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Abstract—GPUs are much more power-efficient devices com-
pared to CPUs, but due to several performance bottlenecks, the
performance per watt of GPUs is often much lower than what
could be achieved theoretically. To sustain and continue high
performance computing growth, new architectural and applica-
tion techniques are required to create power-efficient computing
systems. To find such techniques, however, it is necessary to
study the power consumption at a detailed level and understand
the bottlenecks which cause low performance. Therefore, in this
paper, we study GPU power consumption at component level
and investigate the bottlenecks that cause low performance and
low energy efficiency. We divide the low performance kernels
into low occupancy and full occupancy categories. For the low
occupancy category, we study if increasing the occupancy helps
in increasing performance and energy efficiency. For the full
occupancy category, we investigate if these kernels are limited by
memory bandwidth, coalescing efficiency, or SIMD utilization.

I. INTRODUCTION

It has not been even a decade since GPUs entered the main-

stream computing domain, but they have already made quick

inroads into many domains including the high performance

computing. The main reason is the tremendous computing

power offered by GPUs which is increasing with every new

generation. GPUs are massively multi-threaded, throughput

oriented devices that employ huge number of parallel threads

to achieve high throughput. The peak throughput of GPUs

is a magnitude higher than CPUs. The higher throughput

also comes with higher power consumption. However, GPUs

are more power-efficient devices [1] compared to CPUs, as

performance per watt of GPUs is much higher than CPUs. For

example, NVIDIA’s GTX 690 has 18.7 SP GFLOPS/W while

Intel’s Haswell i7 4770K has 5.3 SP GFLOPS/W. However,

due to various performance bottlenecks which results in under-

utilization of resources, the performance per watt of GPUs is

often much lower than what could be gained theoretically.

There are several factors that contribute to low performance,

including low occupancy, memory bandwidth, control flow

divergence, and memory divergence.
To create power-efficient techniques at the architectural

level, we need to gain GPUs power consumption knowledge

at a fine-grained level and understand the bottlenecks to low

performance [2], [3]. Therefore, in this paper we study GPU

power consumption at the component level for a diverse set

of workloads and investigate the bottlenecks which cause

low performance and power efficiency. We explore correlation

between workload metrics such as IPC and SIMD utilization

and components power consumption to understand how work-

load characteristics affect power consumption. Moreover, the

workloads are studied at the kernel level rather than benchmark

level.

To investigate the bottlenecks for low performance, we

divide the low performance kernels into two categories: low

occupancy and full occupancy. The low occupancy kernels are

further divided into different categories depending upon the

resources their occupancy is limited by. We increase the oc-

cupancy of each category by increasing the corresponding re-

sources and study if high occupancy helps in achieving higher

performance and energy efficiency. We show that increasing

the occupancy helps in increasing performance and energy ef-

ficiency for most of the kernels, but just increasing occupancy

is not enough to achieve the maximum performance. The

full occupancy kernels are analyzed for memory bandwidth

utilization, coalescing efficiency, and SIMD utilization. We

show which kernels are limited by memory bandwidth or

low coalescing efficiency or low SIMD utilization or any

combination of these.

We make the following contributions:

• We study GPUs power consumption at the component

level and investigate their correlation with workload met-

rics.

• We investigate the bottlenecks of low performance cat-

egory and study if increasing the occupancy helps in

increasing the performance.

• We also analyze the kernels having full occupancy but

still performing low and study if these kernels are limited

by memory bandwidth, low coalescing efficiency or low

SIMD utilization.

The rest of the paper is organized as follows. Section II

describes related work. Section III presents GPUs power

efficiency and our bottlenecks investigation methodology. In

the Section IV we explain experimental setup. Section V

presents investigation results. Finally, we draw conclusions in

Section VI.
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II. RELATED WORK

Related work for this paper can be divided into two cate-

gories. First, the previous work done for components power

consumption of GPUs and their correlation with workload

metrics and second, the work done for the bottlenecks anal-

ysis of low performance workloads. There are some works

which estimate GPUs power consumption, but they do power

estimate at a very coarse-grained level. Ma et al. [4] used

statistical analysis to develop GPU power consumption model

and reported power consumption for entire GPU for few

benchmarks. Gebhart et al. [5] used a very simple and high

level power model to estimate the total core power. According

to their work, cores consume up to 70% of total power, but this

is not enough for power optimization as we need to understand

power consumption at much fine-grained level. In contrast

to this, we study power consumption at component level.

The recent release of GPUSimPow [6] and GPUWattch [7],

GPUs power estimation tools has enabled in-depth exploration

of GPUs power consumption. Using metrics to understand

workload characteristics is not new [8], [9], [10], [11], but

none of them study the correlation between workload metrics

and components power. We compute the correlation between

workload metrics and components power to understand the

power characteristics of various workloads. In addition to this,

we also quantify the change in components power consump-

tion with the change in workload characteristics.

Blem et al. [12] characterized a set of benchmarks to find

their performance bottlenecks and predict the performance

improvements after mitigating those bottlenecks. We also

investigate the bottlenecks of low performance workload, but

there are key differences both in the methodology and per-

formance metrics used. First, we use a performance simulator

not only for bottlenecks identification but also for performance

prediction, unlike Blem et al. [12]. They use analytical model

to predict performance, which according to their work has

error in the range -70% to 2×, which is high and a limitation

of their work. Second, we also report power and energy

changes. Third, they observe that low available parallelism is

a bottleneck but do not consider the case that even with high

available parallelism, actual parallelism (occupancy) could still

be very low and hence, low performance. We show that a large

number of kernels have low occupancy and how increasing the

occupancy helps increasing performance and energy efficiency.

III. GPUS POWER EFFICIENCY AND PERFORMANCE

BOTTLENECKS

GPUs are power-efficient devices at full utilization. All

top ten supercomputers in the green 500 list contains GPUs

(www.green500.org). However, due to various bottlenecks

which results in under-utilization of resources, the perfor-

mance per watt of GPUs is much lower than what could be

gained at full utilization. Energy per instruction (E/I) and IPC

per watt (IPC/W) are metrics often used to study the power

efficiency of GPU workloads. Figure 1 shows the E/I (nJ) and

IPC/W against IPC for several kernels. Each point represents

a kernel. For a description of benchmarks used please refer to

Section IV-C. The figure shows that the E/I increases with

the decrease in IPC which results in low power efficiency

for kernels with low IPC. The exact cut for low IPC may

be a point of open discussion, but the trend shows that the

lower IPC results in lower power efficiency. For this study, we

classify the kernels with IPC >50.5% of peak IPC into high

performance (HP) category and kernels with IPC <= 50.5% of

peak IPC into low performance (LP) category. We choose the

cut at 50.5% instead of 50% because there is one kernel with

IPC 50.5% and it lies closer to LP category than HP category.

The peak IPC is 1024 (#SM×#FU per SM×2 = 16×32×2)

for the simulator configuration described in Table II. There is

a factor of 2 in the formula because gpgpu-sim simulates the

full warp at half frequency [13].
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Fig. 1: Power efficiency.

The average E/I for the HP and LP category is 0.27 (nj) and

2.01 (nj), respectively. The later is 7.5× less energy efficient

compared to former, a huge difference which is not good for

the future growth of high performance computing. The HP

and LP category has 21 and 47 kernels, respectively and the

average IPC for the former is 741 and 250 for the later, which

is less than 25% of the peak IPC. Surprisingly, more than 69%

of the kernels belongs to LP category. Blem et al. [12] also

noticed that over half of the benchmarks they studied have IPC

less than 40% of the peak IPC for Tesla C1060. The figure

also shows that the IPC/W decreases with the decrease in IPC.

The average IPC/W for HP and LP category is 4.61 and 1.65

respectively. Thus, the LP category has low performance and

power efficiency. In the following section, we describe our

methodology to investigate the reasons for low performance.

A. Bottlenecks Investigation

GPUs are high throughput devices and use large number of

threads to hide the long latency operations. Occupancy is the

metric used to measure the number of threads allocated to a

streaming multiprocessor (SM) of a GPU. It is defined as a

ratio of threads allocated to an SM and the maximum number

of threads that can be allocated to an SM. A certain minimum

occupancy, which may vary from kernel to kernel depending

on ILP, ratio of arithmetic to memory operations etc., is

necessary to hide latency and to achieve high throughput. The

occupancy depends on parallelism in a kernel, the resources re-

quested by the kernel and the resources available on the GPU.
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We do not consider those kernels for low performance analysis

which do not have enough parallelism and hence also not

enough threads to fill all the SMs. We argue that although it is

possible to get higher performance with lower occupancy [14],

but we only consider the case where parallelism is not an

issue but other architectural resources are bottleneck to higher

performance and energy efficiency. The resources requested by

a kernel are allocated for the entire CTA (Cooperative Thread

Arrays in NVIDIA terminology) and at least one CTA needs

to be allocated for the GPU to work. A CTA is a group of

concurrent threads that execute the same thread program and

may cooperate via shared memory to compute results. GPU

may not have the requested resources to allocate enough CTAs

to fully occupy the GPU which results in low occupancy.

Table I shows the resources constraint for full occupancy on

NVIDIA’s GTX580 which can hold maximum of 1536 threads

per SM. Any kernel which has less than 192 threads/CTA or

require more than 21 registers/thread or more than 6KB shared

memory/CTA cannot have full occupancy. Thus, occupancy

can be limited by CTAs limit, registers usage, and shared

memory usage.

Resource Max Required for full occupancy
CTA limit 8 Min 192 threads/CTA
Registers 32K Max 21/thread
Shared memory 48KB Max 6KB/CTA

TABLE I: Resources constraint for full occupancy.

We divide the LP category kernels into two categories

for further analysis: low occupancy and full occupancy. The

low occupancy category kernels have occupancy <1 and full

occupancy category kernels have occupancy = 1. The low

occupancy could restrict the latency hiding capabilities of

the GPU and hence could restrict performance as well. We

investigate the effect of increasing the occupancy of such

kernels and show the gain in performance and energy in the

Section V-C. We further classify the low occupancy kernels

depending on the resources they are limited by. The low

occupancy kernels that we study fall in one of the following

categories.

• Limited by CTA limit

• Limited by registers

• Limited by shared memory

The full occupancy category kernels have maximum num-

ber of threads that can be assigned to the SM, but still

performing low. In such a case the most likely bottlenecks

are high bandwidth utilization, low coalescing efficiency, and

low SIMD utilization. For the full occupancy category, we

investigate if any of these is a bottleneck for high performance

in Section V-D

IV. EXPERIMENTAL METHODOLOGY

A. Simulator

We use the GPUSimPow simulator for simulating different

benchmarks [6]. The simulator has an average relative error of

11.7% and 10.8% between simulated and hardware power for

GT240 and GTX580, respectively. For more information re-

garding the simulator, please refer to [6]. We use GPUSimPow

to simulate a GPU similar to NVIDIA’s GF110 on the GTX580

card. The baseline simulator configuration is summarized in

Table II.

#SMs 16 Shared memory/SM 48KB
SM freq (MHz) 822 L1 $ size/SM 16KB

Max #Threads per SM 1536 L2 $ size 768KB
Max #CTA per SM 8 # Memory controllers 6

Max CTA size 512 Memory type GDDR5
#FUs per SM 32 Memory clock 2004 MHz
#Registers/SM 32K Memory bandwidth 192.4 GB/s

TABLE II: Baseline simulator configuration

B. Evaluated GPU Components

We briefly describe the GPU components evaluated for

power consumption. For more details of the components, its

subcomponents and power model please refer to [6].

1) Register file (RF): contains multiple SRAM banks,

crossbar, and operand collectors.

2) Execution Units (EU): contains integer, floating point,

and special function units.

3) Warp control unit (WCU): front end of the GPU, con-

tains warp status table, instruction buffer, reconvergence

stack, and scoreboard as subcomponents.

4) Base power (BP): consumed when a SM is activated.

5) Load store unit (LSU) : handles load and store requests

to memory subsystem. In our evaluated component it

contains coalescer, bank conflict checker, shared mem-

ory, L2 cache, constant cache, and texture cache.

6) Clusters power (CP): consumed when a cluster is acti-

vated.

7) Network on chip (NOC): connects SMs to global mem-

ory.

8) Memory controller (MC): current generation of GPUs

such as Fermi use 64-bit memory controllers.

9) Global memory (GM): current generation of GPUs such

as Fermi use either GDDR3 or GDDR5 SGRAM.

10) Total Power (TP): consumed by all GPU components.

C. Benchmarks

Table III shows the benchmarks used for evaluation. The

benchmark selection includes benchmarks from the popular

Rodinia benchmark suite [15] and CUDA SDK [16]. In

addition to Rodinia and CUDA SDK, our benchmarks se-

lection also includes benchmarks recommended by Goswami

et al. [10] and an internally developed motion compensation

kernel from H264.

D. Workload metrics

We use several workload metrics to study the performance

characteristics as in [10], [8]. Following is a short description

of each metric.

1) IPC: Instructions per cycle.
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Name Abbreviation #Kernels Description Origin
backprop BP 2 Multi-layer perceptron training Rodinia

bfs BFS 2 Breadth-first search Rodinia
b+tree BT 2 Graph search Rodinia

cfd CFD 4 Computational fluid dynamics Rodinia
heartwall HW 1 Ultrasound image tracking Rodinia
hotspot HS 1 Processor temperature estimation Rodinia
kmeans KM 2 k-means clustering Rodinia
lavaMD MD 1 Molecular dynamics Rodinia

leukocyte LC 3 Microscopy video tracking Rodinia
mummergpu MUM 2 Pairwise local sequence alignment Rodinia

pathfinder PF 1 Dynamic programming path search Rodinia
srad_v1 SRAD1 6 Speckle reducing anisotropic diffusion Rodinia
srad_v2 SRAD2 2 Speckle reducing anisotropic diffusion Rodinia

similarityScore SS 17 Similarity score calculation Rodinia
blackscholes BS 1 Black-Scholes PDE solver CUDA SDK

binomialOptions BN 1 Binomial options pricing CUDA SDK
convolutionSeparable CS 2 Convolution CUDA SDK
fastWalshTransform FWT 3 Fourier transform CUDA SDK

histogram HG 4 Histograms for analysis CUDA SDK
mergesort MS 4 Parallel merge-sort CUDA SDK

monteCarlo MC 2 Monte carlo numerical solver CUDA SDK
scalarprod SP 1 Scalar product of two vectors CUDA SDK

scan SCAN 3 Parallel prefix sum CUDA SDK
transpose MT 8 Computation of matrix transpose CUDA SDK
vectoradd VA 1 Addition of two vectors CUDA SDK
storegpu STO 1 Distributed storage systems Third party [17]

motionCompensation MCO 2 H264 video decoding Third party

TABLE III: GPGPU benchmarks used for experimental evaluation.

2) Arithmetic Inst. (AI): Ratio of arithmetic instructions to

total instructions.

3) Branch Inst. (BI): Ratio of branch instructions to total

instructions.

4) Memory Inst. (MI): Ratio of memory instructions to total

instructions.

5) Bandwidth Utilization (BW): Ratio of bandwidth uti-

lized and bandwidth available.

6) Coalescing Efficiency (CE): Ratio of global memory

instructions and global memory transactions.

7) SIMD Utilization (SU): Average utilization of SM core

for issued cycles. It does not include the cycles for which

pipeline is stalled and cannot issue instructions.

8) Pipeline Stalled (PS): The fraction of total cycles where

pipeline is stalled and could not issue instructions.

9) Active Warps (AW): Number of active warps per SM.

V. RESULTS

In the Section V-A, we present correlation results. In the

Section V-B, we discuss components power consumption. The

bottlenecks investigation results for the low and full occupancy

categories in the Sections V-C and V-D.

A. Correlation

We calculated the Pearson correlation coefficient between

the workload metrics and components power consumption for

all kernels. The Pearson correlation coefficient is a measure

of linear dependence between the two variables and it varies

between -1 and 1. Higher absolute value of correlation coeffi-

cient means strong linear dependence between the metric and

the corresponding component. The negative value means there

is an inverse dependence. Since the static power is caused by

leakage currents and it does not depend on the workload, but

only on architecture where the workload is executed, therefore,

we only consider dynamic power for studying the correlation

and components power consumption in Section V-B.

We found that IPC has strong correlation with RF (0.95),

EU (0.92), and WCU (0.80). The metrics related to types of

instructions AI, BI, and MI do not have strong correlation

with any of the components, but shows some expected trends.

For example, AI has positive correlation with RF (0.29), EU

(0.42), WCU (0.15), but it has negative correlation with MC

(-0.02). BW utilization has very strong correlation with MC

(0.98) and GM (1.0). AW per SM has strong correlation

to WCU (0.86). The strong value of correlation coefficient

between metric and component power means it is possible to

predict the value of one from another.

B. Components power consumption

Table IV shows components average dynamic power con-

sumption in watts for the HP and LP categories of kernels

described in Section III-A. The average dynamic power con-

sumption of HP and LP categories is 80.0 W and 67.2 W

respectively.

RF EU WCU BP LSU CP NOC MC GM
HP 11.3 20.2 16.2 3.8 0.6 13.1 2.3 4.2 8.3
LP 4.3 7.0 11.2 3.8 0.9 13.0 4.8 7.8 14.4

TABLE IV: Components dynamic power consumption (W).

The table shows a significant change in components power

consumption across the two categories. The EU (25.3%),
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WCU (20.3%), and CP (16.3%) are the three most power

consuming components for HP category and together consume

about 62% of total power. The next most power consuming

component is the RF (14.0%). Since these components have

higher utilization for kernels with high IPC and hence, these

components consume more power. It is interesting to know that

the power consumed by the EU (10.4%), WCU (16.6%), and

RF (6.4%) is far less for LP category compared to HP category.

The largest fraction of power is consumed by the GM (21.4%)

in the LP category. The CP and BP power consumption is same

in both categories because activation power is consumed in

both. The NOC and MC consume more power in LP category

because of increased activity of these units. We see that the

power distribution is different across the two categories.

C. Low occupancy

In this section we present bottlenecks investigation results

for low occupancy category.

1) Limited by CTA Limit: Table V shows kernels whose

occupancy is limited by maximum limit of CTAs. The table

shows the kernel, IPC, power, energy consumption, CTA size,

and occupancy. The IPC for this category varies from 134.2

to 502.2 and the average IPC is 371.3, which is even less than

37% of the peak IPC. The table also shows that the occupancy

varies from 0.33 to 0.67.

Kernel IPC Power(W) Energy(mJ) CTA size Occupancy
BS 387.5 167.9 188.1 128 0.67
CS1 339.8 147.3 261.7 64 0.33
CS2 339.8 152.9 260.7 128 0.67
MS1 448.5 154.5 297.8 128 0.67
MC1 502.2 167.1 3.4 128 0.67
SS1 134.2 129.7 2.0 128 0.67
MCO1 446.9 141.2 52.5 64 0.33

TABLE V: Kernels limited by CTA limit.

Table V shows that the smallest CTA size is 64 threads for

the convolution kernel (CS1), and the chroma (MCO1) kernel

of H264. These kernels require 24 CTAs per SM to have full

occupancy. Thus, we increase the maximum number of CTAs

from 8 to 24 in two steps to increase the occupancy. Figure 2

shows IPC, power, energy, EDP normalized to baseline, and

occupancy when the CTA limit is increased to 16 and 24.

The figure also shows the geometric mean (GMEAN) of all

kernels in the category. The average increase in IPC and

power is 6% and 5%, respectively, when the CTA limit is

increased to 16. The average energy consumption and EDP

is decreased by 7% and 17%, respectively. The largest gain is

53% increase in IPC and 26% decrease in energy consumption

for the MCO1 kernel. All kernels except BS either gain in IPC

or have the same IPC. The reason for the decrease in IPC of BS

kernel is that BS is limited by bandwidth utilization (74%).

The increase in occupancy adds to the existing pressure on

bandwidth, and hence, IPC decreases. Figure 2a shows that

the kernels CS1, CS2, and MCO1 still have occupancy <1,

and thus, these kernels can gain from further increase in CTA

limit. However, CS2 is now limited by shared memory and just

increasing the CTA limit further will not help increasing the

occupancy of CS2. We call such a kind of bottleneck second

order bottleneck. Second order bottlenecks may occur after

elimination of first order bottlenecks.

Figure 2b shows the IPC, power, energy, EDP, and oc-

cupancy when the CTA limit is increased to 24. Only the

occupancy of the MCO1 and CS1 kernels increases further

because all other kernels either already have full occupancy

or show second order bottlenecks after the CTA limit was

increased to 16. The average increase in IPC and power is

9% and 6% over the baseline while the average decrease in

energy consumption and EDP is 6% and 16%, respectively.

The kernel CS1 now also have second order bottleneck of

shared memory. The shared memory per SM is increased to

96KB to eliminate the second order bottleneck of CS1, CS2.
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Fig. 2: IPC, power, energy, EDP, and occupancy of kernels

limited by CTA limit.

0.0

0.5

1.0

1.5

2.0

N
o
rm

al
iz
ed

ra
ti
o

0.0

0.5

1.0

1.5

2.0

O
cc
u
p
an
cy

CS1 CS2 GMEAN

IPC

Power

Energy

EDP

Occupancy

Fig. 3: IPC, power, energy, EDP, and occupancy after second

order bottleneck elimination.

Figure 3 shows that the kernels CS1 and CS2 also have full

occupancy after the elimination of second order bottleneck.

The average increase in IPC of CS1 and CS2 is 13% while

average reduction in energy consumption is 14% after the

elimination of second order bottleneck. At full occupancy, the

average increase in IPC and power for the category is 11% and

7% respectively. The average reduction in energy consumption

and EDP is 9% and 23% compared to the baseline. The kernels

MC1 and SS1 does not gain in performance even at full

occupancy. MC1 gains from increase in memory bandwidth as

shown in Section V-E. SS1 has very low coalescing efficiency
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(6.7%) and hence just increasing occupancy does not help in

increasing the performance.
2) Limited by registers: Table VI shows the kernels whose

occupancy is limited by registers. The table shows the kernel,

IPC, power, energy consumption, registers used per CTA, and

occupancy. The IPC in this category ranges from 26.9 to 517.7

and the average IPC is 343.4 which is 33.5% of the peak IPC.

The table shows that the occupancy of these kernels varies

from 0.21 to 0.83.
The kernel LC1 has the lowest occupancy and it requires

16K registers per CTA. The LC1 has 320 threads per CTA

and requires 4.8 (1536/320 ) CTAs to reach full occupancy.

However, the allocation of threads is done at CTA granularity,

thus, the SM can hold a maximum of 4 CTAs in this case. The

total number of registers required for 4 CTAs is 64K. However,

we only present the results upto 56K registers because at this

point either all kernels have full occupancy or a second order

bottleneck.

Kernel IPC Power(W) Energy(mJ) Regs/CTA Occupancy
BP2 517.7 176.9 30.0 5.5K 0.83
HW 407.6 148.5 3124.4 14.0K 0.67
HS 493.5 154.5 41.9 8.5K 0.50
LC1 271.6 129.8 13283.5 16K 0.21
MUM1 26.9 146.8 714.0 6.0K 0.83

TABLE VI: Kernels limited by registers.

Figure 4 shows IPC, power, energy, EDP and occupancy

when the number of registers per SM are increased to 40K,

48K, and 56K. The baseline configuration has 32K registers.

Figure 4a shows that the kernels BP2 and MUM1 reach full

occupancy after increasing the number of registers to 40K.

The largest increase in IPC is 52% for the LC1 kernel, with

the corresponding 28% decrease in energy consumption. The

average increase in IPC and power is 11% and 3% respectively,

while the average decrease in energy consumption and EDP

is 7% and 17% respectively. The kernel HW reaches full

occupancy when the number of registers are further increased

to 48K, but HS and LC1 kernels are still limited by registers

and have occupancy less than 1 as shown in Figure 4b. The

average increase in IPC and power is 10% and 3% respectively,

while the average decrease in energy consumption and EDP

is 6% and 15% respectively.
The average increase in IPC and power consumption is 15%

and 5% respectively, when the number of registers are further

increased to 56K as shown in the Figure 4c. The average

decrease in energy consumption and EDP is 9% and 21%

respectively. The largest gain is 85% increase in IPC and 37%

decrease in energy consumption for the LC1. Since the kernels

BP2, MUM1, and HW already have full occupancy at 40K

registers. Hence, these kernels do not gain from the increase

in registers. The figure shows that all kernels except LC1 have

full occupancy. At this point, the occupancy of LC1 is 0.63

and is also limited by a second order bottleneck of shared

memory. Hence, we further increase registers size to 64K and

also shared memory to 64KB to eliminate the second order

bottleneck of LC1. The LC1 reaches its maximum achievable
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(a) Registers = 40K

0.0

0.5

1.0

1.5

2.0

N
o
rm

al
iz
ed

ra
ti
o

0.0

0.5

1.0

1.5

2.0

O
cc
u
p
an
cy

BP2 HW HS MUM1 LC1 GMEAN

IPC

Power

Energy

EDP

Occupancy

(b) Registers = 48K
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(c) Registers = 56K

Fig. 4: IPC, power, energy, EDP, and occupancy of kernels

limited by registers.

occupancy of 0.83 and continues to gain from increased

occupancy. At full occupancy, the average increase in IPC and

power for the category is 15% and 5% respectively and the

average reduction in energy consumption and EDP is 9% and

21% compared to baseline. The kernels MUM1 and HW does

not gain in performance even at full occupancy. MUM1 has

high BW utilization (77.2%), low CE (14.9%) and low SU

(52.2%) and it gains from increase in memory bandwidth as

shown in Section V-E. HW also has low CE (48.4%) and SU

(79.6%).

3) Limited by shared memory: There is only one kernel

(STO) which is limited by shared memory. STO is used to

accelerate a set of hashing functions used in distributed storage

systems. The IPC, power, energy, CTA size, shared memory

per CTA, registers per CTA, and occupancy is 405.7, 133.8

(W), 51.6 (mJ), 128, 15.9KB, 4.2K, and 0.25, respectively.

The IPC is well below the peak IPC and the occupancy is

only 25%.

The reason for the low occupancy is that STO is using

almost 16KB shared memory per CTA. Since the baseline

GPU has 48KB shared memory, no more than 3 CTAs can

be allocated simultaneously. Moreover, the CTA size is only

128 which means STO also needs 12 CTAs to achieve full oc-

cupancy. Also, STO needs 4.2K registers per CTA. Therefore,

at some point, STO will be limited by both CTA and registers

limit when the shared memory is increased.

Figure 5 shows the change in performance when the shared

memory is increased to 96KB and 144KB, respectively. There

is a 49% increase in IPC and a 26% reduction in energy

6



consumption when the shared memory size is increased to

96KB. The occupancy is doubled to 0.5. There is only a

slight increase in occupancy (0.58) when the shared memory

is further increased to 144KB because STO is now limited by

second order bottleneck of registers. Figure 5 also shows the

performance of STO kernel when all second order bottlenecks

are eliminated to achieve full occupancy. At full occupancy,

the STO kernel gained 85% increase in IPC with just 21%

more power consumption. Moreover, we have 35% reduction

in energy consumption and 65% less EDP compared to the

baseline.
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Fig. 5: IPC, power, energy, EDP, and occupancy of the STO.

4) Multiple Bottlenecks: There are two kernels MCO2 and

MD which are limited by multiple bottlenecks to begin with.

MCO2 is luma kernel of motion compensation part of H264

decoder and it is limited by CTA limit and shared memory.

The IPC, power, energy, CTA size, shared memory per CTA,

and occupancy of MCO2 is 365.6, 135.6 (W), 183.0 (mj),

64, 6KB, and 0.33, respectively. The kernel has low IPC as

well as low occupancy and needs 24 CTAs and 144KB shared

memory to have full occupancy. Figure 6 shows that the MCO2

kernel achieves full occupancy when CTA limit is increased

to 24 and shared memory size is increased to 144KB. At full

occupancy, the IPC is increased by 39% with 8% more power

consumption and energy consumption and EDP is decreased

by 22% and 44% respectively.
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Fig. 6: IPC, power, energy, EDP and occupancy of the MCO2.

MD is used to calculate the physical movements of

molecules and atoms and is limited by shared memory and

registers. The IPC, power, energy, CTA size, shared memory

per CTA, registers per CTA, and occupancy of MD is 142.7,

138.9 (W), 24937.0 (mj), 128, 7.1KB, 4.62K, and 0.5 respec-

tively. We increase the shared memory to 64KB and registers

to 48K to increase the occupancy. The occupancy increases to

0.67, but no gain in IPC. MD is now limited by second order

bottleneck of CTA limit. We further increase shared memory

to 96KB, registers to 56K, and number of CTAs to 12 to have

full occupancy. The IPC and power consumption is increased

by 2% and 5% respectively. The energy and EDP also increase

by 3% and 1% respectively, which shows MD does not gain

from increased occupancy. MD does not gain much in IPC

from increased occupancy because it has very low coalescing

efficiency (13%).

D. Full occupancy

Table VII shows kernels having full occupancy but low

performance. The table shows kernel, IPC, power, and energy

consumption. The IPC in this category ranges from 8.0 to

468.5. The average IPC is 208.2 which is less than 21% of

the peak IPC. Since all kernels in this category have full

occupancy, increasing occupancy is not a solution. We analyze

if bandwidth utilization (BW), coalescing efficiency (CE), and

SIMD utilization (SU) is a bottleneck for low performance.

Kernel IPC Power
(W)

Energy
(mJ)

Kernel IPC Power
(W)

Energy
(mJ)

BT1 432.8 144.7 133.5 SCAN2 286.7 161.1 96.3
BT2 467.0 149.4 123.6 SCAN3 8.0 116.6 10.10
BFS1 21.8 149.9 195.2 SRAD1_1 331.0 163.0 17.1
BFS2 276.5 151.8 10.0 SRAD1_2 370.1 170.3 9.27
CFD1 62.3 144.1 16.7 SRAD1_3 273.1 122.6 9.0
CFD2 184.5 156.6 4.7 SRAD1_4 148.1 148.6 5.9
CFD3 71.0 141.9 5.9 SRAD2_1 304.7 154.0 467.7
FWT1 100.1 154.4 189.7 SRAD2_2 167.0 137.2 452.8
FWT2 264.5 168.4 79.6 MT1 359.9 154.8 3.6
HG3 55.9 125.1 9.4 MT2 46.3 128.2 16.2
KM1 468.5 181.7 741.0 MT3 417.3 156.8 3.5
KM2 11.0 153.2 2216.5 MT4 165.8 134.1 6.6
MUM2 35.62 152.0 681.4 MT5 320.1 152.9 3.5
SP 182.3 141.5 20.7 MT6 144.9 132.5 6.8
VA 171.9 147.4 11.5 MT7 155.8 133.1 6.9
SCAN1 120.4 158.0 57.2 MT8 238.7 151.1 3.1

TABLE VII: Kernels with full occupancy but low performance.

Figure 7 shows BW, CE and SU as a percentage of maxi-

mum for the full occupancy kernels. The high BW utilization,

low CE, and low SU can severely limit the performance

of GPU kernels. Figure 7 shows that kernels CFD1, CFD2,

CFD3, FWT1, FWT2, KM1, KM2, MUM2, SP, SCAN1,

SCAN2, SRAD1_1, SRAD1_2, SRAD1_4, and VA have high

BW utilization and these kernels could be performing low due

high bandwidth requirements.

Figure 7 also shows that the kernels HG3 (3%), KM2

(6%), MUM2 (4%), SCAN3 (5%) and MT2 (11%) have very

low CE. Also kernels BT1, BT2, BFS1, SCAN1, SCAN2,

SRAD1_1, SRAD1_2, SRAD1_3, SRAD2_1, SRAD2_2,

MT1, MT3, MT4, MT5, MT6, MT7, and MT8 have less

than 100% CE. Low CE could be a reason for their low

performance. The low CE results in more than one memory

transaction for one memory instruction, resulting in higher

pressure on the memory system and larger latencies, and thus,

could also limit the performance.

Another factor that could also impact the performance of

full occupancy kernels is low SU. The SU is low as a result

of branch divergence, likely leading to low performance. For

example, a kernel having 50% SU can never have IPC more

than 50% of the peak IPC. Figure 7 shows that kernels BFS1

(30.3%) and MUM2 (35.5%) have very low SU and also
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Fig. 8: IPC, power, energy, and EDP of full occupancy kernels.

kernels BT1, BT2, BFS2, HG3, SP, SCAN1, SCAN2, SCAN3,

SRAD1_3, SRAD2_1, SRAD2_2 have less than 100% SU.

The figure also shows that some kernels such as BFS1,

MUM2, SRAD1_3 have both low CE and SU and hence,

these kernels could have low performance due to the combined

effect. All of the matrix transpose kernels have less than 100%

CE.

We study the effect of increasing memory bandwidth on

full occupancy category. We double the memory bandwidth

by doubling the DRAM frequency, incrementing 33.3% at a

time and study the change in performance at each increment.

The baseline configuration has memory bandwidth of 192.4

GB/s. Thus, we increase memory bandwidth to 255.9 GB/s,

319.4 GB/s, and 384.8 GB/s in three steps.

Figure 8a shows IPC, power, energy, and EDP of full

occupancy kernels when the memory bandwidth is increased
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to 255.9 GB/s. The average increase in IPC is 18% with 5%

more power consumption. Moreover, we see a 11% average re-

duction in energy consumption and 25% less EDP compared to

baseline. Figure 8b shows that kernels gain performance from

further increase in memory bandwidth. The average increase

in IPC is 30% with only 9% increase in power consumption,

while the average decrease in energy consumption and EDP

is 16% and 36% compared to baseline. Figure 8c shows

that most of the kernels continue to gain from increase in

memory bandwidth. The average increase in IPC and power

consumption is 38% and 12% respectively, while the average

decrease in energy consumption and EDP is 19% and 41%

respectively at 384.8 GB/s. The kernels BT1, BT2, HG3,

SCAN3, and SRAD1_3 gain very low (avg. 1.3%) from the

increase in memory bandwidth because these kernels have low

BW utilization (avg. 13%), low CE (avg. 39%), and low SU

(avg. 88%).

E. Performance at the combined configuration

In Sections V-C and V-D, we presented bottleneck inves-

tigation category-wise. Ideally, we would build a GPU with

enough resources so that all kernels achieve optimal perfor-

mance. Practically, however, it is impossible to build such a

GPU due to the area and power demands of the resources

combined. Thus, we need to find a design point which captures

the benefits for most of the kernels. In this section, we evaluate

such a design point. We use the following greedy approach:

For each category of kernels, we find an optimal point using

maximum reduction in EDP as the criterion. We consider

category-wise results up to first order bottlenecks.

Category Optimal Point
Limited by CTA limit CTA = 16
Limited by registers Registers = 56K
Limited by shared memory Shared memory = 96KB
Multiple bottlenecks CTA = 24, shared memory = 144KB
Full occupancy Memory bandwidth = 384.8 GB/s

TABLE VIII: EDP optimal point for each category.

Table VIII shows the EDP optimal point for each category.

Then, we combine category EDP optimal points to derive the

combined configuration (CTA = 24, registers = 56K, shared

memory = 144KB, memory bandwidth = 384.8 GB/s). We

choose a larger value of the resource when the resource is

common but has different values in two categories to keep

the category-wise gains unaffected. For example, the number

of CTAs is 16 in CTA limited category and 24 in multiple

bottlenecks category and we choose CTAs to be 24 for

the combined configuration. This approach will result in a

suboptimal solution that can be used to evaluate the effect

of all modifications on various categories.

Figure 9 shows the performance of kernels limited by

CTA at the combined configuration. The average increase

in IPC and power is 31% and 18% respectively, while the

average reduction in energy consumption and EDP is 15%

and 39% respectively. The increase in performance and energy

reduction is higher than the category level and is mainly due
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Fig. 9: IPC, power, energy, EDP, and occupancy of kernels

limited by CTA limit at the combined configuration.
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Fig. 10: IPC, power, energy, EDP, and occupancy of kernels

limited by registers at the combined configuration.

to the elimination of second order bottlenecks and increased

bandwidth.

Figure 10 shows the performance of kernels limited by

registers at the combined configuration. The average gain

in IPC is 36% which is higher than the average gain at

the category level (15%). The average reduction in energy

consumption and EDP is 15% and 37% which is also higher

than the category-wise gain. The higher gain in performance

and energy reduction at the combined configuration shows the

registers limited kernels also gain from increased bandwidth.

STO kernel has 56% increase in IPC and 26% decrease

in energy consumption compared to baseline at the combined

configuration. In the multiple bottlenecks category, MD kernel

does not gain in IPC even at the combined configuration

because of low CE and MCO2 kernel performance is same

as at the category level because it has low BW utilization

(3.5%) and hence does not benefit from increased bandwidth

at the combined configuration.

The average gain in IPC for the full occupancy kernels at the

combined configuration is 38% which is identical to the gain

at the category level. This shows that kernels in this category

do not gain from other architectural changes, done to increase

the occupancy. This is expected as this category already had

full occupancy. The average reduction in energy consumption

and EDP is 18% and 40% respectively, which is slightly less

than the category level. This is caused by the increase in static

power due to the increased size of other components.

Table IX shows components dynamic power consumption

for LP kernels at the baseline (LP old), combined configuration

(LP new) and ratio between them. The component power

consumption of RF (48%), EU (35.0%), WCU (13%), LSU

(48%), NOC (39%), MC (39%), and GM (57%) increased

compared to baseline. This is because the bottlenecks elim-

ination resulted in better utilization of resources which is

indicated by higher average IPC (35.5%) compared to baseline.

The power consumption of BP and CP remains almost same

9



because the activation power consumption remains same.

RF EU WCU BP LSU CP NOC MC GM
LP old 4.3 7.0 11.2 3.8 0.9 13.0 4.8 7.8 14.4
LP new 6.4 9.5 12.6 3.7 1.4 13.0 6.7 10.8 22.6
Ratio 1.48 1.35 1.13 0.99 1.48 1.00 1.39 1.39 1.57

TABLE IX: Components dynamic power consumption (W)

for LP category kernels at the baseline (LP old), combined

configuration (LP new) and their ratio.

VI. CONCLUSIONS

We studied the power consumption of GPUs at the com-

ponent level and correlation between components power con-

sumption and workload metrics. We classified kernels into HP

and LP categories. The later has low performance as well as

low energy efficiency. The results show a significant change

in components power consumption across the two categories.
We also investigated the performance bottlenecks of LP

category. The results show that most of the kernels with low

occupancy gain in performance and energy efficiency from the

increased occupancy. At full occupancy, the average increase

in IPC, the average reduction in energy consumption and EDP

is 11%, 9% and 23% respectively for CTA limited kernels.

The average increase in IPC, the average reduction in energy

consumption and EDP is 15%, 9% and 21% respectively for

registers limited kernels at full occupancy. The results show

that high occupancy is an important factor for both high

performance and energy efficiency.
We further show that full occupancy kernels have low

performance either due to high BW utilization or low CE

or low SU. The full occupancy kernels on an average have

38% increase in IPC, 19% decrease in energy consumption

and 41% reduction in EDP at double bandwidth. However, we

also found that only few kernels (9 out of 47) could achieve

IPC greater than 50.5% of the peak IPC. We conclude that

increased occupancy and bandwidth does help in increasing

the performance and reducing the energy consumption, but it

is alone not enough to achieve the maximum performance for

most of the kernels. We also show that many kernels in full

occupancy category are severely limited by low CE.
In the future work, we would investigate the architectural

implications of increasing the CTA limit, registers, shared

memory in detail. Studying the bottlenecks that low CE

creates at different levels in memory hierarchy would also be

very interesting and any opportunities for micro-architectural

changes that could benefit the kernels suffering from very low

CE should be explored.
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