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ABSTRACT. Let Hbea prime ring and let U be its Utumi quotient ring. We

prove the following: (1) If R satisfies a GPI having all its coefficients in U,

then R satisfies a GPI having all its coefficients in R. (2) R and U satisfy the

same GPIs having their coefficients in U.

The main purpose of this paper is to generalize the two main theorems on gener-

alized polynomial identities (GPIs) in [7] to their full generality. Our improvement

is in two respects:

(1) The coefficients of the generalized polynomial identities are allowed to lie in

the Utumi quotient rings instead of in the Martindale quotient rings.

(2) The assumption that the generalized polynomial identity is multilinear and

homogeneous is removed. Our theorems hold for any arbitrary generalized polyno-

mial identity.

Results in this generality seem to be interesting and should be useful elsewhere.

In what follows, R is always a prime associative ring, not necessarily with identity

1. Let Ur be the maximal rational extension of RR (as right i?-modules) (see the

definition and Theorem 6 on p. 59 [2]). Since R is left faithful (p. 67 [2]), there

is a natural ring operation on U which induces the module operation U x R —► U

(Proposition F on p. 68 [2]). U endowed with the natural ring operation is an

overring of R and is called the Utumi quotient ring of R.

The Utumi quotient ring of R can also be characterized axiomatically as follows:

A right ideal p of R is said to be rational if and only if Rr is a rational extension

of pR (rational right ideals are also called dense right ideals in [6]). The Utumi

quotient ring of R is a ring U satisfying the following axioms:

(1) R is a subring of U.

(2) For each a GU, there exists a rational right ideal p of R such that ap Ç R.

(3) If a € U and ap = 0 for some rational right ideal p of R, then a = 0.

(4) For any rational right ideal p and for any right .B-module homomorphism

<j>: Pr^> Rr: there exists a € U such that <¡>(r) — ar for all r e p.

For a prime ring R, a nonzero two-sided ideal is obviously a rational right ideal

of R. In the above axioms, if we consider only nonzero two-sided ideals instead of

rational right ideals, then we obtain the Martindale quotient ring, which we denote

by Q (see [8] for the definition and [5] for the axiomatic formulation). Q can be
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naturally regarded as a subring of U and can be characterized as follows: For a EU,

a € Q if and only if al Ç R for some nonzero two-sided ideal / of R.

Note that both U and Q are prime (for U, see p. 74 [2]; the assumption there on

the singular right ideal is unnecessary). Also observe that the center of £/, denoted

by C, coincides with the center of Q. C is called the extended centroid of R.

In what follows, by submodules, we always mean right Ä-submodules of U. By

a rational submodule M, we mean a right Ä-submodule M of U such that Ur is a

rational extension of Mr .

The following theorem is our main tool in dealing with generalized polynomials

with coefficients in U:

THEOREM 1. Assume that R is a prime ring and U is its Utumi quotient

ring. Let N be a rational submodule of U and let u\,... ,un € U be C-linearly

independent. Then there exists a € N such that u\a,... ,una € N and such that

«id,..., una are still C-linearly independent.

We start our proof with

LEMMA 1. If R has a nonzero right ideal p which is finite dimensional over C,

then R itself is finite dimensional over C.

PROOF. Suppose that dimepC = m < oo. Since R acts faithfully on pC by

right multiplication, R embeds in Mm(C), the ring of m x m matrices over C. So

R is finite dimensional.

The following lemma, which is a slight modification of Lemma 1 [1], is the key

step to our proof.

LEMMA 2. Let V and W be two vector spaces over a field F and letTt,... ,Tr,

be F-linearly independent linear transformations ofV into W. Let B be an additive

subgroup ofV such that FB = V. Then for any finite dimensional subspace Wo of

W, either there exists v E B such that T\v,..., Trv are linearly independent module

Wo, or there exists S = ]T¡¿=i ai^i 5^ 0) where a¿ € F, which is of finite rank.

Lemma 1 [1] is the same as Lemma 2 except where B is assumed to be the whole

V. For the proof of Lemma 2 above, we simply replace each occurrence of V by

B in Amitsur's proof of Lemma 1 [1] (and also {/, Uo there by W, Wo here for

notation difference). We omit the details for brevity.

PROOF OF THEOREM 1. Let N be the given rational submodule of U. Set

M = N nu^Nnu^N n ---nu^N, where u~1N = {u£U: u%u e TV}. M, an

intersection of finitely many rational submodules, is itself a rational submodule of

U. Via left multiplication, we may regard ui, it2,..., un as (7-linear transformations

from the C-vector space MC into the C-vector space NC. If there exists a € M such

that uia,U2ü,...,una are C-linearly independent, then we are done. Otherwise, by

Lemma 2, there exist ai,Q2,... ,an & C such that u — aiUi + ctiUi + • • • + ctnun

is a nonzero finite rank linear transformation on MC (via left multiplication). Set

L = Mf\u~lR. Then L is a rational submodule of M such that 0 ^ uL Ç R. Since

u is of finite rank on M, uL must also be finite C-dimensional. Thus R possesses

a nonzero, finite C-dimensional right ideal uL. By Lemma 1, R is also finite C-

dimensional and hence must be a Pi-ring. Set p = NnR, which is a rational right

ideal of R. For a prime Pi-ring R, U, Q and RC are all equal to the localization of p
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at its center Z(p) by Theorem 2 (p. 57 [4]). So we can find a common denominator

a € Z(p) such that aui,ctU2,... ,aun G p. Since Z(p) C C, cmi,m¿2,... ,aun are

obviously C-linearly independent.

Let X = {xi,X2,- ■ ■}, the countable set consisting of the noncommuting inde-

terminates Xi,X2,_ Let C{X} be the free algebra over C in the set X. Con-

sider U{X} = U *c C{X}, the free product over C of U and C{X}. Elements

of U{X} are called generalized polynomials. By a nontrivial generalized polyno-

mial, we mean a nonzero element of U{X}. An element m G U{X} of the form

m = qoy\q\V2q2 ■ ■ ■ ynQn, where {qo,...,qn} Q U and {yi,...,yn} Q X, is called

a monomial, qo, ■ ■ ■ ,qn are called the coefficients of m. Each / e U{X} can be

represented as a finite sum of monomials. Such representation is certainly not

unique. For a given representation of / as a sum of monomials, the coefficients of

each monomial occurring in the representation are called the coefficients of / in

the given representation. For a subset V of U, f € U{X} is called a V-generalized

polynomial if and only if / has a representation with all of its coefficients in V.

Hence every generalized polynomial is trivially a [/-generalized polynomial.

Let B be a set of C-independent vectors of U. By a B-monomial, we mean

a monomial of the form 1*02/1^12/2^2 • • • 2/nuni where {uo,... ,un} Ç B and where

{z/i 1 Z/2i • ■ ■ i2/n} Q X. Let V = BC, the C-subspace spanned by B. Then any

V-generalized polynomial / can be written in the form YLairni^ where a¡£C and

where m¿ are .B-monomials, in the following manner: First, fix a representation of

/ with all of its coefficients in V and express each coefficient of the given repre-

sentation as a linear combination of elements in B. Then substitute these linear

combinations into the representation of / and expand the resulting expression using

the distributive law. Finally, we collect similar terms to get our desired form.

It is also obvious that such representation of a given / in terms of B-monomials

is unique. This is actually equivalent to saying that .B-monomials form a basis for

the C-vector space consisting of all BC-generalized polynomials. If B is chosen to

be a basis of U over C, then B-monomials span the whole U{X}.

The uniqueness of representation in terms of B-monomials gives a practical cri-

terion to decide whether a given generalized polynomial / is trivial or not: Pick a

basis B for the C-subspace spanned by the coefficients of a given representation of

/. Express / as a linear combination of B-monomials in the way explained above.

Let us say / = J2aimii where a¿ € C and m, are B-monomials. Then / is trivial

if and only if a¿ =0 for each i. This simple criterion will be used in the proofs

below to assure the nontriviality of a given generalized polynomial.

Our next objective is to prove the following two theorems, which generalize

respectively Theorems 1 and 2 of [7].

THEOREM 2. Assume that R is a prime ring and U is its Utumi quotient ring.

For any rational submodule M of U, the GPIs satisfied by M are the same as the

GPIs satisfied by U.

THEOREM 3. Assume that R is a prime ring and U is its Utumi quotient ring.

Let M and N be two rational submodules of U. If M satisfies a GPI, then M

satisfies a N-GPI.

Instead of rational submodules of U, Theorem 1 [7] and Theorem 2 [7] are

formulated for i?-subbimodules of Q. As remarked in [7], for any Jf?-subbimodule
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T of Q (or of U as well), T n R is a nonzero two-sided ideal of R and hence T itself

must be a rational submodule of U. Thus our theorems above actually generalize

theorems in [7].

The following lemma is crucial.

LEMMA 3. Let N be a rational submodule ofU and let /(zi,..., xn) be a non-

trivial generalized polynomial. Then there exists a E N such that f{axi, ■ ■ ■ ,axn)a

is a nontrivial N-generalized polynomial.

PROOF. Choose a basis B for the C-subspace spanned by the coefficients of a

representation of / and write / = X^=i a¿m¿> where a¿ E C\{0} and where m¿ are

distinct B-monomials. Note that B is a finite set.

Set M — (n¿=i aîlN) C\N. M is also a rational submodule of U. By Theorem

1, there exists a E M such that {ua: u E B} is a C-linearly independent subset of

M.
Consider aB-monomial m(i/i,... ,yk) — uo2/iWi2/2«2 ■ ■ -J/fc"*:, where {u0)... ,uk}

ÇBand{t/i,...,2/fc}ÇX. Then

m{ayi,...,ayk)a = {u0a)y1{u1a)y2{u2a) ■ ■ ■ yk{uka),

where uoa,u\a,... ,uka E {ua: u E B}. Set B' = {ua: u E B}. By our choice of

a, B' is an independent set of M. Hence m(ayi,..., ayk)a is a B'-monomial. Also,

if a is one of ai,..., as, then

am(ayi,..., ayk)a = (au0a)y1{u1a)y2{u2a) ■ ■ ■ yk{uka).

By our choice of a, uoa,uia,...,uka E M Ç TV. By the definition of M, auna E

aM Ç TV. Hence am(ayi,... ,ayk)a is an TV-generalized polynomial.

Now, consider f{ax\,... ,axn)a = J2l=i ctiirii(axi,... ,axn)a. By the result of

the previous paragraph, each m¿(aa:i,... ,axn)a is a B'-monomial. Hence

f(axi,... ,axn)a is nontrivial. Again, by the result of the previous paragraph,

each

a¿m¿(axi,... ,axn)a

is an TV-generalized polynomial and hence so is f{ax\,... ,axn)a, as desired.

We need the following special case of Theorem 2.

LEMMA 4. Let M be a rational submodule of U. If M satisfies a nontrivial

GPI, then R satisfies a nontrivial R-GPI.

PROOF. Let f(x\,... ,xn) = 0 be a nontrivial GPI satisfied by M. Set p =

M n R. p is a rational right ideal of R. By Lemma 3, there exists a E p such

that f(axi,...,axn)a is a nontrivial /9-generalized polynomial. For r\,...,rn E R,

ari,... ,arn E pR Q p Ç M. Hence /(ari,... ,arn)a = 0. So R satisfies the

nontrivial ^-GPI /(axi,... ,axn)a = 0.

PROOF OF THEOREM 2. Let M be a rational submodule of U. It is obvious

that any GPIs satisfied by U are also satisfied by M. So we show the converse.

If every GPI satisfied by M is trivial, then there is nothing to prove. So we

assume that M satisfies a nontrivial GPI. By Lemma 4, R satisfies a R-GPI. By

the main results in [8], the central closure S (= RC) of R contains a minimal

idempotent e such that eSe is a finite dimensional division algebra over C. Note

that the socle of S is nonzero. By Proposition 7 (p. 98 [6]) and its proof, the Utumi
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quotient ring of S is canonically isomorphic to Hom(S'e, Se)ese- Also, under this

canonical isomorphism, S is realized via left multiplication as a dense subring of

Hom(5e, 5e)e5e. From now on, we identify each s E S with the left multiplication

on Se by s. Then the Utumi quotient ring of S is Hom(Se,Se)ese- Since S is a

rational extension of R, the Utumi quotient ring of S coincides with the Utumi

quotient ring of R. So we have U — Hom(5e, Se)ese-

Let p = Mf]R and let a denote the socle of S. Since any GPI is continuous with

respect to the finite topology on Hom(5e, Se)ese (see P- 248 [3] for the definition)

and since a is dense in Hom(5e, Se)ese with respect to the finite topology, it suffices

to show that each GPI satisfied by p is also satisfied by a.

First, suppose that C is finite. Then there exists a rational right ideal p' of R

such that ap' Ç R for all a EC. Consider pp'. Since pp' is a rational right ideal of

R, pp'C is a rational right ideal of S and hence pp'C D a. But pp'C Ç pR C p. So

p D a. Thus any GPI vanishing on p also vanishes on a as is desired.

Now we assume that C is infinite. Let / be a GPI of p. We proceed by induction

on the height of / to show that / vanishes on U. Pick sufficiently but finitely many

distinct a EC. Let p' be a rational right ideal of R such that ap1 Ç p for all those

a we have picked. Replace each indeterminate x in / by ax for these a. Then the

resulting GPIs vanish on p'. So, using the Vandermonde determinant argument, we

can solve for the homogeneous parts of /. So each homogeneous part of / vanishes

on p'. It suffices to show that each homogeneous part of / vanishes on U. Note

that the height of each homogeneous part of / is less than or equal to that of /.

Replacing / by one of its homogeneous parts and p by p', we may assume from the

start that / is homogeneous in each indeterminate it involves.

Assume that the height of / is zero. Then, since / is homogeneous, / must be

multilinear. By the multilinearity, / vanishes on pC. But pC, a rational right ideal

of S, must include a. So / vanishes on a and hence on U as desired. So we assume

that the height of / is larger than 0. As the induction hypothesis, we also assume

that the assertion holds for any GPI whose height is less than that of /.

Let x be an indeterminate involved in /. For this moment, we suppress all inde-

terminates other than x and write / — f{x) for simplicity of notations. Consider

g{x,y) — f(x + y) — f{x) — f{y), where y is a new indeterminate not occurring in /.

Since g is obviously of less height than / and since g vanishes on p, g must vanish

U by our induction hypothesis. So f(x + y) = f(x) + f{y) for x,y E U. We have

thus shown that / is additive on U with respect to each indeterminate it involves.

Now write / = /(xi,... ,xn), where x\,... ,xn are all the indeterminates which

/ involves. Set x% = ^ r;- tv , where r: E p and atj E C. Using the additivity

of / on U, we compute

f(xu...,xn) = f\Ttr^a^\...,^r^a^

-aE/W)4).-,.4,4))
-AE*«S))*,---(«ï))*"/e41).---.rï)),

]l, — ,3n
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where hi is the ^¿-degree of / (i = 1,..., n). Since rjj- G p, /(^ ,. • •, n"') = 0.

Hence f{x\,..., xra) = 0. But x¿ = JZ rj a\ are typical elements of pC. Since

pC, a rational right ideal of RC, must include a, f vanishes on a and hence on U

as is desired.

PROOF OF THEOREM 3. Let M, TV be two given rational submodules of U. In

view of Theorem 2, we may assume that M = U. Suppose that /(xi,... ,xn) = 0

is a GPI of U. Then by Lemma 3, there exists a E TV such that f{ax\,..., axn)a

is a nontrivial TV-generalized polynomial. Obviously, /(axi,... ,axn)a = 0 is also

a TV-GPI for U.
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