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Abstract

Scaling up deep neural network capacity has been known as an effective approach
to improving model quality for several different machine learning tasks. In many
cases, increasing model capacity beyond the memory limit of a single accelera-
tor has required developing special algorithms or infrastructure. These solutions
are often architecture-specific and do not transfer to other tasks. To address the
need for efficient and task-independent model parallelism, we introduce GPipe, a
pipeline parallelism library that allows scaling any network that can be expressed
as a sequence of layers. By pipelining different sub-sequences of layers on sep-
arate accelerators, GPipe provides the flexibility of scaling a variety of different
networks to gigantic sizes efficiently. Moreover, GPipe utilizes a novel batch-
splitting pipelining algorithm, resulting in almost linear speedup when a model
is partitioned across multiple accelerators. We demonstrate the advantages of
GPipe by training large-scale neural networks on two different tasks with distinct
network architectures: (i) Image Classification: We train a 557-million-parameter
AmoebaNet model and attain a top-1 accuracy of 84.4% on ImageNet-2012, (ii)
Multilingual Neural Machine Translation: We train a single 6-billion-parameter,
128-layer Transformer model on a corpus spanning over 100 languages and achieve
better quality than all bilingual models.

1 Introduction

Deep learning has seen great progress over the last decade, partially thanks to the development of
methods that have facilitated scaling the effective capacity of neural networks. This trend has been
most visible for image classification, as demonstrated by the accuracy improvements on ImageNet
with the increase in model capacity (Figure 1a). A similar phenomenon can also be observed in
the context of natural language processing (Figure 1b) where simple shallow models of sentence
representations [1, 2] are outperformed by their deeper and larger counterparts [3, 4].

While larger models have brought remarkable quality improvements to several fields, scaling neural
networks introduces significant practical challenges. Hardware constraints, including memory
limitations and communication bandwidths on accelerators (GPU or TPU), force users to divide larger
models into partitions and to assign different partitions to different accelerators. However, efficient
model parallelism algorithms are extremely hard to design and implement, which often requires the
practitioner to make difficult choices among scaling capacity, flexibility (or specificity to particular
tasks and architectures) and training efficiency. As a result, most efficient model-parallel algorithms
are architecture and task-specific. With the growing number of applications of deep learning, there is
an ever-increasing demand for reliable and flexible infrastructure that allows researchers to easily
scale neural networks for a large variety of machine learning tasks.
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Figure 1: (a) Strong correlation between top-1 accuracy on ImageNet 2012 validation dataset [5]
and model size for representative state-of-the-art image classification models in recent years [6, 7, 8,
9, 10, 11, 12]. There has been a 36× increase in the model capacity. Red dot depicts 84.4% top-1
accuracy for the 550M parameter AmoebaNet model. (b) Average improvement in translation quality
(BLEU) compared against bilingual baselines on our massively multilingual in-house corpus, with
increasing model size. Each point, T (L,H,A), depicts the performance of a Transformer with L
encoder and L decoder layers, a feed-forward hidden dimension of H and A attention heads. Red dot
depicts the performance of a 128-layer 6B parameter Transformer.

To address these challenges, we introduce GPipe, a flexible library that enables efficient training of
large neural networks. GPipe allows scaling arbitrary deep neural network architectures beyond the
memory limitations of a single accelerator by partitioning the model across different accelerators and
supporting re-materialization on every accelerator [13, 14]. With GPipe, each model can be specified
as a sequence of layers, and consecutive groups of layers can be partitioned into cells. Each cell is
then placed on a separate accelerator. Based on this partitioned setup, we propose a novel pipeline
parallelism algorithm with batch splitting. We first split a mini-batch of training examples into
smaller micro-batches, then pipeline the execution of each set of micro-batches over cells. We apply
synchronous mini-batch gradient descent for training, where gradients are accumulated across all
micro-batches in a mini-batch and applied at the end of a mini-batch. Consequently, gradient updates
using GPipe are consistent regardless of the number of partitions, allowing researchers to easily train
increasingly large models by deploying more accelerators. GPipe can also be complemented with
data parallelism to further scale training.

We demonstrate the flexibility and efficiency of GPipe on image classification and machine translation.
For image classification, we train the AmoebaNet model on 480× 480 input from the ImageNet 2012
dataset. By increasing the model width, we scale up the number of parameters to 557 million and
achieve a top-1 validation accuracy of 84.4%. On machine translation, we train a single 128-layer
6-billion-parameter multilingual Transformer model on 103 languages (102 languages to English).
We show that this model is capable of outperforming the individually trained 350-million-parameter
bilingual Transformer Big [15] models on all 102 language pairs.

2 The GPipe Library

We now describe the interface and the main design features of GPipe. This open-source library is
implemented under the Lingvo [16] framework. The core design features of GPipe are generally
applicable and can be implemented for other frameworks [17, 18, 19].

2.1 Interface

Any deep neural network can be defined as a sequence of L layers. Each layer Li is composed of
a forward computation function fi, and a corresponding set of parameters wi. GPipe additionally
allows the user to specify an optional computation cost estimation function, ci. With a given number
of partitions K, the sequence of L layers can be partitioned into K composite layers, or cells. Let pk
consist of consecutive layers between layers i and j. The set of parameters corresponding to pk is
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Figure 2: (a) An example neural network with sequential layers is partitioned across four accelerators.
Fk is the composite forward computation function of the k-th cell. Bk is the back-propagation
function, which depends on both Bk+1 from the upper layer and Fk. (b) The naive model parallelism
strategy leads to severe under-utilization due to the sequential dependency of the network. (c) Pipeline
parallelism divides the input mini-batch into smaller micro-batches, enabling different accelerators to
work on different micro-batches simultaneously. Gradients are applied synchronously at the end.

(b)

(a) (c)

equivalent to the union of wi, wi+1, . . . , wj , and its forward function would be Fk = fj◦. . .◦fi+1◦fi.
The corresponding back-propagation function Bk can be computed from Fk using automatic symbolic

differentiation. The cost estimator, Ck, is set to Σj
l=icl.

The GPipe interface is extremely simple and intuitive, requiring the user to specify: (i) the number of
model partitions K, (ii) the number of micro-batches M , and (iii) the sequence and definitions of L
layers that define the model. Please refer to supplementary material for examples.

2.2 Algorithm

Once the user defines the sequence of layers in their network in terms of model parameters wi, forward
computation function fi, and the cost estimation function ci, GPipe partitions the network into K
cells and places the k-th cell on the k-th accelerator. Communication primitives are automatically
inserted at partition boundaries to allow data transfer between neighboring partitions. The partitioning
algorithm minimizes the variance in the estimated costs of all cells in order to maximize the efficiency
of the pipeline by syncing the computation time across all partitions.

During the forward pass, GPipe first divides every mini-batch of size N into M equal micro-batches,
which are pipelined through the K accelerators. During the backward pass, gradients for each
micro-batch are computed based on the same model parameters used for the forward pass. At the end
of each mini-batch, gradients from all M micro-batches are accumulated and applied to update the
model parameters across all accelerators. This sequence of operations is illustrated in Figure 2c.

If batch normalization [20] is used in the network, the sufficient statistics of inputs during training
are computed over each micro-batch and over replicas if necessary [21]. We also track the moving
average of the sufficient statistics over the entire mini-batch to be used during evaluation.

2.3 Performance Optimization

In order to reduce activation memory requirements, GPipe supports re-materialization [14]. During
forward computation, each accelerator only stores output activations at the partition boundaries.
During the backward pass, the k-th accelerator recomputes the composite forward function Fk. As a
consequence, peak activation memory requirement is reduced to O(N + L

K
×

N
M
), where N

M
is the

micro-batch size and L
K

is the number of layers per partition. In comparison, memory requirement
without re-materialization and partitioning would be O(N × L), since computing the gradients bi
requires both the upper layer gradients bi+1 and the cached activations fi(x).
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Table 1: Maximum model size of AmoebaNet supported by GPipe under different scenarios. Naive-1
refers to the sequential version without GPipe. Pipeline-k means k partitions with GPipe on k
accelerators. AmoebaNet-D (L, D): AmoebaNet model with L normal cell layers and filter size D .
Transformer-L: Transformer model with L layers, 2048 model and 8192 hidden dimensions. Each
model parameter needs 12 bytes since we applied RMSProp during training.

NVIDIA GPUs (8GB each) Naive-1 Pipeline-1 Pipeline-2 Pipeline-4 Pipeline-8

AmoebaNet-D (L, D) (18, 208) (18, 416) (18, 544) (36, 544) (72, 512)
# of Model Parameters 82M 318M 542M 1.05B 1.8B
Total Model Parameter Memory 1.05GB 3.8GB 6.45GB 12.53GB 24.62GB
Peak Activation Memory 6.26GB 3.46GB 8.11GB 15.21GB 26.24GB

Cloud TPUv3 (16GB each) Naive-1 Pipeline-1 Pipeline-8 Pipeline-32 Pipeline-128

Transformer-L 3 13 103 415 1663
# of Model Parameters 282.2M 785.8M 5.3B 21.0B 83.9B
Total Model Parameter Memory 11.7G 8.8G 59.5G 235.1G 937.9G
Peak Activation Memory 3.15G 6.4G 50.9G 199.9G 796.1G

As illustrated in Figure 2c, partitioning introduces some idle time per accelerator, which we refer to
as the bubble overhead. This bubble time is O( K−1

M+K−1
) amortized over the number of micro-steps

M . In our experiments, we found the bubble overhead to be negligible when M ≥ 4 × K. This
is also partly because re-computation during the backward pass can be scheduled earlier, without
waiting for the gradients from earlier layers.

GPipe also introduces low communication overhead, given that we only need to pass activation
tensors at the partition boundaries between accelerators. Therefore, we can achieve efficient scaling
performance even on accelerators without high-speed interconnects.

Figure 2c assumes partitions are evenly balanced. However, memory requirements and computa-
tion flops at different layers are often quite imbalanced. In such scenarios, imperfect partitioning
algorithms might lead to load imbalance. Better partitioning algorithms can potentially improve the
performance over our heuristic approach.

3 Performance Analyses

We evaluate GPipe performance with two very different types of model architectures: an Amoe-
baNet [12] convolutional model and a Transformer [15] sequence-to-sequence model. We ran
experiments to study their scalability, efficiency and communication cost.

We expect both re-materialization and pipeline parallelism to benefit memory utilization and thus
make fitting giant models feasible. We report the biggest model size GPipe can support under
reasonably large input size in Table 1. For AmoebaNet, we ran the experiments on Cloud TPUv2s
with 8GB memory per accelerator. We used a fixed input image size of 224× 224 and mini-batch
size of 128. Without GPipe, a single accelerator can train up to an 82M-parameter AmoebaNet,
constrained by device memory limits. Owing to re-materialization in back-propagation and batch
splitting, GPipe reduces the intermediate activation memory requirements from 6.26GB to 3.46GB,
enabling a 318M-parameter model on a single accelerator. With model parallelism, we were able to
scale AmoebaNet to 1.8 billion parameters on 8 accelerators, 25x more than what is possible without
GPipe. In this case, the maximum model size did not scale perfectly linearly due to the imbalanced
distribution of model parameters over different layers in AmoebaNet.

We next trained Transformer models using Cloud TPUv3s with 16GB memory per accelerator core.
We used a fixed vocabulary size of 32k, sequence length 1024 and batch size 32. Each Transformer
layer has 2048 for model dimension, 8192 for feed-forward hidden dimension and 32 attention heads.
We scaled the model by varying the number of layers. Re-materialization allows training a 2.7×
larger model on a single accelerator. With 128 partitions, GPipe allows scaling Transformer up to
83.9B parameters, a 298× increase than what is possible on a single accelerator. Different from
AmoebaNet, the maximum model size scales linearly with the number of accelerators for Transformer,
since each layer has the same number of parameters and input sizes.
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Table 2: Normalized training throughput using
GPipe with different # of partitions K and differ-
ent # of micro-batches M on TPUs. Performance
increases with more micro-batches. There is an
almost linear speedup with the number of accelera-
tors for Transformer model when M ≫ K. Batch
size was adjusted to fit memory if necessary.

TPU AmoebaNet Transformer

K = 2 4 8 2 4 8

M = 1 1 1.13 1.38 1 1.07 1.3
M = 4 1.07 1.26 1.72 1.7 3.2 4.8

M = 32 1.21 1.84 3.48 1.8 3.4 6.3

To evaluate efficiency, we report the normalized
training throughput of AmoebaNet-D (18, 256)
and Transformer-48 using GPipe with different
numbers of partitions and different numbers of
micro-batches in Table 2. Each partition is as-
signed to a separate accelerator. We observe
that when the number of micro-batches M is
at least 4× the number of partitions, the bub-
ble overhead is almost negligible. For Trans-
former model, there is a 3.5× speedup when it is
partitioned across four times more accelerators.
Furthermore, training throughput scales almost
linearly with the number of devices, thanks to
the computation being evenly distributed across
Transformer layers. In contrast, the AmoebaNet
model achieves sub-linear speedup due to its imbalanced computation distribution. When M is
relatively small, the bubble overhead can no longer be negligible. When M is 1, there is effectively
no pipeline parallelism. We observe relatively constant throughput regardless of the number of
accelerators used, indicating only one device is actively computing at any given time.

To measure the effect of communication overhead with GPipe, we ran our experiments on a single
host with multiple NVIDIA P100 GPUs but without NVLinks. Data transfer across GPUs then has to
involve the relatively slow device-to-host and host-to-device transfers through PCI-E. The number of
micro-batches was fixed at 32. As shown in Table 3, we observe 2.7× speedup for AmoebaNet-D
(18, 128) when we increase the number of partitions from 2 to 8. For the 24-layer Transformer,

Table 3: Normalized training throughput using
GPipe on GPUs without high-speed interconnect.

GPU AmoebaNet Transformer

K = 2 4 8 2 4 8

M = 32 1 1.7 2.7 1 1.8 3.3

the speedup is 3.3×. There is similar linear
speedup to what we observe on TPUs where
high-speed interconnects are equipped. The
communication bandwidth between devices is
no longer a bottleneck for model parallelism
since GPipe only transfers activation tensors at
the boundaries of partitions.

3.1 Performance Overhead Breakdown

Table 4: Time step breakdownTo study opportunities for future performance
improvements, we identified the key factors
that affect the performance of GPipe on Cloud
TPUs. We measured the time spent on differ-
ent activities listed in Table 4. We found that
re-computation time was the main contributor
to GPipe overhead, taking up to 23% of the
total step time. Another source of overhead
was load imbalance. With two partitions, over-
head caused by load imbalance was only 3.2%.
The theoretical bubble overhead is O( K−1

M+K−1
)

where K is the number of partitions and M
is the number of micro-batches in each mini-
batch. The observed bubble overhead was
slightly lower than the theoretical value partly
because re-computation was scheduled early to overlap with the bubble. Weight update time for
gradient aggregation at the end of pipeline was also small, thanks to high-speed interconnections
between the accelerators.

4 Image Classification

As a proof of concept, we first used GPipe to scale AmoebaNet. We increased the number of channels
in an AmoebaNet and scaled the input image size to 480×480. We trained this 557-million-parameter
AmoebaNet-B(18, 512) on the ImageNet 2012 dataset, using the same hyper-parameters as described
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Table 5: Image classification accuracy using AmoebaNet-B (18, 512) first trained on ImageNet 2012
then fine-tuned on others. Please refer to the supplementary material for a detailed description of our
training setup. Our fine-tuned results were averaged across 5 fine-tuning runs. Baseline results from
Real et al. [12] and Cubuk et al. [26] were directly trained from scratch. *Mahajan et al.’s model [27]
achieved 85.4% top-1 accuracy but it was pretrained on non-public Instagram data. Ngiam et al. [28]
achieved better results by pre-training with data from a private dataset (JFT-300M).

Dataset # Train # Test # Classes Accuracy (%) Previous Best (%)

ImageNet-2012 1,281,167 50,000 1000 84.4 83.9 [12] (85.4∗[27])
CIFAR-10 50,000 10,000 10 99.0 98.5 [26]
CIFAR-100 50,000 10,000 100 91.3 89.3 [26]
Stanford Cars 8,144 8,041 196 94.6 94.8∗ [26]
Oxford Pets 3,680 3,369 37 95.9 93.8∗ [29]
Food-101 75,750 25,250 101 93.0 90.4∗ [30]
FGVC Aircraft 6,667 3,333 100 92.7 92.9∗ [31]
Birdsnap 47,386 2,443 500 83.6 80.2∗ [32]

in [12]. The network was divided into 4 partitions. This single model achieves 84.4% top-1 and 97%
top-5 validation accuracy with single-crop.

We further demonstrate the effectiveness of giant convolution networks on other image datasets
through transfer learning [22, 23]. Specifically, we used the pre-trained ImageNet model to fine-tune
on a variety of target datasets ranging from general to fine-grained classification. We changed the
number of output units in the last softmax classification layer to the number of classes in the target
dataset and initialized the new softmax layer randomly. All the other layers were initialized from
ImageNet pre-training. Input images to the network during training were resized to 480 × 480,
horizontally flipped randomly and augmented using cutout [24]. Training hyper-parameters were
the same as those used for ImageNet (a detailed description of our training setup is provided in
supplementary material). In Table 5, we report the average single-crop test accuracy over 5 fine-tuning
runs for each dataset. Our giant models obtain competitive results on all target datasets. For example,
CIFAR-10 error rate is reduced to 1% and CIFAR-100 error rate to 8.7%. These results corroborate
the findings by Kornblith et al. [25], i.e., better ImageNet models transfer better.

5 Massive Massively Multilingual Machine Translation

Next, we demonstrate the flexibility of GPipe by scaling up models used for Natural Language
Processing (NLP). Due to an abundance of available parallel corpora, neural machine translation
(NMT) has become a benchmark task for any architecture used for NLP [33, 15, 34, 35, 36]. For
this reason, we continue our GPipe experiments on a large-scale multilingual NMT task. We use a
corpus of parallel documents over 102 languages and English, containing a total of 25 billion training
examples, ranging from 104 to 109 per language [37]. This dataset creates a realistic test bed for
experiments on scalability by spanning a diverse set of languages from data-scarce (low-resource) to
data-rich (high-resource). For the first time in machine translation, we show that a large enough NMT
model can learn the mapping between more than 100 language pairs simultaneously, while achieving
better than bilingual model performance for all languages. This further brings out the importance of
having efficient and flexible model-parallelism tools.

Our comparison is based on the performance of a single Transformer [15] trained on all language
pairs in this corpus. We scale the architecture along two dimensions to stress the flexibility of GPipe:
(i) along the depth by increasing the number of layers in the model and (ii) along the width by
increasing the hidden dimension in the feed-forward layers and the number of attention heads (as well
as # attention channels) in multi-head attention layers similar to Shazeer et al. [34]. Please refer to
the supplementary material for a detailed description of our dataset, baselines, training configuration
and optimization hyper-parameters.

We start with a standard 400M-parameter Transformer Big model, T (6, 8192, 16)1, as described in
Chen et al. [35], with a vocabulary size of 64k. In Figure 3, we compare its performance against a

1T (L,H,A) is a Transformer model with L encoder layers and L decoder layers, a feed-forward hidden
dimension of H and A attention heads. The model dimension is fixed to 1024.
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1.3B-parameter deep model, T (24, 8192, 16), a 1.3B-parameter wide model, T (12, 16384, 32), a 3B-
parameter model, T (32, 16384, 32) and a 6B-parameter model, T (64, 16384, 32). All of the models
are trained on all language pairs simultaneously, using temperature-based sampling as employed for
multilingual BERT2 [3]. T (12, 16384, 32), T (24, 8192, 32), T (32, 16384, 32) and T (64, 16384, 32)
are partitioned over 2, 4, 8 and 16 accelerators respectively.

From Figure 3, we can observe that increasing the model capacity from 400M to 1.3B parameters
significantly improves performance across all languages. Scaling up the model from 1.3B parameters
to 6B parameters shows further improvement, especially for high-resource languages. Below we
discuss some of our empirical findings based on these large-scale experiments.

Figure 3: Translation quality across all languages with increasing multilingual model capacity.
Languages are arranged in the order of decreasing training dataset size from left to right. T (L,H,A),
depicts the performance of a Transformer with L encoder and L decoder layers, a feed-forward hidden
dimension of H and A attention heads. We notice that increasing the model capacity, from 400M
params (T (6, 8192, 16)) to 1.3B (T (24, 8192, 16)), and further, to 6B (T (64, 16384, 32)), leads to
significant quality improvements across all languages. We also notice huge quality improvements
for low-resource languages (right side of the plot), when compared against bilingual baselines,
highlighting the significant transfer gains resulting from training a multilingual model.

Depth-Width Trade-off: We study the trade-off between depth and width in our multilingual
setup and compare the performance of 1.3B wide model T (12, 16384, 32) and 1.3B deep model
T (24, 8192, 16). While the quality of these two models on high-resource languages (left of Figure 3)
is very similar, the deeper model outperforms by huge margins on low-resource languages, suggesting
that increasing model depth might be better for generalization. Further, the quality improvements for
low-resource languages (right side of Figure 3), when comparing the 1.3B deep model against the
400M model, are almost as large as the improvements for high-resource languages, indicating that
increasing depth might potentially increase the extent of transfer to low-resource tasks.

Trainability Challenges with Deep Models: Although depth increases the representational capacity
of neural networks, it also complicates the optimization problem. In our large-scale experiments,
we encountered severe trainability issues arising from a combination of sharp activations (positive
kurtosis) and dataset noise. We observed that after training for a few thousand steps, the model
predictions would become extremely peaky and vulnerable to noise, which frequently resulted
in non-finite or large gradients that eventually destroyed the learning progress. To counter these
problems, we apply two methods: (i) Following Zhang et al. [38], we scale down the initialization
of all transformer feed-forward layers by the number of layers. (ii) We clip the logit predictions
(softmax pre-activations) whenever their magnitude exceeds a certain value. A combination of these
two approaches allows us to mitigate the training instability posed by scaling model depth.

6 Design Features and Trade-Offs

Several approaches have been proposed to enable efficient large-scale model parallelism. However,
each approach chooses its own set of trade-offs, making it suitable for scaling specific architectures

2https://github.com/google-research/bert/blob/master/multilingual.md
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under particular hardware constraints. The core idea of model parallelism involves partitioning a
network into different computational units, which are then placed on different devices [39, 40, 41, 42].
Conceptually this supports scaling a large spectrum of models to huge capacities. However these
approaches typically suffer from low hardware utilization and communication bottlenecks. Single
Program Multiple Data (SPMD) and pipeline parallelism have been proposed as solutions to counter
these challenges.

Mesh-Tensorflow [34] follows the SPMD paradigm, which extends the Single Instruction Multiple
Data (SIMD) approach used for data parallelism to other tensor dimensions. SPMD allows splitting
every computation across multiple devices, allowing the user to scale the size of individual matrix
multiplications (and thus, the model parameters of individual layers) linearly with the number of
accelerators. However, this also introduces high communication overhead between the accelerators
due to an abundance of AllReduce-like operations used to combine the outputs of each parallelized
matrix multiplication. This limits the applicability of the approach to scenarios where accelerators
are connected with high speed interconnects. Further, SPMD limits the type of operations that can be
efficiently scaled, restricting its use to a specific set of network architectures and machine learning
tasks. For example, splitting along the channel dimension of convolution layers under this paradigm
is not efficient given that channels are effectively fully connected, whereas splitting along the spatial
dimension requires sophisticated techniques for the halo regions. While SPMD allows scaling the
model depth by making each operation smaller, it requires splitting each layer over a larger number
of accelerators, which in turn further increases the communication overhead across devices.

Other approaches have attempted to utilize pipeline-parallelism-based approaches to scale neural
networks [43, 44]. The most recent iteration of pipeline parallelism applied to neural network
training is PipeDream [45], which targets reducing the communication overhead for parameter
servers [46]. PipeDream pipelines the execution of forward passes and intersperses them with
backward passes in an attempt to maximize hardware utilization. This design suffers from weight
staleness introduced by asynchronous backward updates. To avoid optimization issues stemming
from the weight staleness, PipeDream requires maintaining multiple versioned copies of the model
parameters on each accelerator in order to compute the gradient updates accurately, preventing users
from scaling to bigger models.

GPipe introduces a new brand of pipeline parallelism that pipelines the execution of micro-batches
before applying a single synchronous gradient update for the entire mini-batch. Our novel batch-
splitting pipeline parallelism algorithm, when combined with re-materialization, allows scaling
to a large number of micro-batches. This minimizes the bubble overhead without the need for
asynchronous gradient updates. GPipe enables the user to scale model size linearly with the number
of accelerators used. Unlike SPMD, pipeline parallelism introduces little additional communication
overhead when scaling the model. Inter-device communication only takes place at partition boundaries
for every micro-batch and the introduced communication overhead is marginal, extending the utility
of GPipe to situations where high-speed device interconnects are not available. However, GPipe
currently assumes that a single layer fits within the memory requirements of a single accelerator3.
Additionally, micro-batch splitting requires complicated strategies to support layers that require
computations across the batch (for example, BatchNorm uses statistics over the micro-batch during
training, but accumulates mini-batch statistics for evaluation).

7 Conclusion

In this work, we introduce GPipe, a scalable model-parallelism library for training giant networks. We
propose a novel batch-splitting pipeline-parallelism algorithm that uses synchronous gradient updates,
allowing model parallelism with high hardware utilization and training stability. We leverage GPipe to
train large-scale convolutional and transformer-based models and demonstrate strong empirical results
on both image classification and multilingual machine translation. We highlight three key attributes
of GPipe: 1) Efficiency: Using a novel batch-splitting pipelining algorithm, GPipe achieves almost
linear speedup with the number of devices. 2) Flexibility: GPipe supports any sequential neural
networks. 3) Reliability: GPipe utilizes synchronous gradient descent and guarantees consistent
training regardless of the number of partitions.

3One possible way around this limitation is splitting a single matrix-multiplication into smaller ones and
spreading them sequentially across multiple layers.
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