or, ill-conditioned) if its
condition number κ(R) = ‖R‖ · ‖R−1‖ is too large, where ‖ · ‖ denotes the L2–matrix norm
(see Ranjan et al. 2011 for details). Near-singularity prohibits precise computation of the
deviance and hence the parameter estimates. This is a common problem in fitting GP models
which occurs if any pair of design points in the input space are close together (Neal 1997).
A popular approach to overcome near-singularity is to introduce a small nugget or jitter
parameter, δ ∈ (0, 1), in the model (i.e., R is replaced by Rδ = R + δI) that is estimated
along with the other model parameters.

Replacing R with Rδ in the GP model introduces additional smoothing of the simulator data
that is undesirable for emulating a deterministic simulator. Ranjan et al. (2011) proposed a
lower bound on δ that minimizes the unnecessary over-smoothing. The lower bound given by
Ranjan et al. (2011) is

δlb = max

{

λn(κ(R)− ea)

κ(R)(ea − 1)
, 0

}

, (2)

where λn is the largest eigenvalue of R and ea is the threshold of κ(R) that ensures a well
conditioned R. Ranjan et al. (2011) suggest a = 25 for space-filling Latin hypercube designs
(LHDs; McKay, Beckman, and Conover 1979).

GPfit uses the GP model with Rδlb = R + δlbI. The R package mlegp, used for performance
comparison of GPfit in Section 5, implements the classical GP model with R replaced by
Rδ = R+ δI, and estimates δ along with other hyper-parameters by minimizing the deviance.
In both approaches the deviance function happens to be bumpy with multiple local optima.
Next, we investigate a novel parameterization of the correlation function that makes the
deviance easier to optimize.

2.2. Reparameterization of the correlation function

The key component of fitting the GP model described in Section 2.1 is the estimation of the
correlation parameters by minimizing the deviance

−2 log(Lθ) ∝ log(|Rδlb |) + n log[(Y − 1nµ̂(θ))
⊤R−1

δlb
(Y − 1nµ̂(θ))]. (3)

The deviance surface can be bumpy and have several local optima. For instance, the deviance
functions for two examples in Section 4 are displayed in Figure 1.

Figure 1 shows that the deviance function is bumpy near θ = 0 and there are multiple local
optima. Evolutionary algorithms like GA (used by Ranjan et al. 2011) are often robust for
such objective functions, however, they can be computationally intensive (especially, because
the computational cost of |R| and R−1 is O(n3) and evolutionary algorithms often employ
many evaluations of the objective function). Gradient-based optimization might be faster but
will require careful selection of initial values to achieve the global minimum of the deviance
function. It may be tempting to use a space-filling design over the parameter space for the
starting points, however, such designs (e.g., maximin LHD) often tend to stay away from

Journal of Statistical Software 5

0 10 20 30 40 50 60 70

1
0

2
0

3
0

4
0

5
0

6
0

7
0

θ

−
2
lo

g
(L

θ)

(a)

0 1 2 3 4 5

4
0

5
0

6
0

7
0

θ

−
2
lo

g
(L

θ)
(b)

θ1

θ 2

2

4

6

8

10

12

2 4 6 8 10 12

780

800

820

840

860

880

900

920

(c)

θ1

θ 2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

820

830

840

850

860

870

880

890

900

(d)

Figure 1: The plots show the deviance (3) w.r.t. the GP parameter(s) θ. Panels (a) and (b)
correspond to Example 1 (with d = 1, n = 10), and (c) and (d) display deviance for Example 2
(with d = 2, n = 30). Panels (b) and (d) are enlargements of (a) and (b) near 0, respectively.

the boundaries and corners. This is unfavorable because the deviance functions (Figure 1)
fluctuate rapidly near θ = 0.

To address the issue of a bumpy deviance surface near the boundaries of the parameter space,
we propose a new parameterization of R. Let βk = log10(θk) for k = 1, . . . , d, then

Rij =

d
∏

k=1

exp
{

−10βk |xik − xjk|
2
}

, for all i, j, (4)

where βk ≪ 0 implies a very high spatial correlation or a relatively flat surface in the k-th
coordinate, and βk ≫ 0 implies low correlation, or a very wiggly surface with respect to the
k-th input factor. One can also use automatic relevance determination approach to effectively
remove irrelevant inputs (Neal 1997; Williams and Rasmussen 1996). Figure 2 displays the two

6 GPfit: Gaussian Process Model Fitting in R

−10 −5 0 5

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

β

−
2
lo

g
(L

β)

(a)

−2 −1 0 1 2

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

β

−
2
lo

g
(L

β)
(b)

β1

β 2

−4

−2

0

2

4

−4 −2 0 2 4

750

800

850

900

950

(c)

β1

β 2

−2

−1

0

1

2

−2 −1 0 1 2

750

800

850

900

950

(d)

Figure 2: The plots show the deviance under the β-parameterization of R given in (4), for the
same examples and data as in Figure 1. Panels (a) and (b) correspond to Example 1 (with
d = 1, n = 10), and (c) and (d) display the deviance for Example 2 (with d = 2, n = 30).
Panels (b) and (d) are enlargements of (a) and (b) near 0, respectively.

deviance surfaces (shown in Figure 1) under the β-parameterization of R given in (4). Though
the new parameterization of R in (4) results in an unbounded parameter space Ω = (−∞,∞)d,
the peaks and dips of the deviance surface are now in the middle of the search space. This
should facilitate a thorough search through the local optima and the choice of a set of initial
values for a gradient based search.

GPfit uses a multi-start gradient based search algorithm for minimizing the deviance. The
gradient based approach is often computationally fast, and careful selection of the multiple
initial values of the search algorithm makes our implementation robust.

Journal of Statistical Software 7

2.3. Optimization algorithm

A standard gradient based search algorithm like L-BFGS-B (Byrd, Lu, Nocedal, and Zhu
1995) finds the local optimum closest to the initial value, and thus often gets stuck in the
wrong local optima. Our objective is to find the β that corresponds to the global minimum
of the deviance function. Kalaitzis and Lawrence (2011) argue that a slightly suboptimal
solution of the deviance optimization problem may not always be a threat in the GP model
setup, as alternative interpretations can be used to justify the model fit. However, suboptimal
parameter estimates may lead to either overfitting or oversmoothing of the training data,
which results in highly inaccurate prediction at unsampled input locations. In an attempt
to obtain a good fit of the GP model, GPfit uses a multi-start L-BFGS-B algorithm for
optimizing the deviance −2 log(Lβ). We first find a subregion Ω0 of the parameter space
Ω = (−∞,∞)d that is likely to contain the optimal parameter values. Then, a set of initial
values for L-BFGS-B is carefully chosen to cover Ω0.

The structural form of the spatial correlation function (4) guarantees that its value lies in
[0, 1]. That is, excluding the extreme cases of perfectly correlated and absolutely uncorrelated
observations, Rij can be approximately bounded as:

exp{−5} = 0.0067 ≤ Rij ≤ 0.9999 = exp{−10−4},

or equivalently,

10−4 ≤

d
∑

k=1

10βk |xik − xjk|
2 ≤ 5. (5)

To convert the bounds above into workable ranges for the βk, we need to consider ranges
for |xik − xjk|. Assuming the objective is to approximate the overall simulator surface in
[0, 1]d, Loeppky, Sacks, and Welch (2009) argue that n = 10 · d is a good rule of thumb for
determining the size of a space-filling design over the input locations of the simulator. In
this case, the maximum value of the minimum inter-point distance along the k-th coordinate
is |xik − xjk| ≈ 1/10. Furthermore, if we also make the simplifying assumption that the
simulator is equally smooth in all directions, i.e., βk = β0, then (5) simplifies to

−2− log10(d) ≤ βk ≤ log10(500)− log10(d).

That is, Ω0 = {(β1, . . . , βd) : −2− log10(d) ≤ βk ≤ log10(500)− log10(d), k = 1, . . . , d} is the
set of β = (β1, . . . , βd) values that is likely to contain the likelihood optimizer. We use Ω0

for restricting the initial values of the L-BFGS-B algorithm to a manageable area, and the
optimal solutions can be found outside this range.

The initial values for L-BFGS-B can be chosen using a large space-filling LHD on Ω0. However,
Figure 2 shows that some parts of the likelihood surface are roughly flat, and multiple starts of
L-BFGS-B in such regions might be unnecessary. We use a combination of k-means clustering
applied to the design of parameter values, and evaluation of the deviance to reduce a large
LHD to a more manageable set of initial values. Since the construction of Ω0 assumed the
simplification βk = β0 for all k, and in some cases, for instance, in Figure 2(c), the deviance
surface appears symmetric in the two coordinates, we enforce the inclusion of an additional
initial value of L-BFGS-B on the main diagonal of Ω0. This diagonal point is the best of three
L-BFGS-B runs only along the main diagonal, βk = β0 for all k.

The deviance optimization algorithm is summarized as follows:

8 GPfit: Gaussian Process Model Fitting in R

1. Choose a 200d-point maximin LHD for β = (β1, . . . , βd) in the hyper-rectangle Ω0.

2. Choose the 80d values of β that correspond to the smallest −2 log(Lβ) values.

3. Use the k-means clustering algorithm on these 80d points to find 2d groups. For robust-
ness, we use five random restarts of k-means and choose the one with minimum total
within-cluster sum-of-squares.

4. For d ≥ 2, run the L-BFGS-B algorithm along the main diagonal of Ω0 starting at three
equidistant points on the diagonal (i.e., at 25%, 50% and 75%). Choose the best of the
three L-BFGS-B outputs, i.e., with smallest −2 log(Lβ) value.

5. These 2d+ 1 (or 2 if d = 1) initial values, found in Steps 3 and 4, are then used in the
L-BFGS-B routine to find the smallest −2 log(Lβ) and corresponding β̂mle ∈ Ω.

The multi-start L-BFGS-B algorithm outlined above requires
(

200d+
∑2d+1

i=1 ηi +
∑3

j=1 η
′

j

)

deviance evaluations, where ηi is the number of deviance evaluations for the i-th L-BFGS-B
run in Ω space, and η′j is the number of deviance evaluations for the j-th L-BFGS-B run
along the diagonal of the Ω0 space. For every iteration of L-BFGS-B, the algorithm computes
one gradient (i.e., 2d deviance evaluations) and adaptively finds the location of the next step.
That is, ηi and η′j may vary, and the total number of deviance evaluations in the optimization
process cannot be determined. Nonetheless, the empirical evidence based on the examples in
Sections 4 and 5 suggest that the optimization algorithm used here is much faster than the
GA in Ranjan et al. (2011) which uses 1000d2 evaluations of (3) for fitting the GP model
in d-dimensional input space. Both deviance minimization approaches have a few tunable
parameters, for instance, the initial values and the maximum number of iterations (maxit) in
L-BFGS-B, and the population size and number of generations in a GA, that can perhaps be
adjusted to get better performance (i.e., fewer deviance calls to achieve the same accuracy in
optimizing the deviance surface).

3. GPfit package

In this section, we discuss various GPfit functions that implement our proposed model, which
is the computationally stable version of the GP model proposed by Ranjan et al. (2011)
with the new parameterization of the correlation matrix R (Section 2.2), and optimization
algorithm described in Section 2.3.

The main functions for the users of GPfit are GP_fit(), predict() and (for d ≤ 2) plot().
Both predict() and plot() methods for objects returned by GP_fit() allow for providing
prediction and plots respectively. The code for fitting the GP model to n data points in
d-dimensional input space stored in an n× d matrix X and an n-vector Y is:

GP_fit(X, Y, control = c(200 * d, 80 * d, 2 * d), nug_thres = 20,

trace = FALSE, maxit = 100)

The default values of control, nug_thres, trace and maxit worked smoothly for all the
examples implemented in this paper, however, they can be changed if necessary. In particular,
control and maxit provide a balance between robustness and computational efficiency in
optimizing the deviance.

Journal of Statistical Software 9

Detailed description of the arguments are as follows:

• control: A vector of three tunable parameters used in the deviance optimization algo-
rithm. The default values correspond to choosing 2 * d clusters (using k-means clus-
tering) based on 80 * d best points (smallest deviance) from a 200 * d-point random
maximin LHD in Ω0.

• nug_thres: A threshold parameter used in the calculation of the lower bound of the
nugget, δlb. Although Ranjan et al. (2011) suggest nug_thres = 25 for space-filling
designs, we use a conservative default value nug_thres = 20. This value might change
for different design schemes.

• trace: A flag that indicates whether or not to print the information on the final runs
of the L-BFGS-B algorithm. The default trace = FALSE implies no printing.

• maxit: An integer number that indicates the maximum number of iterations per L-
BFGS-B run in the deviance optimization. We use the optim default maxit = 100.

GP_fit() returns the object of class ‘GP’ that contains the data set X, Y and the estimated
model parameters β̂, σ̂2 and δlb(β̂). Assuming GPmodel is the ‘GP’ class object, print(GPmodel,
...) presents the values of the object GPmodel, and options like digits can be used for
As an alternative, one can use summary(GPmodel) to get the same output.

predict(GPmodel, xnew) returns the predicted response ŷ(x∗) and the associated MSE
s2(x∗) for every input x∗ in xnew. It also returns a data frame with the predictions com-
bined with the xnew. Expressions for ŷ(x∗) and s2(x∗) are shown in Section 2.1 subject to
the replacement of R with R

δlb(β̂mle)
= R+ δlb(β̂mle)I. The default value of xnew is the design

matrix X used for model fitting.

The plotting function plot() takes the ‘GP’ class object as input and depicts the model
predictions and the associated MSEs over a regular grid of the d-dimensional input space for
d = 1 and 2. Various graphical options can be specified as additional arguments:

plot(GPmodel, range = c(0, 1), resolution = 50,

colors = c("black", "blue","red"), line_type = c(1, 1), pch = 1,

cex = 2, surf_check = FALSE, response = TRUE, ...)

For d = 1, plot() generates the predicted response ŷ(x) and uncertainty bounds ŷ(x) ±
2s(x) over a regular grid of resolution many points in the specified range = c(0, 1). The
graphical arguments colors, line_type, pch and cex are only applicable for one-dimensional
plots. One can also provide additional graphical argument in ... for changing the plots (see
par in the base R function plot()).

For d = 2, the default arguments of plot() with ‘GP’ class object produces a level plot of ŷ(x∗).
The plots are based on the model predictions using predict() at a resolution × resolution

regular grid over [0, 1]2. The argument surf_check = TRUE can be used to generate a surface
plot instead, and MSEs can be plotted by using response = FALSE. Options like shade and
drape from the wireframe() function, contour and cuts from the levelplot() function in
lattice (Sarkar 2008), and color specific arguments in package colorspace (Zeileis, Hornik, and
Murrell 2009; Ihaka, Murrell, Hornik, Fisher, and Zeileis 2015) can also be passed in for

10 GPfit: Gaussian Process Model Fitting in R

4. Examples using GPfit

This section demonstrates the usage of GPfit functions and the interpretation of the outputs
of the main functions. Two test functions are used as computer simulators to illustrate the
functions of this package.

Example 1 Let x ∈ [0, 1], and the computer simulator output, y(x), be generated using the
simple one-dimensional test function

y(x) = log(x+ 0.1) + sin(5πx),

referred to as the function computer_simulator below. Suppose we wish to fit the GP model
to a data set collected over a random maximin LHD of size n = 7. The design can be generated
using the maximinLHS function in the R package lhs (Carnell 2012; Stein 1987). The following
R code shows how to load the packages, generate the simulator outputs and then fit the GP
model using GP_fit().

R> library("GPfit")

R> library("lhs")

R> n <- 7

R> x <- maximinLHS(n, 1)

R> y <- matrix(0, n, 1)

R> for (i in 1:n) y[i] <- computer_simulator(x[i])

R> GPmodel <- GP_fit(x, y)

The proposed optimization algorithm used only 227 deviance evaluations for fitting this GP
model. The parameter estimates of the fitted GP model are obtained using print(GPmodel).

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

x (Input Variable)

M
o

d
e

l
P

re
d

ic
ti
o

n

●

Model Prediction: ŷ(x)
Uncertanity Bounds: ŷ(x) ± 2 × s(x)
Design Points

Figure 3: The plot shows the model predictions and uncertainty bands for Example 1. The
true simulator output curve is also displayed by the dash-dotted line.

Journal of Statistical Software 11

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

x (Input Variable)

M
o
d
e
l
P

re
d
ic

ti
o
n

●

Model Prediction: ŷ(x)
Uncertanity Bounds: ŷ(x) ± 2 × s(x)
Design Points

(a) Default arguments

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

x (Input Variable)

M
o
d
e
l
P

re
d
ic

ti
o
n

●

Model Prediction: ŷ(x)
Uncertanity Bounds: ŷ(x) ± 2 × s(x)
Design Points

(b) line_type = c(1, 2)

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

x (Input Variable)

M
o
d
e
l
P

re
d
ic

ti
o
n

●

Model Prediction: ŷ(x)
Uncertanity Bounds: ŷ(x) ± 2 × s(x)
Design Points

(c) cex = 3

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

x (Input Variable)

M
o
d
e
l
P

re
d
ic

ti
o
n

Model Prediction: ŷ(x)
Uncertanity Bounds: ŷ(x) ± 2 × s(x)
Design Points

(d) line_type = c(1, 2), pch = 2, cex = 3

Figure 4: The plots illustrate the usage of graphical parameters in plot() for Example 1.
Panel (a) shows the model prediction and uncertainty plot with default graphical parameters,
(b) illustrates the change due to line_type, (c) highlights the point size using cex, and (d)
shows the usage of pch in changing the point character.

For printing only four significant decimal places, digits = 4 can be used in print().

Number Of Observations: n = 7

Input Dimensions: d = 1

Correlation: Exponential (power = 2)

Correlation Parameters:

beta_hat

[1] 1.977

12 GPfit: Gaussian Process Model Fitting in R

sigma^2_hat: [1] 0.7444

delta_lb(beta_hat): [1] 0

nugget threshold parameter: 20

The GPmodel object can be used to predict and then plot the simulator outputs at a grid of
inputs using plot(GPmodel, ...). Figures 3 and 4 show the model prediction along with
the uncertainty bounds ŷ(x∗)±2s(x∗) on the uniform grid with resolution = 100. Figure 3
compares the predicted and the true simulator output. Figure 4 illustrates the usage of the
graphical arguments of plot(). predict(GPmodel, xnew) can also be used to obtain model
predictions at an arbitrary set of inputs, xnew, in the design space (i.e., not a grid).

Example 2 We now consider a two-dimensional test function to illustrate different functions
of the GPfit package. Let x = (x1, x2) ∈ [−2, 2]2, and the simulator outputs be generated
from the GoldPrice function (Andre, Siarry, and Dognon 2000)

y(x) =
[

1 + (x1 + x2 + 1)2
{

19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22
}

]

∗
[

30 + (2x1 − 3x2)
2 (18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)

]

.

For convenience the inputs are scaled to [0, 1]2. The GP_fit() output from fitting the GP
model to a data set based on a 20-point maximin LHD is as follows:

Number Of Observations: n = 20

Input Dimensions: d = 2

Correlation: Exponential (power = 2)

Correlation Parameters:

beta_hat.1 beta_hat.2

[1] 0.8578 1.442

sigma^2_hat: [1] 4.52e+09

delta_lb(beta_hat): [1] 0

nugget threshold parameter: 20

For fitting this GP model, the proposed multi-start L-BFGS-B optimization procedure used
only 808 deviance evaluations, whereas the GA based optimization in Ranjan et al. (2011)
would have required 4000 deviance calls. The correlation hyper-parameter estimate β̂mle =
(0.8578, 1.442) shows that the fitted simulator is slightly more active (or wiggly) in the X2

variable. The nugget parameter δlb(β̂mle) = 0 implies that the correlation matrix with the
chosen design points and β = β̂mle is well-behaved.

The following code illustrates the usage of predict() for obtaining predicted response and
associated MSEs at a set of unobserved inputs.

R> xnew <- matrix(runif(20), ncol = 2)

R> Model_pred <- predict(GPmodel, xnew)

The model prediction outputs stored in object Model_pred are as follows:

Journal of Statistical Software 13

X1

X
2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0

50000

100000

150000

200000

250000

300000

(a) Default arguments

X1

X
2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0e+00

1e+09

2e+09

3e+09

4e+09

5e+09

(b) response = FALSE, contour = TRUE

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0

50000

100000

150000

200000

250000

X1

X2

M
o
d
e
l
P

re
d
ic

ti
o
n

(c) surf_check = TRUE

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

1e+09

2e+09

3e+09

4e+09

X1

X2

M
S

E

(d) response = FALSE, surf_check = TRUE

Figure 5: The plots illustrate the usage of graphical parameters in plot() for Example 2.
Panel (a) shows the default plot (the levelplot of ŷ(x∗)) with additional color specification,
(b) presents the levelplot with contour lines of s2(x∗), (c) shows the surface plot of ŷ(x∗), and
(d) displays the surface plot of s2(x∗).

$Y_hat

[1] 561.3877 -372.5221 13287.0495 3148.5904 5129.1136

[6] 8188.2805 3626.4985 14925.8142 2869.6225 217039.3229

$MSE

[1] 186119713 21523832 86391757 8022989 562589770

[6] 13698589 123121468 1167409027 1483924477 264176788

14 GPfit: Gaussian Process Model Fitting in R

$complete_data

xnew.1 xnew.2 Y_hat MSE

[1,] 0.2002145 0.2732849 561.3877 186119713

[2,] 0.6852186 0.4905132 -372.5221 21523832

[3,] 0.9168758 0.3184040 13287.0495 86391757

[4,] 0.2843995 0.5591728 3148.5904 8022989

[5,] 0.1046501 0.2625931 5129.1136 562589770

[6,] 0.7010575 0.2018752 8188.2805 13698589

[7,] 0.5279600 0.3875257 3626.4985 123121468

[8,] 0.8079352 0.8878698 14925.8142 1167409027

[9,] 0.9565001 0.5549226 2869.6225 1483924477

[10,] 0.1104530 0.8421794 217039.3229 264176788

The GPfit function plot() calls predict() for computing ŷ(x∗) and s2(x∗) at a regular
resolution × resolution grid in the input space defined by the range parameter. Recall
from Section 3 that colors, line_type, pch and cex are only applicable for one dimensional
plots. For d = 2, the following code can be used to draw the level/contour and surface plots
of ŷ(x) and s2(x) over a specified grid resolution.

R> plot(GPmodel, range = c(0, 1), resolution = 50, surf_check = FALSE,

+ response = TRUE, ...)

Additional graphical arguments, for instance, from lattice and colorspace, can also be passed
in for ... to enhance the plotting features. Figure 5 shows the model predictions and
the MSEs on the uniform 50 × 50 grid. Figures 5(a) and 5(b) use the additional argu-
ment col.regions = sequential_hcl(51, power = 2.2) (from the colorspace package)
to change the default color palettes. Different panels of Figure 5 highlight the usage of
surf_check and response for obtaining a level plot and surface plot of ŷ(x) and s2(x).

5. Comparison with other packages

In the last two decades, a few different software programs (e.g., for R, MATLAB, C, C++,
Python, etc.) have been produced for fitting GP models in computer experiments. The
Gaussian process website (Rasmussen 2011) presents an extensive (though incomplete) list
of such programs. Since R is a free software environment, packages like tgp and mlegp have
gained popularity among the practitioners in computer experiments.

The tgp package (Gramacy 2007; Gramacy and Lee 2008), originally developed for build-
ing surrogates of both stationary and non-stationary noisy simulators, uses a GP model for
emulating the stationary components of the process. The GP model here includes a nugget
parameter that is estimated along with other parameters. The recent version of the tgp

package facilitates the emulation of deterministic simulators by removing the nugget param-
eter from the model. Most importantly, tgp is implemented using Bayesian techniques like
the Metropolis-Hastings algorithm, whereas, GPfit follows the maximum likelihood approach
for fitting GP models and includes the smallest possible nugget required for computational
stability.

Dancik and Dorman (2008) developed an R package called mlegp that uses maximum likeli-
hood for fitting the GP model with Gaussian correlation structure. Though not relevant for

Journal of Statistical Software 15

this paper, mlegp can fit GP models with multivariate response, non-constant mean function
and non-constant variance that can be specified exactly or up to a multiplicative constant.
The simple GP model in mlegp is the same as described in Section 2.1 except that the nugget
parameter is estimated along with other hyper-parameters. Hence, we use mlegp for the
performance comparison of GPfit.

We now use several test functions to compare the performance of the two packages mlegp

and GPfit. The test functions used here are commonly used in computer experiments for
comparing competing methodologies (Santner et al. 2003). Since the two packages minimize
slightly different deviance functions, one cannot directly compare the parameter estimates or
the minimized deviance. Consequently, we compared the discrepancy between the predicted
and the true simulator response. The performance measure is the standardized/scaled root
mean squared error (sRMSE) given by

1

ymax − ymin

√

√

√

√

1

N

N
∑

i=1

[ŷ(x∗i)− y(x∗i)]
2,

where ymax and ymin are the global maximum and minimum of the true simulator, y(x∗i) and
ŷ(x∗i) are the true and predicted simulator output at x∗i in the test data, and N is the size of
the test data set. The results are averaged over 50 simulations. Each simulation starts with
choosing two random n× d maximin LHDs (D0 and D1) for the training data and test data
respectively (i.e., N = n). The average and standard error of the sRMSE values of the GP
fits obtained from mlegp and GPfit are compared for several design sizes.

We found that mlegp occasionally crashes due to near-singularity of the spatial correlation
matrix. In mlegp, the nugget parameter in Rδ = R + δI is estimated using the maximum
likelihood procedure along with the other model parameters. If any candidate δ ∈ (0, 1) in
the optimization procedure is not large enough to overcome the ill-conditioning of Rδ, the
likelihood computation fails and the mlegp package crashes with the following error message:

Error in solve.default(gp$invVarMatrix):

system is computationally singular: reciprocal condition number = 2.11e-16.

This is not a problem in the GPfit implementation, because the nugget parameter is set at
the smallest δ required to make Rδ well-conditioned. As a result, GPfit outperforms mlegp in
terms of computational stability. When mlegp runs are computationally stable, GPfit usually
has lower sRMSE values.

Example 1 (contd.) Suppose we wish to compare the prediction accuracy of the GP
model fits from the two packages for the one dimensional test function in Example 1. Table 1
summarizes the sRMSE values and standard errors for a range of sample sizes. The results
are based on 50 simulations.

It is clear from Table 1 that the sRMSE values decrease in both methods as n increases. More
importantly, GPfit significantly outperforms mlegp, especially, for larger n. This is expected
as the numerical instability of the GP model increases with n. The smallest nugget δlb in
the GP model of GPfit minimizes unnecessary over-smoothing giving a smaller sRMSE than
mlegp, where δ̂mle might be relatively large to ensure computationally stable GP model fits
(i.e., without any crashes).

16 GPfit: Gaussian Process Model Fitting in R

Sample size
GPfit mlegp

sRMSE (×10−6) sRMSE (×10−6)

n = 10 30979.95 (5914.4) 31178.82 (6093.5)
n = 25 131.90 (16.160) 177.44 (24.724)
n = 50 26.74 (2.4935) 112.89 (17.749)
n = 75 18.14 (1.5203) 146.24 (23.989)
n = 100 12.99 (0.9882) 111.83 (17.089)

Table 1: The summary of sRMSE values (with standard errors) for the one dimensional
simulator in Example 1.

Sample size
GPfit mlegp

sRMSE (×10−4) sRMSE (×10−4) Crashes

n = 25 415.00 (37.282) 483.3 (58.092) 0
n = 50 98.66 (6.8743) 129.2 (31.426) 0
n = 75 25.27 (1.6211) 19.2 (1.6546) 0
n = 100 12.84 (0.7839) 9081.5 (2633.4) 15

Table 2: The summary of sRMSE values (with standard errors) and the number of crashes
for the GoldPrice function.

Example 2 (contd.) We now revisit the two-dimensional GoldPrice function illustrated in
Example 2. Table 2 presents the averages and standard errors of sRMSE values for GP model
fits obtained from mlegp and GPfit.

It is important to note that mlegp crashed 15 times out of 50 simulations for the n = 100
case. The summary statistics for n = 100 case in the mlegp column are calculated from the
remaining 35 successful runs. The average and standard error of the sRMSE values in the
successful runs of mlegp generate unreliable predictions. For the remaining cases, the results
show that the sRMSE values decrease in both methods as n increases. For n = 25 and 50,
GPfit produces better GP fits with smaller sRMSE values. Interestingly, for n = 75, the
average sRMSE value in GPfit is slightly larger as compared to that in mlegp.

Example 3 Suppose the four-dimensional Colville function is used as the computer simu-
lator. Let x = (x1, x2, x3, x4) ∈ [−10, 10]4, and the outputs be generated from

y(x) = 100(x21 − x2)
2 + (x1 − 1)2 + (x3 − 1)2 + 90(x23 − x4)

2

+ 10.1[(x2 − 1)2 + (x4 − 1)2] + 19.8(x2 − 1)(x4 − 1).

For implementation purpose, the inputs are rescaled to the unit-hypercube [0, 1]4. Table 3
summarizes the averages and standard errors of the sRMSE values from 50 simulations.

Similar to Example 2, a few runs from mlegp crashed due to near-singularity, and the suc-
cessful runs in these cases (n = 50, 75 and 100) yield unreliable summary statistics (i.e.,
unrealistically large sRMSE values). In contrast, GPfit provides stable and good predictions.
Similar to Examples 1 and 2, the average sRMSE values decrease as n increases.

It is worth noting that for the n = 100 case in this example, mlegp crashed 8 times in 50
simulations, whereas for the GoldPrice function example (Table 2), mlegp crashed 14 times.

Journal of Statistical Software 17

Sample size
GPfit mlegp

sRMSE (×10−4) sRMSE (×10−4) Crashes

n = 25 759.07 (27.72) 783.7 (29.41267) 0
n = 50 78.02 (4.046) 348851.2 (85861.61) 5
n = 75 41.88 (1.358) 235887.0 (32320.62) 14
n = 100 26.59 (1.245) 326456.8 (132317.6) 8

Table 3: The summary of sRMSE values (with standard errors) and the number of crashes
for Colville function.

Sample size
GPfit mlegp

sRMSE (×10−3) sRMSE (×10−3)

n = 25 135.23 (5.546) 125.09 (5.022)
n = 50 102.10 (4.605) 94.89 (4.322)
n = 75 78.04 (2.573) 77.34 (2.546)
n = 100 66.87 (1.728) 66.87 (1.728)
n = 125 60.23 (1.415) 60.21 (1.416)

Table 4: The summary of sRMSE values (with standard errors) for the six-dimensional Hart-
mann function.

Though the number of simulations considered here is not large enough to accurately estimate
the proportion of crashes in each case, it is expected that the occurrence of near-singular
cases becomes less frequent with the increase in the input dimension (see Ranjan et al. 2011
for more details).

Example 4 Consider the six-dimensional Hartmann function for generating simulator out-
puts. Since the input dimension is reasonably large, allmlegp runs turned out to be successful,
and both packages lead to similar model predictions. Table 4 presents the averages and stan-
dard errors of the sRMSE values.

Overall in Examples 1 to 4, mlegp crashed only 42 times out of 900 simulations. However,
the successful runs in the cases with any crash (n = 100 in Example 2 and n = 50, 75 and 100
in Example 3) lead to unreliable model fits. Furthermore, GPfit either outperforms or gives
comparable GP model fits as compared to mlegp.

6. Real application

The Bay of Fundy (Figure 6(a)), located between New Brunswick and Nova Scotia, Canada,
with a small portion touching Maine, USA, is world famous for its high tides. In Minas
Passage (the upper portion of the Bay of Fundy), the difference in water level between high
tide and low tide can be as much as 17 meters. Karsten, McMillan, Lickley, and Haynes (2008)
(hereafter KMLH) considered a version of finite volume community ocean model (FVCOM) in
the Minas Passage of the Bay of Fundy for simulating the average kinetic energy of the tidal
flow (which in turn can be used for producing electricity). Figure 6(b) depicts the simulator
output on a relatively coarse grid (13× 41) in Minas Passage.

According to KMLH, an individual tidal turbine can generate up to 1MW of power, and

18 GPfit: Gaussian Process Model Fitting in R

(a) The Bay of Fundy, Nova Scotia, Canada

−64.5 −64.48 −64.46 −64.44 −64.42 −64.4 −64.38 −64.36 −64.34
45.3

45.31

45.32

45.33

45.34

45.35

45.36

45.37

45.38

45.39

45.4

0

5

10

15

x 10
7

(b) Minas Passage of the Bay of Fundy

Figure 6: Figure (a) shows the Bay of Fundy with the triangular grid used in the FVCOM
model for simulating tides. The small box in the center surrounds the Minas Passage shown
in (b). Figure (b) depicts KMLH simulator outputs in the Minas Passage.

approximately 2.5GW of power can be harnessed from the tidal kinetic energy by placing
large collections of turbines in the Minas Passage. Optimal locations of such turbines can
efficiently generate the much needed green energy at the minimal cost. One could use an
expected improvement based sequential design scheme (Jones, Schonlau, and Welch 1998) for
finding these optimal locations; the key component in such a sequential optimization is to
efficiently emulate (i.e., fit a GP model to) the simulator response after every iteration of this
sequential procedure. In this paper, we focus on this first step of fitting a GP model-based
surrogate to the simulator output.

For fitting an emulator, we choose a 30-point space-filling design from the grid of 13×41 points
using cover.design() in the R package fields (Nychka, Furrer, and Sain 2014), and evaluated
the goodness-of-fit criterion sRMSE based on the remaining points from the 13× 41 grid. In
general, one can use a test/validation dataset to compute sRMSE values for goodness-of-fit
comparison. Figures 7(a) and 7(b) show the level/contour plots of the fitted surface obtained
via GPfit and mlegp respectively. Perhaps, the two fits cannot easily be ranked based on these
contour plots, however, GPfit yields slightly smaller sRMSE (0.05493) than mlegp (0.06813).

By further increasing the design size to 50 from the same 13×41 grid, the fitted emulators ob-
tained from GPfit and mlegp are reasonably comparable. Contour plots of the fitted surfaces
(Figure 8) are visually indistinguishable. The sRMSE values computed using the remaining
grid points are 0.05631008 and 0.05631197 for GPfit and mlegp respectively. According to
Loeppky et al. (2009), n = 10d-point space-filling design should be sufficient for building a
good overall emulator for a reasonably smooth simulator. However, if the underlying simu-
lator is more active, a larger design might be needed for building a decent overall emulator.
Since the sample sizes used here are reasonably small near-singularity is not expected and
the correlation matrices should be well-behaved, i.e., δlb(θ̂mle) (in GPfit) and δ̂mle (in mlegp)
should be zero. Subsequently, it is expected that both methods should result in comparable
fits for this application.

Journal of Statistical Software 19

X1

X
2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.0e+00

2.0e+07

4.0e+07

6.0e+07

8.0e+07

1.0e+08

1.2e+08

1.4e+08

(a) Model fit via GPfit

X1

X
2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.0e+00

2.0e+07

4.0e+07

6.0e+07

8.0e+07

1.0e+08

1.2e+08

1.4e+08

(b) Model fit via mlegp

Figure 7: GP emulator based on a 30-point design from the 13×41 grid shown in Figure 6(b).
Figures (a) and (b) show the emulator obtained using GPfit and mlegp respectively.

X1

X
2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.0e+00

2.0e+07

4.0e+07

6.0e+07

8.0e+07

1.0e+08

1.2e+08

1.4e+08

1.6e+08

(a) Model fit via GPfit

X1

X
2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.0e+00

2.0e+07

4.0e+07

6.0e+07

8.0e+07

1.0e+08

1.2e+08

1.4e+08

1.6e+08

(b) Model fit via mlegp

Figure 8: GP emulator based on a 50-point design from the 13×41 grid shown in Figure 6(b).
Figures (a) and (b) show the emulator obtained using GPfit and mlegp respectively.

7. Concluding remarks

This paper presents the R package GPfit for fitting GP models to scalar valued deterministic
simulators, which is available from the Comprehensive R Archive Network (CRAN) at http:
//CRAN.R-project.org/package=GPfit. GPfit implements a slightly modified version of the
GP model proposed by Ranjan et al. (2011), which uses the new β-parameterization given in
(4) of the spatial correlation function to facilitate optimization. The deviance optimization
is achieved through a multi-start L-BFGS-B algorithm.

The proposed optimization algorithms makes 200d+
∑2d+1

i=1 ηi+
∑3

j=1 η
′

j calls of the deviance

function, whereas the GA implemented by Ranjan et al. (2011) uses 1000d2 deviance eval-

http://CRAN.R-project.org/package=GPfit
http://CRAN.R-project.org/package=GPfit

20 GPfit: Gaussian Process Model Fitting in R

uations. Though ηi and η′j are non-deterministic, and vary with the complexity and input
dimension of the deviance surface, for the simulations in Section 5 η′j ≈ 30 for all examples,
however, the average ηi are approximately 40, 75, 300 and interestingly 150 for Examples 1,
2, 3 and 4 respectively. Of course, neither of the two implementations have been optimally
tuned for the most efficient deviance optimization. The best choice of options will of course
vary from problem to problem, and so we encourage users to experiment with the available
options.

The mlegp package is written in pre-compiled C code, whereas GPfit is implemented solely
in R. This difference in the programming environment makes mlegp substantially faster than
GPfit. The plots and results obtained in this paper used GPfit version 0.1-0, which allowed
only Gaussian correlation. The current version of GPfit (version 0.2-0, same as version 1.0-
0) is more flexible and stable. For instance, one can now specify the correlation structure
as Matérn or power exponential with different power (the default is power exponential with
power=1.95). Note that all results presented here can be produced in GPfit version 0.2-0
by using GP_fit(x,y,corr=list(type="exponential",power=2)) (see the stand alone R-
script). The default values of a few plotting characters like line_type, cex and pch have
also been updated for better visuals.

Acknowledgments

We thank the editorial board for many useful comments and suggestions that led to significant
improvement of the article. This work of was supported in part by Discovery grants (for
Ranjan and Chipman) and undergraduate student research award (for MacDonald) from the
Natural Sciences and Engineering Research Council of Canada.

References

Andre J, Siarry P, Dognon T (2000). “An Improvement of the Standard Genetic Algorithm
Fighting Premature Convergence.” Advances in Engineering Software, 32(1), 49–60.

Arbey A (2006). “Dark Fluid: A Complex Scalar Field to Unify Dark Energy and Dark
Matter.” Physical Review D, 74, 043516.

Booker AJ, Dennis JE, Frank PD, Serafini DB, Torczon V, Trosset MW (1999). “A Rigor-
ous Framework for Optimization of Expensive Functions by Surrogates.” Structural and
Multidisciplinary Optimization, 17(1), 1–13.

Byrd RH, Lu P, Nocedal J, Zhu C (1995). “A Limited Memory Algorithm for Bound Con-
strained Optimization.” SIAM Journal of Scientific Computing, 16(5), 1190–1208.

Carnell R (2012). lhs: Latin Hypercube Samples. R package version 0.10, URL http://CRAN.

R-project.org/package=lhs.

Dancik GM (2013). mlegp: Maximum Likelihood Estimates of Gaussian Processes. R package
version 3.1.4, URL http://CRAN.R-project.org/package=mlegp.

http://CRAN.R-project.org/package=lhs
http://CRAN.R-project.org/package=lhs
http://CRAN.R-project.org/package=mlegp

Journal of Statistical Software 21

Dancik GM, Dorman KS (2008). “mlegp: Statistical Analysis for Computer Models of Bio-
logical Systems Using R.” Bioinformatics, 24(17), 1966–1967.

Gramacy RB (2007). “tgp: An R Package for Bayesian Nonstationary, Semiparametric Non-
linear Regression and Design by Treed Gaussian Process Models.” Journal of Statistical
Software, 19(9), 1–46. URL http://jstatsoft.org/v19/i09/.

Gramacy RB, Lee HKH (2008). “Bayesian Treed Gaussian Process Models with an Application
to Computer Modeling.” Journal of the American Statistical Association, 103(483), 1119–
1130.

Gramacy RB, Lee HKH (2012). “Cases for the Nugget in Modeling Computer Experiments.”
Statistics and Computing, 22(3), 713–722.

Ihaka R, Murrell P, Hornik K, Fisher JC, Zeileis A (2015). colorspace: Color Space Manipu-
lation. R package version 1.2-5, URL http://CRAN.R-project.org/package=colorspace.

Jones DR, Schonlau M, Welch WJ (1998). “Efficient Global Optimization of Expensive Black-
Box Functions.” Journal of Global Optimization, 13(4), 455–492.

Kalaitzis AA, Lawrence ND (2011). “A Simple Approach to Ranking Differentially Expressed
Gene Expression Time Courses through Gaussian Process Regression.” BMC Bioinformat-
ics, 12(180).

Karsten R, McMillan J, Lickley M, Haynes R (2008). “Assessment of Tidal Current Energy
for the Minas Passage, Bay of Fundy.” In Proceedings of the Institution of Mechanical
Engineers, Part A: Journal of Power and Energy, pp. 493–507.

Loeppky JL, Sacks J, Welch WJ (2009). “Choosing the Sample Size of a Computer Experi-
ment: A Practical Guide.” Technometrics, 51(4), 366–376.

MacDoanld B, Chipman H, Ranjan P (2014). GPfit: Gaussian Processes Modeling. R package
version 0.2-1, URL http://CRAN.R-project.org/package=GPfit.

McKay MD, Beckman RJ, Conover WJ (1979). “A Comparison of Three Methods for Selecting
Values of Input Variables in the Analysis of Output from a Computer Code.”Technometrics,
21(2), 239–245.

Medina JS, Moreno MG, Royo ER (2005). “Stochastic vs Deterministic Traffic Simulator.
Comparative Study for Its Use within a Traffic Light Cycles Optimization Architecture.”
In Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach,
pp. 622–631. Springer-Verlag.

Neal RM (1997). “Monte Carlo Implementation of Gaussian Process Models for Bayesian
Regression and Classification.” Technical Report 9702, Department of Statistics, University
of Toronto, Canada.

Nychka D, Furrer R, Sain S (2014). fields: Tools for Spatial Data. R package version 7.1,
URL http://CRAN.R-project.org/package=fields.

http://jstatsoft.org/v19/i09/
http://CRAN.R-project.org/package=colorspace
http://CRAN.R-project.org/package=GPfit
http://CRAN.R-project.org/package=fields

22 GPfit: Gaussian Process Model Fitting in R

Petelin D, Filipič B, Kocijan J (2011). “Optimization of Gaussian Process Models with
Evolutionary Algorithms.” In Proceedings of the 10th International Conference on Adaptive
and Natural Computing Algorithms – Volume Part I, ICANNGA’11, pp. 420–429. Springer-
Verlag, Berlin.

Poole D, Raftery AE (2000). “Inference for Deterministic Simulation Models: The Bayesian
Melding Approach.” Journal of the American Statistical Association, 95(452), 1244–1255.

Ranjan P, Haynes R, Karsten R (2011). “A Computationally Stable Approach to Gaussian
Process Interpolation of Deterministic Computer Simulation Data.” Technometrics, 53(4),
366–378.

Rasmussen CE (2011). “The Gaussian Process Website.” URL http://www.

gaussianprocess.org/.

Rasmussen CE, Williams CKI (2006). Gaussian Processes for Machine Learning. MIT Press,
Cambridge.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989). “Design and Analysis of Computer
Experiments.” Statistical Science, 4(4), 409–435.

Santner TJ, Williams BJ, Notz W (2003). The Design and Analysis of Computer Experiments.
Springer-Verlag.

Sarkar D (2008). lattice: Multivariate Data Visualization with R. Springer-Verlag, New York.
URL http://lmdvr.R-Forge.R-project.org.

Schirru A, Pampuri S, Nicolao GD, McLoone S (2011). “Efficient Marginal Likelihood Com-
putation for Gaussian Processes and Kernel Ridge Regression.” arXiv:1110.6546 [stat.ML],
URL http://arxiv.org/abs/1110.6546.

Stein M (1987). “Large Sample Properties of Simulations Using Latin Hypercube Sampling.”
Technometrics, 29(2), 143–151.

Williams CKI, Rasmussen CE (1996). “Gaussian Processes for Regression.” In DS Touretzky,
MC Mozer, ME Hasselmo (eds.), Advances in Neural Information Processing Systems 8,
pp. 514–520. MIT Press.

Yuan J, Wang K, Yu T, Fang M (2008). “Reliable Multi-Objective Optimization of High-
Speed WEDM Process based on Gaussian Process Regression.” International Journal of
Machine Tools and Manufacture, 48(1), 47–60.

Zeileis A, Hornik K, Murrell P (2009). “Escaping RGBland: Selecting Colors for Statistical
Graphics.” Computational Statistics & Data Analysis, 53(9), 3259–3270.

http://www.gaussianprocess.org/
http://www.gaussianprocess.org/
http://www.R-project.org/
http://lmdvr.R-Forge.R-project.org
http://arxiv.org/abs/1110.6546

Journal of Statistical Software 23

Affiliation:

Pritam Ranjan, Hugh Chipman
Department of Mathematics and Statistics
Acadia University

15 University Avenue
Wolfville, NS, Canada
E-mail: pritam.ranjan@acadiau.ca, hugh.chipman@acadiau.ca
URL: http://acadiau.ca/~pranjan/, http://math.acadiau.ca/chipmanh/

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 64, Issue 12 Submitted: 2012-10-24
March 2015 Accepted: 2014-07-29

mailto:pritam.ranjan@acadiau.ca
mailto:hugh.chipman@acadiau.ca
http://acadiau.ca/~pranjan/
http://math.acadiau.ca/chipmanh/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Methodology
	Gaussian process model
	Reparameterization of the correlation function
	Optimization algorithm

	GPfit package
	Examples using GPfit
	Comparison with other packages
	Real application
	Concluding remarks

