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GPOPS − II: A MATLAB Software for Solving Multiple-Phase Optimal
Control Problems Using hp-Adaptive Gaussian Quadrature
Collocation Methods and Sparse Nonlinear Programming

MICHAEL A. PATTERSON and ANIL V. RAO, University of Florida

A general-purpose MATLAB software program called GPOPS − II is described for solving multiple-phase
optimal control problems using variable-order Gaussian quadrature collocation methods. The software em-
ploys a Legendre-Gauss-Radau quadrature orthogonal collocation method where the continuous-time opti-
mal control problem is transcribed to a large sparse nonlinear programming problem (NLP). An adaptive
mesh refinement method is implemented that determines the number of mesh intervals and the degree of
the approximating polynomial within each mesh interval to achieve a specified accuracy. The software can
be interfaced with either quasi-Newton (first derivative) or Newton (second derivative) NLP solvers, and
all derivatives required by the NLP solver are approximated using sparse finite-differencing of the optimal
control problem functions. The key components of the software are described in detail and the utility of the
software is demonstrated on five optimal control problems of varying complexity. The software described in
this article provides researchers a useful platform upon which to solve a wide variety of complex constrained
optimal control problems.
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1. INTRODUCTION

Optimal control problems arise in a wide variety of subjects including virtually all
branches of engineering, economics, and medicine. Because optimal control applica-
tions have increased in complexity in recent years, over the past two decades the
subject of optimal control has transitioned from theory to computation. In particular,
computational optimal control has become a science in and of itself, resulting in a vari-
ety of numerical methods and corresponding software implementations of these meth-
ods. The vast majority of software implementations of optimal control today are those
that involve the direct transcription of a continuous-time optimal control problem

The authors gratefully acknowledge partial support for this research from the U.S. Office of Naval Research
(ONR) under Grant N00014-11-1-0068 and from the U.S. Defense Advanced Research Projects Agency
(DARPA) Under Contract HR0011-12-C-0011. The views expressed are those of the authors and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.
Author’s addresses: M. A. Patterson and A. V. Rao, Department of Mechanical and Aerospace Engineering,
P.O. Box 116250, University of Florida, Gainesville, FL 32611-6250; e-mail: {mpatterson,anilvrao}@ufl.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
© 2014 ACM 0098-3500/2014/10-ART1 $15.00
DOI:http://dx.doi.org/10.1145/2558904

ACM Transactions on Mathematical Software, Vol. 41, No. 1, Article 1, Publication date: October 2014.



1:2 M. A. Patterson and A. V. Rao

to a nonlinear programming problem (NLP), and the NLP is solved using well-
established techniques. Examples of well-known software for solving optimal control
problems include SOCS [Betts 1998], DIRCOL [von Stryk 2000], GESOP [Jansch et al.
1994], OTIS [Vlases et al. 1990], MISER [Goh and Teo 1988], PSOPT [Becerra 2009],
GPOPS [Rao et al. 2010], ICLOCS [Falugi et al. 2010], JModelica [Åkesson et al. 2010],
ACADO [Houska et al. 2011], and Sparse Optimization Suite (SOS) [Betts 2013].

Over the past two decades, direct collocation methods have become popular in
the numerical solution of nonlinear optimal control problems. In a direct collocation
method, the state and control are discretized at a set of appropriately chosen points
in the time interval of interest. The continuous-time optimal control problem is then
transcribed to a finite-dimensional NLP. The resulting NLP is then solved using well-
known software such as SNOPT [Gill et al. 2002], IPOPT [Wächter and Biegler 2006;
Biegler and Zavala 2008], and KNITRO [Byrd et al. 2006]. Originally, direct collo-
cation methods were developed as h methods (e.g., Euler or Runge-Kutta methods)
where the time interval is divided into a mesh and the state is approximated using
the same fixed-degree polynomial in each mesh interval. Convergence in an h method
is then achieved by increasing the number and placement of the mesh points [Betts
2010; Jain and Tsiotras 2008; Zhao and Tsiotras 2011]. More recently, a great deal
of research as been done in the class of direct Gaussian quadrature orthogonal collo-
cation methods [Benson et al. 2006; Darby et al. 2011a; Elnagar and Razzaghi 1998;
Elnagar et al. 1995; Garg et al. 2010, 2011a, 2011b; Gong et al. 2008b; Huntington
and Rao 2008; Huntington et al. 2007; Kameswaran and Biegler 2008; Patterson and
Rao 2012; Rao et al. 2010]. In a Gaussian quadrature collocation method, the state is
typically approximated using a Lagrange polynomial where the support points of the
Lagrange polynomial are chosen to be points associated with a Gaussian quadrature.
Originally, Gaussian quadrature collocation methods were implemented as p methods
using a single interval. Convergence of the p method was then achieved by increasing
the degree of the polynomial approximation. For problems whose solutions are smooth
and well behaved, a p Gaussian quadrature collocation method has a simple structure
and converges at an exponential rate [Canuto et al. 1988; Fornberg 1998; Trefethen
2000]. The most well-developed p Gaussian quadrature methods are those that employ
either Legendre-Gauss (LG) points [Benson et al. 2006; Rao et al. 2010], Legendre-
Gauss-Radau (LGR) points [Garg et al. 2010, 2011a; Kameswaran and Biegler 2008],
or Legendre-Gauss-Lobatto (LGL) points [Elnagar et al. 1995].

In this article we describe a new optimal control software called GPOPS − II that em-
ploys hp-adaptive Gaussian quadrature collocation methods. An hp-adaptive method
is a hybrid between a p method and an h method in that both the number of mesh
intervals and the degree of the approximating polynomial within each mesh interval
can be varied in order to achieve a specified accuracy in the numerical approxima-
tion of the solution to the continuous-time optimal control problem. As a result, in
an hp-adaptive method, it is possible to take advantage of the exponential conver-
gence of a global Gaussian quadrature method in regions where the solution is smooth
and introduce mesh points only near potential discontinuities or in regions where the
solution changes rapidly. Originally, hp methods were developed as finite-element
methods for solving partial differential equations [Babuska et al. 1986; Babuska and
Rheinboldt 1979, 1981, 1982]. In the past few years, the problem of developing hp
methods for solving optimal control problems has been of interest [Darby et al. 2011b;
2011c]. The work of Darby et al. [2011b, 2011c] provides examples of the benefits of
using an hp-adaptive method over either a p method or an h method. This recent
research has shown that convergence using hp methods can be achieved with a
significantly smaller finite-dimensional approximation than would be required when
using either an h or a p method.
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It is noted that previously the software GPOPS was published in Rao et al. [2010].
While GPOPS is similar to GPOPS − II in that both software programs implement
Gaussian quadrature collocation, GPOPS − II is a fundamentally different software
program from GPOPS. First, GPOPS employs p (global) collocation in each phase of
the optimal control problem. It is known that p collocation schemes are limited in that
they have difficulty solving problems whose solutions change rapidly in certain re-
gions or are discontinuous. Moreover, p methods become computationally intractable
as the degree of the approximating polynomial becomes very large. GPOPS − II, how-
ever, employs hp-adaptive mesh refinement where the polynomial degree, number of
mesh intervals, and width of each mesh interval can be varied. The hp-adaptive meth-
ods allow for placement of collocation points in regions of the solution where additional
information is needed to capture key features of the optimal solution. Next, GPOPS is
limited in that it can be used with only quasi-Newton (first derivative) NLP solvers and
derivative approximations were performed on high dimensional NLP functions. On the
other hand, GPOPS − II implements sparse derivative approximations by approximat-
ing derivatives of the optimal control functions and inserting these derivatives into the
appropriate locations in the NLP derivative functions. Moreover, GPOPS − II imple-
ments approximations to both first and second derivatives. Consequently, GPOPS − II

utilizes in an efficient manner the full capabilities of a much wider range of NLP
solvers (e.g., full Newton NLP solvers such as IPOPT [Biegler and Zavala 2008] and
KNITRO [Byrd et al. 2006]) and, as a result, is capable of solving a much wider range
of optimal control problems as compared with GPOPS.

The objective of this article is to provide researchers with a novel efficient general-
purpose optimal control software that is capable of solving a wide variety of complex
constrained continuous-time optimal control problems. In particular, the software de-
scribed in this article employs a differential and implicit integral form of the multiple-
interval version of the Legendre-Gauss-Radau (LGR) collocation method [Garg et al.
2010, 2011a, 2011b; Patterson and Rao 2012]. The LGR collocation method is chosen
for use in the software because it provides highly accurate state, control, and costate
approximations while maintaining a relatively low-dimensional approximation of the
continuous-time problem. The key components of the software are then described, and
the software is demonstrated on five examples from the open literature that have been
studied extensively and whose solutions are known. Each of these examples demon-
strates different capabilities of the software. The first example is the hypersensitive
optimal control problem from Rao and Mease [2000] and demonstrates the ability of
the software to accurately solve a problem whose optimal solution changes rapidly in
particular regions of the solution. The second example is the reusable launch vehicle
entry problem taken from Betts [2010] and demonstrates the ability of GPOPS − II to
compute an accurate solution using a relatively coarse mesh. The third example is a
space station attitude control problem taken from Pietz [2003] and Betts [2010] and
demonstrates the ability of the software to generate accurate solutions to a problem
whose solution is not intuitive. The fourth example is a chemical kinetic batch reactor
problem taken from Leineweber [1998] and Betts [2010] and shows the ability of the
software to handle a multiple-phase optimal control problem that is poorly scaled. The
fifth example is a launch vehicle ascent problem taken from Benson [2004], Rao et al.
[2010], and Betts [2010] that again demonstrates the ability of the software to solve
a multiple-phase optimal control problem. In order to validate the results, the solu-
tions obtained using GPOPS − II are compared against the solutions obtained using
the software Sparse Optimization Suite (SOS) [Betts 2013] where SOS is based on the
collection of algorithms developed in Betts [2010].

This article is organized as follows: In Section 2, we describe a general multiple-
phase optimal control problem. In Section 3, we describe the Radau collocation method
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that is used as the basis of GPOPS − II. In Section 4, we describe the key components of
GPOPS − II. In Section 5, we show the results obtained using the software on the five
aforementioned examples. In Section 6, we provide a discussion of the results obtained
using the software. In Section 7, we discuss possible limitations of the software. Finally,
in Section 8, we provide conclusions on our work.

2. GENERAL MULTIPLE-PHASE OPTIMAL CONTROL PROBLEMS

The general multiple-phase optimal control problem that can be solved by GPOPS − II

is given as follows. First, let p ∈ [ 1, . . . , P] be the phase number where P as the total

number of phases. The optimal control problem is to determine the state, y(p)(t) ∈ R
n

(p)
y ,

control, u(p)(t) ∈ R
n

(p)
u , integrals, q(p) ∈ R

n
(p)
q , start times, t

(p)

0 ∈ R, phase terminus

times, t
(p)

f
∈ R, in all phases p ∈ [ 1, . . . , P], along with the static parameters s ∈ R

ns ,
that minimize the objective functional

J = φ

(

e(1), . . . , e(P), s
)

, (1)

subject to the dynamic constraints

ẏ(p) = a(p)(y(p), u(p), t(p), s), (p = 1, . . . , P), (2)

the event constraints

bmin ≤ b
(

e(1), . . . , e(P), s
)

≤ bmax, (3)

the inequality path constraints

c
(p)

min ≤ c(p)(y(p), u(p), t(p), s) ≤ c
(p)
max, (p = 1, . . . , P), (4)

the static parameter constraints

smin ≤ s ≤ smax, (5)

and the integral constraints

q
(p)

min ≤ q(p) ≤ q
(p)
max, (p = 1, . . . , P), (6)

where

e(p) =
[

y(p)
(

t
(p)

0

)

, t
(p)

0 , y(p)
(

t
(p)

f

)

, t
(p)

f
, q(p)

]

, (p = 1, . . . , P), (7)

and the integrals in each phase are defined as

q
(p)

i
=

∫ t
(p)

f

t
(p)

0

g
(p)

i
(y(p), u(p), t(p), s)dt, (i = 1, . . . n

(p)
q ), (p = 1, . . . , P). (8)

It is important to note that the event constraints of Eq. (3) can contain any functions
that relate information at the start and/or terminus of any phase (including relation-
ships that include both static parameters and integrals) and that the phases them-
selves need not be sequential. It is noted that the approach to linking phases is based
on well-known formulations in the literature such as those given in Betts [1990, 2010].
A schematic of how phases can potentially be linked is given in Figure 1.
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Fig. 1. Schematic of linkages for multiple-phase optimal control problem. The example shown in the picture
consists of five phases where the ends of phases 1, 2, and 3 are linked to the starts of phases 2, 3, and 4,
respectively, while the end of phase 2 is linked to the start of phase 5.

3. MULTIPLE-INTERVAL RADAU COLLOCATION METHOD

In this section, we describe the multiple-interval Legendre-Gauss-Radau collocation
method (referred to hereafter as the Radau collocation method) [Garg et al. 2010,
2011a, 2011b; Patterson and Rao 2012] that forms the basis for GPOPS − II. In or-
der to make the description of the Radau collocation method as clear as possible, in
this section we consider only a one-phase optimal control problem. After formulating
the one-phase optimal control problem we develop the Radau collocation method itself.

3.1. Single-Phase Optimal Control Problem

In order to describe the hp Radau method that is implemented in the software, it will
be useful to simplify the general optimal control problem given in Eqs. (1)–(8) to a one-
phase problem as follows. Determine the state, y(t) ∈ R

ny , the control, u(t) ∈ R
nu , the

integrals, q ∈ R
nq , the initial time, t0, and the terminal time tf on the time interval

t ∈ [ t0, tf ] that minimize the cost functional

J = φ(y(t0), t0, y(tf ), tf , q) (9)

subject to the dynamic constraints

dy

dt
= a(y(t), u(t), t), (10)

the inequality path constraints

cmin ≤ c(y(t), u(t), t) ≤ cmax, (11)

the integral constraints

qi =

∫ tf

t0

gi(y(t), u(t), t) dt, (i = 1, . . . , nq), (12)

and the event constraints

bmin ≤ b(y(t0), t0, y(tf ), tf , q) ≤ bmin. (13)
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The functions φ, q, a, c and b are defined by the following mappings:

φ : R
ny × R × R

ny × R × R
nq → R,

q : R
ny × R

nu × R → R
nq ,

a : R
ny × R

nu × R → R
ny ,

c : R
ny × R

nu × R → R
nc ,

b : R
ny × R × R

ny × R × R
nq → R

nb ,

where we remind the reader that all vector functions of time are treated as row vectors.
In order to employ the hp Radau collocation method used in GPOPS − II, the con-

tinuous optimal control problem of Eqs. (9)–(13) is modified as follows. First, let
τ ∈ [ −1, +1] be a new independent variable. The variable t is then defined in terms of
τ as

t =
tf − t0

2
τ +

tf + t0

2
. (14)

The optimal control problem of Eqs. (9)–(13) is then defined in terms of the variable
τ as follows. Determine the state, y(τ ) ∈ R

ny , the control u(τ ) ∈ R
nu , the integral

q ∈ R
nq , the initial time, t0, and the terminal time tf on the time interval τ ∈ [ −1, +1]

that minimize the cost functional

J = φ(y(−1), t0, y(+1), tf , q) (15)

subject to the dynamic constraints

dy

dτ
=

tf − t0

2
a(y(τ ), u(τ ), τ ; t0, tf ), (16)

the inequality path constraints

cmin ≤ c(y(τ ), u(τ ), τ ; t0, tf ) ≤ cmax, (17)

the integral constraints

qi =
tf − t0

2

∫ +1

−1
gi(y(τ ), u(τ ), τ ; t0, tf ) dτ , (i = 1, . . . , nq), (18)

and the event constraints

bmin ≤ b(y(−1), t0, y(+1), tf , q) ≤ bmin. (19)

Suppose now that the interval τ ∈ [ −1, +1] is divided into a mesh consisting of K
mesh intervals [ Tk−1, Tk] , k = 1, . . . , K, where (T0, . . . , TK) are the mesh points. The
mesh points have the property that −1 = T0 < T1 < T2 < · · · < TK = Tf = +1.
Next, let y(k)(τ ) and u(k)(τ ) be the state and control in mesh interval k. The optimal
control problem of Eqs. (15)–(19) can then written as follows. First, the cost functional
of Eq. (15) can be written as

J = φ(y(1)(−1), t0, y(K)(+1), tf , q), (20)

Next, the dynamic constraints of Eq. (16) in mesh interval k can be written as

dy(k)(τ (k))

dτ (k)
=

tf − t0

2
a(y(k)(τ (k)), u(k)(τ (k)), τ (k); t0, tf ), (k = 1, . . . , K). (21)

Furthermore, the path constraints of (17) in mesh interval k are given as

cmin ≤ c(y(k)(τ (k)), u(k)(τ (k)), τ (k); t0, tf ) ≤ cmax, (k = 1, . . . , K). (22)
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the integral constraints of (18) are given as

qj =
tf − t0

2

K
∑

k=1

∫ Tk

Tk−1

gj(y
(k)(τ (k)), u(k)(τ (k)), τ (k); t0, tf ) dτ , (j = 1, . . . , nq, k = 1 . . . , K).

(23)
Finally, the event constraints of Eq. (19) are given as

bmin ≤ b(y(1)(−1), t0, y(K)(+1), tf , q) ≤ bmax. (24)

Because the state must be continuous at each interior mesh point, it is required
that the condition y(k)(Tk) = y(k+1)(Tk) be satisfied at the interior mesh points
(T1, . . . , TK−1).

3.2. Approximation of the Optimal Control Problem via Radau Collocation Method

The method utilized in the software is an implementation of the aforementioned Radau
quadrature orthogonal collocation method [Garg et al. 2010, 2011a, 2011b; Patterson
and Rao 2012]. In the Radau collocation method, the state of the continuous-time op-
timal control problem is approximated in each mesh interval k ∈ [ 1, . . . , K] as

y(k)(τ ) ≈ Y(k)(τ ) =

Nk+1
∑

j=1

Y
(k)

j
ℓ
(k)

j
(τ ), ℓ

(k)

j
(τ ) =

Nk+1
∏

l=1
l�=j

τ − τ
(k)

l

τ
(k)

j
− τ

(k)

l

, (25)

where τ ∈ [ −1, +1], ℓ
(k)

j
(τ ), j = 1, . . . , Nk + 1, is a basis of Lagrange polynomials,

(τ
(k)

1 , . . . , τ (k)

Nk
) are the Legendre-Gauss-Radau [Abramowitz and Stegun 1965] (LGR)

collocation points in mesh interval k defined on the subinterval τ (k) ∈ [ Tk−1, Tk), and
τ

(k)

Nk+1 = Tk is a noncollocated point. Differentiating Y(k)(τ ) in Eq. (25) with respect to
τ , we obtain

dY(k)(τ )

dτ
=

Nk+1
∑

j=1

Y
(k)

j

dℓ
(k)

j
(τ )

dτ
. (26)

The cost functional of Eq. (20) is then shown as

J = φ(Y
(1)

1 , t0, Y
(K)

NK+1, tf , q), (27)

where Y
(1)

1 is the approximation of y(T0 = −1), and Y
(K)

NK+1 is the approximation of
y(TK = +1). Collocating the dynamics of Eq. (21) at the Nk LGR points using Eq. (26),
we have

Nk+1
∑

j=1

D
(k)

ij
Y

(k)

j
−

tf − t0

2
a(Y

(k)

i
, U

(k)

i
, τ (k)

i
; t0, tf ) = 0, (i = 1, . . . , Nk). (28)

where U
(k)

i
, i = 1, . . . , Nk, are the approximations of the control at the Nk LGR points

in mesh interval k ∈ [ 1, . . . , K], and t
(k)

i
are obtained from τ

(k)

k
using Eq. (14) and

D
(k)

ij
=

⎡

⎣

dℓ
(k)

j
(τ )

dτ

⎤

⎦

τ
(k)

i

, (i = 1, . . . , Nk, j = 1, . . . , Nk + 1, k = 1, . . . , K), (29)
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Fig. 2. Structure of composite Legendre-Gauss-Radau differentiation matrix where the mesh consists of K
mesh intervals.

is the Nk × (Nk + 1) Legendre-Gauss-Radau differentiation matrix [Garg et al. 2010]
in mesh interval k ∈ [ 1, . . . , K]. While the dynamics can be collocated in differential
form, an alternative approach is to collocate the dynamics using the equivalent im-
plicit integral form of the Radau collocation method as described in Garg et al. [2010,
2011a, 2011b]. Collocating the dynamics using the implicit integral form of the Radau
collocation method, we have

Y
(k)

i+1 − Y
(k)

1 −
tf − t0

2

Nk
∑

j=1

I
(k)

ij
a(Y

(k)

i
, U

(k)

i
, τ (k)

i
; t0, tf ) = 0, (i = 1, . . . , Nk), (30)

where I
(k)

ij
, (i = 1, . . . , Nk, j = 1, . . . , Nk, k = 1, . . . , K) is the Nk × Nk Legendre-Gauss-

Radau integration matrix in mesh interval k ∈ [ 1, . . . , K], and is obtained from the
differentiation matrix as Garg et al. [2010, 2011a, 2011b]

I(k) ≡
[

D
(k)

2:Nk+1

]−1
.

Finally, it is noted for completeness that I(k)D
(k)

1 = −1, where 1 is a column vector of
length Nk of all ones. It is noted that Eqs. (28) and (30) can be be evaluated over all
intervals simultaneously using the composite Legendre-Gauss-Radau differentiation
matrix D, and the composite Legendre-Gauss-Radau integration matrix I, respectively.
Furthermore, the sparse structure of the composite Legendre-Gauss-Radau differenti-
ation matrix D can be seen in Figure 2, and the structure of the composite Legendre-
Gauss-Radau integration matrix I can be seen in Figure 3. Next, the path constraints
of Eq. (22) in mesh interval k ∈ [ 1, . . . , K] are enforced at the Nk LGR points as

cmin ≤ c(Y
(k)

i
, U

(k)

i
, τ (k)

i
; t0, tf ) ≤ cmax, (i = 1, . . . , Nk), (31)

the integral constraints of Eq. (23) is then approximated as

qj ≈

K
∑

k=1

Nk
∑

i=1

tf − t0

2
w

(k)

i
gj(Y

(k)

i
, U

(k)

i
, τ (k)

i
; t0, tf ), (i = 1, . . . , Nk, j = 1, . . . , nq), (32)
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Fig. 3. Structure of composite Legendre-Gauss-Radau integration matrix where the mesh consists of K
mesh intervals.

where w
(k)

j
, j = 1, . . . , Nk are the LGR quadrature weights [Abramowitz and Stegun

1965] in mesh interval k ∈ [ 1, . . . , K] defined on the interval τ ∈ [ τk−1, τk). Further-
more, the event constraints of Eq. (24) are approximated as

bmin ≤ b(Y
(1)

1 , t0, Y
(K)

NK+1, tf , q) ≤ bmax. (33)

It is noted that continuity in the state at the interior mesh points k ∈ [ 1, . . . , K − 1] is
enforced via the condition

Y
(k)

Nk+1 = Y
(k+1)

1 , (k = 1, . . . , K − 1), (34)

where we note that the same variable is used for both Y
(k)

Nk+1 and Y
(k+1)

1 in the soft-
ware implementation. Hence, the constraint of Eq. (34) is eliminated from the problem
because it is taken into account explicitly. The NLP that arises from the Radau collo-
cation method is then to minimize the cost function of Eq. (27) subject to the algebraic
constraints of Eqs. (28)–(33).

4. MAJOR COMPONENTS OF GPOPS − II

In this section, we describe the major components of the MATLAB software
GPOPS − II that implements the aforementioned Radau collocation method. In
Section 4.1, we describe the large sparse nonlinear programming problem (NLP) as-
sociated with the Radau collocation method. In Section 4.2, we show the structure of
the NLP described in Section 4.1. In Section 4.3, we describe the method for scaling
the NLP via scaling of the optimal control problem. In Section 4.4, we describe the
approach for estimating the derivatives required by the NLP solver. In Section 4.5, we
describe the method for determining the dependencies of each optimal control function
in order to provide the most sparse NLP to the NLP solver. In Section 4.6, we de-
scribe the hp-adaptive mesh refinement methods that are included in the software in
order to iterative determine a mesh that meets a user-specified accuracy tolerance.
Finally, in Section 4.7, we provide a high-level description of the algorithmic flow
of GPOPS − II.
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4.1. Sparse NLP Arising from Multiple-Interval Radau Collocation Method

The nonlinear programming problem (NLP) associated with the hp Radau discretized
scaled continuous-time optimal control problem is given as follows. Determine the
decision vector Z that minimizes the objective function

�(Z) (35)

subject to the constraints

Fmin ≤ F(Z) ≤ Fmax (36)

and the variable bounds

Zmin ≤ Z ≤ Zmax. (37)

It is noted that the size of the NLP arising from the hp Radau collocation method
changes depending upon the number of mesh intervals and LGR points used in each
phase to discretize the continuous-time optimal control problem, however, the struc-
ture of the NLP is the same regardless of the number of mesh intervals or number of
LGR points used in the discretization.

4.1.1. NLP Variables. The NLP decision vector Z is given as

Z =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

z(1)

...
z(P)

s1
...

sns

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (38)

where z(p) contains all the variables of phase p = 1 . . . P, and si (i = 1, . . . , ns) are the
static parameters in the problem. The phase-dependent variables of Eq. (38) z(p) (p =
1, . . . , P), are given as

z(p) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

V
(p)

1
...

V
(p)

n
(p)
y

W
(p)

1
...

W
(p)

n
(p)
u

q(p)

t
(p)

0

t
(p)

f

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (p = 1, . . . , P), (39)

where V
(p)

i
∈ R

(N(p)+1) (i = 1, . . . , n
(p)
y ) is the ith column of the matrix

V(p) =

⎡

⎢

⎢

⎣

Y
(p)

1
...

Y
(p)

N(p)+1

⎤

⎥

⎥

⎦

∈ R
(N(p)+1)×n

(p)
y , (40)

ACM Transactions on Mathematical Software, Vol. 41, No. 1, Article 1, Publication date: October 2014.



GPOPS − II: A MATLAB Software for Solving Multiple-Phase Optimal Control Problems 1:11

W
(p)

i
∈ R

N(p)
(i = 1, . . . , n

(p)
u ) is the ith column of the matrix,

W(p) =

⎡

⎢

⎢

⎣

U
(p)

1
...

U
(p)

N(p)

⎤

⎥

⎥

⎦

∈ R
N(p)×n

(p)
u , (41)

q(p) is a column vector containing the n
(p)
q integral constraint variables, and t

(p)

0 ∈ R

and t
(p)

f
∈ R are scalars corresponding to the initial and terminal times in phase p ∈

[ 1, . . . , P]. We remind the reader again that because the state and control are being
treated as row vectors, the ith row in the matrices of Eqs. (40) and (40) corresponds to
the value of the discretized state and control at the time τ

(p)

i
. Finally, the bounds Zmin

and Zmax are defined from the optimal control variable bounds as supplied by the user.

4.1.2. NLP Objective and Constraint Functions. The NLP objective function �(Z) is defined
as follows:

�(Z) = φ, (42)

where φ is the optimal control objective function evaluated at the discrete vari-
ables defined in function of Eq. (1). The NLP constraint function vector F(Z) is then
assembled as

F =

⎡

⎢

⎢

⎢

⎢

⎣

f(1)

...
f(P)

b

⎤

⎥

⎥

⎥

⎥

⎦

, (43)

where f(p) are the constraints in phase p ∈ [ 1, . . . , P] and b is the vector of n
(p)

b
event

constraints evaluated at the discrete variables defined in function of Eq. (3). The
phase-dependent constraints of Eq. (43) f(p) (p ∈ [ 1, . . . , P] have the structure

f(p) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�
(p)

1
...

�
(p)

n
(p)
y

C
(p)

1
...

C
(p)

n
(p)
c

ρ(p)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (p = 1, . . . , P), (44)

where �
(p)

i
∈ R

N(p)
(i = 1, . . . , n

(p)
y ) is the ith column in the defect constraint matrix that

results from either the differential or implicit integral form of the Radau collocation
method. The defect matrix that results from the differential form is defined as

�(p) = D(p)Y(p) −
t
(p)

f
− t

(p)

0

2
A(p) ∈ R

N(p)×n
(p)
y , (45)
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Fig. 4. Matrix E corresponding to the defect constraints of Eq. (46) for one phase of a P-phase optimal
control problem discretized using the Radau collocation method.

while the defect matrix that results from the implicit integral form is defined as

�(p) = E(p)Y(p) −
t
(p)

f
− t

(p)

0

2
I(p)A(p) ∈ R

N(p)×n
(p)
y , (46)

where the matrix A is the right-hand side of the dynamics evaluated at each collocation
point

A(p) =

⎡

⎢

⎢

⎣

a(Y
(p)

1 , U
(p)

1 , t
(p)

1 , s)

...
a(Y

(p)

N(p) , U
(p)

N(p) , t
(p)

N(p) , s)

⎤

⎥

⎥

⎦

∈ R
N(p)×n

(p)
y , (47)

E(p) is an N(p)×(N(p)+1) matrix that is used to compute the difference Y
(p,k)

i+1 −Y
(p,k)

1 for
each interval k = 1, . . . , K(p), and each phase p = 1, . . . , P and has the structure shown
in Figure 4, C

(p)

i
∈ R

N(p)
, (i = 1, . . . , n

(p)
c ), is the ith column of the path constraint

matrix

C(p) =

⎡

⎢

⎢

⎣

c(Y
(p)

1 , U
(p)

1 , t
(p)

1 , s)

...
c(Y

(p)

N(p) , U
(p)

N(p) , t
(p)

N(p) , s)

⎤

⎥

⎥

⎦

∈ R
N(p)×n

(p)
c , (48)

ρ(p) is a vector of length n
(p)

q(p) where the ith element of ρ(p) is given as

ρ
(p)

i
= q

(p)

i
−

t
(p)

f
− t

(p)

0

2

[

w(p)
]T

G
(p)

i
, (i = 1, . . . , n

(p)
q ), (49)

where G
(p)

i
∈ R

N(p)
(i = 1, . . . , n

(p)
q ) is the ith column of the integrand matrix

G(p) =

⎡

⎢

⎢

⎣

g(Y
(p)

1 , U
(p)

1 , t
(p)

1 , s)

...
g(Y

(p)

N(p) , U
(p)

N(p) , t
(p)

N(p) , s)

⎤

⎥

⎥

⎦

∈ R
N(p)×n

(p)
q . (50)
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It is noted that the defect and integral constraints are all equality constraints of the
form

�(p) = 0,
ρ(p) = 0,

(51)

while the discretized path constraints and boundary conditions are inequality con-
straints of the form

C
(p)

min ≤ C(p) ≤ C
(p)
max,

bmin ≤ b ≤ bmax.
(52)

4.2. Sparse Structure of NLP Derivative Functions

The structure of the NLP created by the Radau collocation method has been described
in detail in Patterson and Rao [2012]. Figures 5 and 6 show the structure of the
NLP constraint Jacobian and Lagrangian Hessian for a single-phase optimal control
problem using the differential and integral forms of the Radau method. For a multiple-
phase optimal control problem, the constraint Jacobian structure in either the differ-
ential or integral form is a block-diagonal version of the single-phase NLP constraint
Jacobian where, excluding the event constraints and the static parameters, each block
has the structure as seen in either Figures 5(a) or 6(a). The derivatives of the event
constraints are located in the final rows of the constraint Jacobian, while the deriva-
tives of all functions with respect to the static parameters are located in the final
columns of the constraint Jacobian. Similarly, the multiple-phase NLP Lagrangian
Hessian using either the differential or integral form of the Radau method consists of
a block-diagonal version of the single-phase NLP Lagrangian Hessian where, exclud-
ing the static parameters, each block has the structure seen in either Figures 5(b) or
6(b), with additional nonzero elements arising from the second derivatives of the event
constraints, b, and the objective function, φ. The second derivatives of the Lagrangian
with respect to the static parameters appear in the final rows and columns of the La-
grangian Hessian. More details on the sparse structure of the NLP arising from the
multiple-phase Radau collocation method can be found in Patterson and Rao [2012].

4.3. Optimal Control Problem Scaling for NLP

The NLP described in Section 4.1 must be well scaled (that is, the variables and con-
straints should each be as close as possible O(1) as described in Gill et al. [1981]) in
order for the NLP solver to obtain a solution. GPOPS − II includes the option for the
NLP to be scaled automatically by scaling the continuous-time optimal control prob-
lem. The approach to automatic scaling is to scale the variables and the first deriva-
tives of the optimal control functions to be ≈ O(1). First, the optimal control variables
are scaled to lie on the unit interval [ −1/2, 1/2] and is accomplished as follows: Sup-
pose it is desired to scale an arbitrary variable x ∈[ a, b] to x̃ such that x̃ ∈ [ −1/2, 1/2].
This variable scaling is accomplished via the affine transformation

x̃ = vxx + rx, (53)

where vx and rx are the variable scale and shift, respectively, defined as

vx =
1

b − a
,

rx =
1
2

−
b

b − a
.

(54)

Every variable in the continuous-time optimal control problem is scaled using Eqs. (53)
and (54). Next, the Jacobian of the NLP constraints can be made approximately O(1)
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Fig. 5. One-phase differential Radau collocation NLP constraint Jacobian and Lagrangian Hessian.
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Fig. 6. One-phase integral Radau collocation method NLP constraint Jacobian and Lagrangian Hessian.
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by scaling the derivatives of the optimal control functions to be approximately unity.
First, using the approach derived in Betts [2010], in GPOPS − II the defect constraints
are scaled using the same scale factors as was used to scale the state. Next, the objec-
tive function, event constraint, and path constraint scale factors are obtained as the
average norm of each gradient across a variety of sample points within the bounds of
the unscaled optimal control problem, where the scale factor is the reciprocal of the
appropriate average norm.

4.4. Computation of Derivatives Required by the NLP Solver

The optimal control problem derivative functions are obtained by exploiting the sparse
structure of the NLP arising from the hp Radau collocation method. Specifically, in
Patterson and Rao [2012], it has been shown that using either the derivative or in-
tegral form of the Radau collocation method the NLP derivatives can be obtained by
computing the derivatives of the optimal control problem functions at the LGR points
and inserting these derivatives into the appropriate locations in the NLP derivative
functions. In GPOPS − II, the optimal control derivative functions are approximated
using sparse forward, central, or backward finite-differencing of the optimal control
problem functions. To see how this sparse finite differencing works in practice, con-
sider the function f(x), where f : R

n −→ R
m is one of the optimal control functions

(i.e., n and m are, respectively, the size of an optimal control variable and an optimal
control function). Then, ∂f/∂x is approximated using a forward finite difference as

∂f

∂xi
≈

f(x + hi) − f(x)

hi
, (55)

where hi arises from perturbing the ith component of x. The vector hi is computed as

hi = hiei (56)

where ei is the ith row of the n × n identity matrix and hi is the perturbation size
associated with xi. The perturbation hi is computed using the equation

hi = h(1 + |xi|), (57)

where the base perturbation size h is chosen to be the optimal step size for a function
whose input and output are ≈ O(1) as described in Gill et al. [1981]. Second deriva-
tive approximations are computed in a manner similar to that used for first derivative
approximations with the key difference being that perturbations in two variables are
performed. For example, ∂2f/∂xi∂xj can be approximated using a second forward dif-
ference approximation as

∂2f

∂xi∂xj
≈

f(x + hi + hj) + f(x) − f(x + hi) − f(x + hj)

hihj
, (58)

where hi, hj, hi, and hj are as defined in Eqs. (56) and (57). The base perturbation size
is chosen to minimize round-off error in the finite difference approximation. Further-
more, it is noted that hi −→ h as |xi| −→ 0.

4.5. Method for Determining the Optimal Control Function Dependencies

It can be seen from Section 4.2 that the NLP associated with the Radau colloca-
tion method has a sparse structure where the blocks of the constraint Jacobian and
Lagrangian Hessian are dependent upon whether a particular NLP function depends
upon a particular NLP variable as was shown in Patterson and Rao [2012]. The method
for determining the optimal control function dependencies in GPOPS − II utilizes the
IEEE arithmetic representation of “not-a-number” (NaN) in MATLAB. Specifically,
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MATLAB has the feature that any function evaluated at NaN will produce an out-
put of NaN if the function depends upon the variable. For example, suppose that f(x)

is a function where f : R
n −→ R

m and x =
[

x1 . . . xn

]

. Suppose further that we set
xi = NaN. If any of the components of f(x) is a function of xi, then those components
of f(x) that depend on xi will each be NaN. In this way, the dependence of the opti-
mal control problem functions on a particular input component can be determined by
evaluating the functions with that component of the input set to NaN using a single
function evaluation. Furthermore, the complete first-derivative dependencies of the
optimal control problem functions are found by repeating this process for each compo-
nent of the input. These dependencies then provide a map as to which finite differences
need to be taken when computing the first derivatives of the optimal control functions
for determining the NLP derivative functions as described in Section 4.4.

Suppose now that we denote f(z) generically as one of functions defined in the
continuous-time optimal control problem of Eqs. (1)–(8) and that Jf = ∂f/∂z is the
Jacobian of f with respect to z. Furthermore, suppose that S1 = struct(Jf) is a matrix
of ones and zeros that contains the structure the first derivatives of the optimal control
function f(z). The second derivative dependencies are then obtained as the matrix of
ones and zeros given by S2 = struct(ST

1S1). Now, while it may be the case for some
problems that S2 contains an overestimate of the second derivative dependencies of
the function f(z), for most problems to which GPOPS − II may be applied (namely, non-
linear optimal control problems), the estimate obtained in S2 will be quite close to the
exact second derivative dependencies of the function f(z). In addition, our approach is
robust in that it will never underestimate the second derivative dependencies (where
an underestimate may prove to be catastrophic because second derivatives that are
nonzero in the optimal control problem would be incorrectly estimated to be zero in
the approximation of the Lagrangian Hessian). Finally, our approach for determin-
ing second derivative dependencies incurs minimal additional computational expense
above that required to determine the first derivative dependencies.

4.6. Adaptive Mesh Refinement

In the past few years, the subject of variable-order mesh refinement has been a topic
of considerable study in developing efficient implementations of Gaussian quadrature
collocation methods. The work on variable-order Gaussian quadrature mesh refine-
ment has led to several articles in the literature including those found in Gong et al.
[2008a], Darby et al. [2011b, 2011c], and Patterson et al. [2014]. GPOPS − II employs
the two latest variable-order mesh refinement methods as described in Darby et al.
[2011c] and Patterson et al. [2014]. The mesh refinement methods of Darby et al.
[2011c] and Patterson et al. [2014] are referred to as the hp and the ph methods,
respectively. In either the hp and the ph mesh refinement methods the number of
mesh intervals, width of each mesh interval, and the degree of the approximating
polynomial can be varied until a user-specified accuracy tolerance has been achieved.
When using either of the methods in GPOPS − II, the terminology hp− (Nmin, Nmax) or
ph − (Nmin, Nmax) refers to a method whose minimum and maximum allowable poly-
nomial degrees within a mesh interval are Nmin and Nmax, respectively. Each method
estimates the solution error using a relative difference between the state estimate and
the integral of the dynamics at a modified set of LGR points. The key difference be-
tween the hp and the ph methods lies in the manner in which the decision is made
to either increase the number of collocation points in a mesh interval or to refine
the mesh. In Darby et al. [2011c], the degree of the approximating polynomial is in-
creased if the ratio of the maximum curvature over the mean curvature of the state
in a particular mesh interval exceeds a user-specified threshold. On the other hand,
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Fig. 7. Flowchart of the GPOPS − II algorithm.

Patterson et al. [2014] uses the exponential convergence property of the Radau col-
location method and increases the polynomial degree within a mesh interval if the
estimate of the required polynomial degree is less than a user-specified upper limit. If
the estimate of the polynomial degree exceeds the allowed upper limit, the mesh inter-
val is divided into more mesh intervals. In GPOPS − II, the user can choose between
these two mesh refinement methods. Finally, it is noted that GPOPS − II has been de-
signed in a modular way making it possible to add a new mesh refinement method in
a relatively straightforward way if it is so desired.

4.7. Algorithmic Flow of GPOPS − II

In this section, we describe the operational flow of GPOPS − II with the aid of
Figure 7. First, the user provides a description of the optimal control problem that is
to be solved. The properties of the optimal control problem are then determined from
the user description from which the state, control, time, and parameter dependencies
of the optimal control problem functions are determined. Subsequently, assuming that
the user has specified that the optimal control problem be scaled automatically, the
optimal control problem scaling algorithm is called and these scale factors are used
to scale the NLP. The optimal control problem is then transcribed to a large sparse
NLP and the NLP is solved on the initial mesh, where the initial mesh is either user-
supplied or is determined by the defaults set in GPOPS − II. Once the NLP is solved,
it is untranscribed to a discrete approximation of the optimal control problem and the
error in the discrete approximation for the current mesh is estimated. If the user-
specified accuracy tolerance is met, the software terminates and outputs the solution.
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Otherwise, a new mesh is determined using one of the supplied mesh refinement algo-
rithms and the resulting NLP is solved on the new mesh.

5. EXAMPLES

GPOPS − II is now demonstrated on five examples taken from the open literature.
The first example is the hypersensitive optimal control problem from Rao and Mease
[2000] and demonstrates the ability of GPOPS − II to efficiently solve problems that
have rapid changes in dynamics in particular regions of the solution. The second
example is the reusable launch vehicle entry problem taken from Betts [2010] and
demonstrates the efficiency of GPOPS − II on a problem whose dynamic model is rep-
resentative of a real physical system. The third example is the space station attitude
optimal control problem taken from Pietz [2003] and Betts [2010] and demonstrates
the efficiency of GPOPS − II on a problem whose solution is highly nonintuitive. The
fourth example is a kinetic batch reactor problem taken from Betts [2010] and demon-
strates the ability of GPOPS − II to solve an extremely poorly scaled multiple-phase
optimal control problem. The fifth example is a multiple-stage launch vehicle ascent
problem taken from Benson [2004], Rao et al. [2010], and Betts [2010] and demon-
strates the ability of GPOPS − II to solve a problem with multiple-phases. The first
four examples were solved using the open-source NLP solver IPOPT [Biegler et al.
2003] in second derivative (full Newton) mode with the publicly available multifrontal
massively parallel sparse direct linear solver MUMPS [MUMPS 2011], while the fifth
example was solved using the NLP solver SNOPT [Gill et al. 2002]. The initial guess of
the solution is provided for all examples, where the function linear(t0, tf , a, b) is a lin-
ear interpolation over the range [ a, b] on the domain [ t0, tf ]. All results were obtained
using the implicit integration form of the Radau collocation method and various forms
of the aforementioned ph mesh refinement method using default NLP solver settings
and the automatic scaling routine in GPOPS − II.

5.1. Hypersensitive Problem

Consider the following hypersensitive optimal control problem taken from Rao and
Mease [2000]:

minimize 1
2

∫ tf

0
(x2 + u2)dt subject to

⎧

⎨

⎩

ẋ = −x3 + u,
x(0) = 1,
x(tf ) = 1.5,

(59)

where tf = 10000. It is known for a sufficiently large value of tf the interesting be-
havior in the solution occurs near t = 0 and t = tf (see Rao and Mease [2000] for
details), while the vast majority of the solution is a constant. Given the structure of
the solution, a majority of collocation points need to be placed near t = 0 and t = tf .

The hypersensitive optimal control problem was solved using GPOPS − II with the
ph− (3, 10) method, an initial mesh consisting of ten evenly spaced mesh interval with
three LGR points per mesh interval, and the following initial guess:

xguess = linear(0, tf , x(0), x(tf )),
uguess = 0,
t
guess
f

= tf .

The solution obtained using GPOPS − II is shown in Figure 8 alongside the solution ob-
tained with the software Sparse Optimization Suite (SOS) [Betts 2013]. It is seen that
the GPOPS − II and SOS solutions are in excellent agreement. Moreover, the optimal
cost obtained using GPOPS − II and SOS are extremely close, with values 3.3620563
and 3.3620608, respectively. In order to demonstrate how GPOPS − II is capable of
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Fig. 8. GPOPS − II and Sparse Optimization Suite solutions to hypersensitive optimal Control Problem.

Fig. 9. GPOPS − II and Sparse Optimization Suite solutions to hypersensitive optimal control problem near
t = 0 and t = tf .

capturing the interesting features of the optimal solution, Figure 9 shows the solution
on the intervals t ∈[ 0, 15] (near the initial time) and t ∈[ 9985, 10000] (near the final
time), while Figure 10 shows the mesh refinement history. It is seen that GPOPS − II

accurately captures the rapid decay from x(0) = 1 and the rapid growth to meet the
terminal condition x(tf ) = 1.5, and the density of the mesh points near t = 0 and t = tf

increases as the mesh refinement progresses. Finally, Table I shows the estimated
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Fig. 10. Mesh refinement history for hypersensitive problem using GPOPS − II.

Table I. Mesh Refinement History for
Hypersensitive Problem

Mesh Relative Error Estimate

1 2.827 × 101

2 2.823 × 100

3 7.169 × 10−1

4 1.799 × 10−1

5 7.092 × 10−2

6 8.481 × 10−3

7 1.296 × 10−3

8 5.676 × 10−7

error on each mesh, where it is seen that the solution error decreases steadily with
each mesh refinement iteration, finally terminating on the eighth mesh (i.e., the sev-
enth mesh refinement).

5.2. Reusable Launch Vehicle Entry

Consider the following optimal control problem of maximizing the crossrange during
the atmospheric entry of a reusable launch vehicle and taken from Betts [2010] where
the numerical values in Betts [2010] are converted from English units to SI units.
Maximize the cost functional

J = φ(tf ) (60)

subject to the dynamic constraints

ṙ = v sin γ , θ̇ =
v cos γ sin ψ

r cos φ
, φ̇ =

v cos γ cos ψ

r
,

v̇ = −
D

m
− g sin γ , γ̇ =

L cos σ

mv
−

(g

v
−

v

r

)

cos γ , ψ̇ =
L sin σ

mv cos γ
+

v cos γ sin ψ tan φ

r
,

(61)
and the boundary conditions

h(0) = 79248 km , h(tf ) = 24384 km , θ(0) = 0 deg , θ(tf ) = Free,
φ(0) = 0 deg , φ(tf ) = Free , v(0) = 7.803 km/s , v(tf ) = 0.762 km/s
γ (0) = −1 deg , γ (tf ) = −5 deg , ψ(0) = 90 deg , ψ(tf ) = Free,

(62)
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Table II. Performance of GPOPS − II on the Reusable Launch Vehicle Entry Optimal Control Problem

Mesh Estimated Number of Estimated Number of

Iteration Error (GPOPS − II) Collocation Points Error (SOS) Collocation Points

1 2.463 × 10−3 41 1.137 × 10−2 51
2 2.946 × 10−4 103 1.326 × 10−3 101
3 1.202 × 10−5 132 3.382 × 10−5 101
4 8.704 × 10−8 175 1.314 × 10−6 101
5 – – 2.364 × 10−7 201
6 – – 2.364 × 10−7 232
7 – – 1.006 × 10−7 348
8 – – 9.933 × 10−8 353

where r = h + Re is the geocentric radius, h is the altitude, Re is the polar radius of
the Earth, θ is the longitude, φ is the latitude, v is the speed, γ is the flight path angle,
and ψ is the azimuth angle. Furthermore, the aerodynamic and gravitational forces
are computed as

D =
ρv2SCD

2 , L =
ρv2SCL

2 , g = μ

r2 , (63)

where ρ = ρ0 exp(−h/H) is the atmospheric density, ρ0 is the density at sea level, H is
the density scale height, S is the vehicle reference area, CD is the coefficient of drag,
CL is the coefficient of lift, and μ is the gravitational parameter.

The reusable launch vehicle entry optimal control problem was solved with
GPOPS − II using the ph − (4, 10) mesh refinement method, an initial mesh consist-
ing of ten evenly spaced mesh intervals with four LGR points per mesh interval, and
a mesh refinement accuracy tolerance of 10−7, and the following initial guess:

h = linear(0, tf , h(0), h(tf )),
θ = θ(0),
φ = φ(0),
v = linear(0, tf , v(0), v(tf )),
γ = linear(0, tf , γ (0), γ (tf )),
ψ = ψ(0),
α = 0,
σ = 0,
tf = 1000 s.

The solution obtained using GPOPS − II is shown in Figures 11(a)–11(f) alongside the
solution obtained using the software Sparse Optimization Suite (SOS) [Betts 2010],
where it is seen that the two solutions obtained are virtually indistinguishable. It is
noted that the optimal cost obtained by GPOPS − II and SOS are also nearly identical
at 0.59627639 and 0.59587608, respectively. Table II shows the performance of both
GPOPS − II and SOS on this example. It is interesting to see that GPOPS − II meets
the accuracy tolerance of 10−7 in only four mesh iterations (three mesh refinements)
while SOS requires a total of eight meshes (seven mesh refinements). Finally, the num-
ber of collocation points used by GPOPS − II is approximately one half the number of
collocation points required by SOS to achieve the same level of accuracy.
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Fig. 11. Solution to reusable launch vehicle entry problem using GPOPS − II and Sparse Optimization
Suite.

5.3. Space Station Attitude Control

Consider the following space station attitude control optimal control problem taken
from Pietz [2003] and Betts [2010]. Minimize the cost functional

J = 1
2

∫ tf

t0

uTudt (64)

ACM Transactions on Mathematical Software, Vol. 41, No. 1, Article 1, Publication date: October 2014.



1:24 M. A. Patterson and A. V. Rao

subject to the dynamic constraints

ω̇ = J−1 {

τgg(r) − ω⊗
[

Jω + h
]

− u
}

,

ṙ = 1
2

[

rrT + I + r
]

[ω − ω(r)] ,

ḣ = u,

(65)

the inequality path constraint
∥

∥h
∥

∥ ≤ hmax, (66)

and the boundary conditions

t0 = 0,
tf = 1800,
ω(0) = ω̄0,

r(0) = r̄0,

h(0) = h̄0,

0 = J−1 {

τgg(r(tf )) − ω⊗(tf )
[

Jω(tf ) + h(tf )
]}

,

0 = 1
2

[

r(tf )r
T(tf ) + I + r(tf )

] [

ω(tf ) − ω0(r(tf ))
]

,

(67)

where (ω, r, h) is the state and u is the control. In this formulation, ω is the angular
velocity, r is the Euler-Rodrigues parameter vector, h is the angular momentum, and
u is the input moment (and is the control).

ω0(r) = −ωorbC2,

τgg = 3ω2
orbC⊗

3 JC3,
(68)

and C2 and C3 are the second and third column, respectively, of the matrix

C = I +
2

1 + rTr

(

r⊗r⊗ − r⊗
)

. (69)

In this example, the matrix J is given as

J =

⎡

⎣

2.80701911616 × 107 4.822509936 × 105 −1.71675094448 × 107

4.822509936 × 105 9.5144639344 × 107 6.02604448 × 104

−1.71675094448 × 107 6.02604448 × 104 7.6594401336 × 107

⎤

⎦ , (70)

while the initial conditions ω̄0, r̄0, and h̄0 are

ω̄0 =

⎡

⎣

−9.5380685844896 × 10−6

−1.1363312657036 × 10−3

+5.3472801108427 × 10−6

⎤

⎦ ,

r̄0 =

⎡

⎣

2.9963689649816 × 10−3

1.5334477761054 × 10−1

3.8359805613992 × 10−3

⎤

⎦ ,

h̄0 =

⎡

⎣

5000
5000
5000

⎤

⎦ .

(71)

A more detailed description of this problem, including all of the constants J, ω̄0, r̄0,
and h̄0, can be found in Pietz [2003] or Betts [2010].
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Fig. 12. State solution to space station attitude control problem using GPOPS − II with the NLP solver
IPOPT and a mesh refinement tolerance of 10−6 alongside solution obtained using optimal control software
Sparse Optimization Suite.

The space station attitude control example was solved with GPOPS − II using the
ph − (4, 10) mesh refinement method with an initial mesh consisting of ten uniformly
spaced mesh intervals and four LGR points per mesh interval, a finite-difference per-
turbation step size of 10−5, and the following initial guess:

ω = ω̄0

r = r̄0

h = h̄0

u = 0,
tf = 1800 s.

The state and control solutions obtained using GPOPS − II are shown, respectively, in
Figures 12 and 13 alongside the solution obtained using the optimal control software
Sparse Optimization Suite (SOS) [Betts 2013]. It is seen that the GPOPS − II solution
is in close agreement with the SOS solution. It is noted for this example that the mesh
refinement accuracy tolerance of 10−6 was satisfied on the second mesh (i.e., one mesh
refinement iteration was performed) using a total of 46 collocation (LGR) points (i.e.,
47 total points when including the final time point).
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Fig. 13. Control solution to space station attitude control problem using GPOPS − II with the NLP solver
IPOPT and a mesh refinement tolerance of 10−6 alongside solution obtained using optimal control software
Sparse Optimization Suite.

5.4. Kinetic Batch Reactor

Consider the following three-phase kinetic batch reactor optimal control problem that
originally appears in the work of Leineweber [1998] and later appears in Betts [2010].
Minimize the cost functional

J = γ1t
(3)

f
+ γ2p (72)

subject to the dynamic constraints

(73)

ẏ
(k)

1 = −k2y
(k)

2 u
(k)

2 ,

ẏ
(k)

2 = −k1y
(k)

2 y
(k)

6 + k−1u
(k)

4 − k2y
(k)

2 u
(k)

4 ,

ẏ
(k)

3 = k2y
(k)

2 u
(k)

2 + k3y
(k)

4 y
(k)

6 − k−3u
(k)

3 ,

ẏ
(k)

4 = −k3y
(k)

4 y
(k)

6 + k−3u
(k)

3 ,

ẏ
(k)

5 = k1y
(k)

2 y
(k)

6 − k−1u
(k)

4 ,

ẏ
(k)

6 = −k1y
(k)

2 y
(k)

6 + k−1u
(k)

4 − k3y
(k)

4 y
(k)

6 + k−3u
(k)

3 ,

, (k = 1, 2, 3), (74)

the equality path constraints

p − y
(k)

6 + 10−u
(k)

1 − u
(k)

2 − u
(k)

3 − u
(k)

4 = 0,

u
(k)

2 − K2y
(k)

1 /(K2 + 10−u
(k)

1 ) = 0,

u
(k)

3 − K3y
(k)

3 /(K3 + 10−u
(k)

1 ) = 0,

u
(k)

4 − K4y5/(K1 + 10−u
(k)

1 ) = 0,

, (k = 1, 2, 3), (75)

the control inequality path constraint

293.15 ≤ u
(k)

5 ≤ 393.15, (k = 1, 2, 3), (76)

the inequality path constraint in phases 1 and 2

y
(k)

4 ≤ a
[

t(k)
]2

, (k = 1, 2), (77)
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the interior point constraints

t
(1)

f
= 0.01,

t
(2)

f
= t

(3)

f
/4,

y
(k)

i
= y

(k+1)

i
, (i = 1, . . . , 6, k = 1, 2, 3),

(78)

and the boundary conditions

y
(1)

1 (0) = 1.5776, y
(1)

2 (0) = 8.32, y
(1)

3 (0) = 0,

y
(1)

4 (0) = 0, y
(1)

5 (0) = 0, y
(1)

6 (0) − p = 0,

y
(3)

4 (t
(3)

f
) ≤ 1,

(79)

where

k1 = k̂1 exp(−β1/u
(k)

5 ),

k−1 = k̂−1 exp(−β−1/u
(k)

5 ),

k2 = k̂2 exp(−β2/u
(k)

5 ),

k3 = k1,

k−3 = 1
2k−1,

, (k = 1, 2, 3), (80)

and the values for the parameters k̂j, βj, and Kj are given as

k̂1 = 1.3708 × 1012 , β1 = 9.2984 × 103 , K1 = 2.575 × 10−16,
k̂−1 = 1.6215 × 1020 , β−1 = 1.3108 × 104 , K2 = 4.876 × 10−14,
k̂2 = 5.2282 × 1012 , β2 = 9.599 × 103 , K3 = 1.7884 × 10−16.

(81)

The kinetic batch reactor optimal control problem was solved using GPOPS − II us-
ing the ph− (3, 6) mesh refinement method with an initial mesh in each phase consist-
ing of ten uniformly spaced mesh intervals with three LGR points per mesh interval,
a base derivative perturbation step size of 10−5, and the following linear initial guess
(where the superscript represents the phase number):

y
(1)

1 = linear(t
(1)

0 , t
(1)

f
, y1(0), 0.5),

y
(1)

2 = linear(t
(1)

0 , t
(1)

f
, y2(0), 6),

y
(1)

3 = linear(t
(1)

0 , t
(1)

f
, y3(0), 0.6),

y
(1)

4 = linear(t
(1)

0 , t
(1)

f
, y4(0), 0.5),

y
(1)

5 = linear(t
(1)

0 , t
(1)

f
, y5(0), 0.5),

y
(1)

6 = 0.013,
u

(1)

1 = linear(t
(1)

0 , t
(1)

f
, 7, 10),

u
(1)

2 = 0,
u

(1)

3 = linear(t
(1)

0 , t
(1)

f
, 0, 10−5),

u
(1)

4 = linear(t
(1)

0 , t
(1)

f
, 0, 10−5),

u
(1)

5 = linear(t
(1)

0 , t
(1)

f
, 373, 393.15).

t
(1)

0 = 0,
t
(1)

f
= 0.01 hr,

y
(2)

1 = 0.5,
y
(2)

2 = 6,
y
(2)

3 = 0.6,
y
(2)

4 = 0.5,
y
(2)

5 = 0.5,
y
(2)

6 = 0.013,
u

(2)

1 = 10,
u

(2)

2 = 0,
u

(2)

3 = 10−5,
u

(2)

4 = 10−5,
u

(2)

5 = 393.15,
t
(2)

0 = 0.01 hr,
t
(2)

f
= 2.5 hr,

y
(3)

1 = linear(t
(3)

0 , t
(3)

f
, 0.5, 0.1),

y
(3)

2 = linear(t
(3)

0 , t
(3)

f
, 6, 5),

y
(3)

3 = 6,
y
(3)

4 = linear(t
(3)

0 , t
(3)

f
, 0.5, 0.9),

y
(3)

5 = linear(t
(3)

0 , t
(3)

f
, 0.5, 0.9),

y
(3)

6 = 0.013,
u

(3)

1 = 10,
u

(3)

2 = 0,
u

(3)

3 = 10−5,
u

(3)

4 = 10−5,
u

(3)

5 = 393.15,
t
(3)

0 = 2.5 hr,
t
(3)

f
= 10 hr.
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Fig. 14. State solution to kinetic batch reactor optimal control problem using GPOPS − II alongside solution
obtained using optimal control software Sparse Optimization Suite.

The state and control solutions obtained using GPOPS − II are shown in Figures 14–
17, respectively, alongside the solution obtained using the software Sparse Optimiza-
tion Suite (SOS) Betts [2013]. It is seen that in the complete three-phase problem the
GPOPS − II and SOS solutions have the same trend, the key difference being that the
GPOPS − II solution is shorter in duration than the SOS solution. A closer examina-
tion, however, of the solution in phase 1 reveals that the two solutions are actually
quite different at the start of the problem. The GPOPS − II solution moves away from
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Fig. 15. Control solution to kinetic batch reactor optimal control problem using GPOPS − II alongside solu-
tion obtained using optimal control software Sparse Optimization Suite.

the initial condition much more quickly than the SOS solution. Thus, the SOS solu-
tion exhibits stiff behavior at the start of the solution while the GPOPS − II solution
does not exhibit this stiffness. While the solutions are significantly different in phase
1, the optimal cost obtained using GPOPS − II is 3.1650187 while the optimal cost ob-
tained using SOS is 3.1646696, leading to absolute and relative differences of only
3.4910 × 10−4 and 1.1031 × 10−4, respectively. Thus, while the solutions obtained by
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Fig. 16. Phase 1 state solution to kinetic batch reactor optimal control problem using GPOPS − II alongside
solution obtained using optimal control software Sparse Optimization Suite.

each software program differ in the first (transient) phase, the overall performance
of GPOPS − II is similar to that obtained using SOS (particularly given the computa-
tional challenge of this example).

5.5. Multiple-Stage Launch Vehicle Ascent Problem

The problem considered in this section is the ascent of a multiple-stage launch vehicle.
The objective is to maneuver the launch vehicle from the ground to the target orbit
while maximizing the remaining fuel in the upper stage. It is noted that this example
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Fig. 17. Phase 1 control solution to kinetic batch reactor optimal control problem using GPOPS − II along-
side solution obtained using optimal control software Sparse Optimization Suite.

is is found verbatim in Benson [2004], Rao et al. [2010], and Betts [2010]. The problem
is modeled using four phases where the objective is to maximize the mass at the end
of the fourth phase, that is maximize

J = m(t
(4)

f
) (82)
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subject to the dynamic constraints

ṙ(p) = v(p),

v̇(p) = −
μ

‖r(p)‖3
r(p) +

T(p)

m(p)
u(p) +

D(p)

m(p)
,

ṁ(p) = −
T(p)

g0Isp
,

(p = 1, . . . , 4), (83)

the initial conditions

r(t0) = r0 = (5605.2, 0, 3043.4) × 103 m,

v(t0) = v0 = (0, 0.4076, 0) × 103 m/s,

m(t0) = m0 = 301454 kg.

(84)

the interior point constraints

r(p)(t
(p)

f
) − r(p+1)(t

(p+1
0 ) = 0,

v(p)(t
(p)

f
) − v(p+1)(t

(p+1)

0 ) = 0, (p = 1, . . . , 3)

m(p)(t
(p)

f
) − m

(p)

dry − m(p+1)(t
(p+1)

0 ) = 0,

(85)

the terminal constraints (corresponding to a geosynchronous transfer orbit),

a(t
(4)

f
) = af = 24361.14 km, e(t

(4)

f
) = ef = 0.7308,

i(t
(4)

f
) = if = 28.5 deg, θ(t

(4)

f
) = θf = 269.8 deg,

φ(t
(4)

f
) = φf = 130.5 deg,

(86)

and the path constraints

‖r(p)‖2
2 ≥ Re,

‖u(p)‖2
2 = 1,

(p = 1, . . . , 4). (87)

In each phase; r(t) = (x(t), y(t), z(t)) is the position relative to the center of the Earth
expressed in ECI coordinates, v = (vx(t), vy(t), vz(t)) is the inertial velocity expressed
in ECI coordinates, μ is the gravitational parameter, T is the vacuum thrust, m is the
mass, g0 is the acceleration due to gravity at sea level, Isp is the specific impulse of
the engine, u = (ux, uy, uz) is the thrust direction expressed in ECI coordinates, and
D = (Dx, Dy, Dz) is the drag force expressed ECI coordinates. The drag force is defined
as

D = −1
2CDSρ‖vrel‖vrel, (88)

where CD is the drag coefficient, S is the vehicle reference area, ρ = ρ0 exp(−h/H) is
the atmospheric density, ρ0 is the sea level density, h = r−Re is the altitude, r = ‖r‖2 =
√

x2 + y2 + z2 is the geocentric radius, Re is the equatorial radius of the Earth, H is the
density scale height, and vrel = v − ω × r is the velocity as viewed by an observer fixed
to the Earth expressed in ECI coordinates, and ω = (0, 0, �) is the angular velocity of
the Earth as viewed by an observer in the inertial reference frame expressed in ECI
coordinates. Furthermore, mdry is the dry mass of phases 1, 2, and 3 and is defined
mdry = mtot − mprop, where mtot and mprop are, respectively, the total mass and dry
mass of phases 1, 2, and 3. Finally, the quantities a, e, i, θ , and φ are, respectively, the
semi-major axis, eccentricity, inclination, longitude of ascending node, and argument
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Table III. Vehicle Properties for Multiple-Stage Launch Vehicle
Ascent Problem

Quantity Solid Boosters Stage 1 Stage 2

mtot (kg) 19290 104380 19300
mprop (kg) 17010 95550 16820

T (N) 628500 1083100 110094
Isp (s) 283.3 301.7 467.2

Number of Engines 9 1 1
Burn Time (s) 75.2 261 700

Table IV. Constants Used in the Launch Vehicle
Ascent Optimal Control Problem

Constant Value

Payload Mass 4164 kg
S 4π m2

CD 0.5
ρ0 1.225 kg/m3

H 7200 m
t1 75.2 s
t2 150.4 s
t3 261 s
Re 6378145 m
� 7.29211585 × 10−5 rad/s
μ 3.986012 × 1014 m3/s2

g0 9.80665 m/s2

of periapsis, respectively. The vehicle data for this problem and the numerical values
for the physical constants can be found in Tables III and IV, respectively.

The multiple-stage launch vehicle ascent optimal control problem was solved using
GPOPS − II with the NLP solver SNOPT and an initial mesh in each phase consisting
of ten uniformly spaced mesh intervals with four LGR points per mesh interval, and
the following initial guess:

r(1) = r(0),
v(1) = v(0),

m(1) = linear(t
(1)
0 , t

(1)

f
, 3.01454, 1.71863) × 105 kg,

u(1) = (0, 1, 0),

t
(1)
0 = 0,

t
(1)

f
= 75.2 s,

r(2) = r(0),
v(2) = v(0),

m(2) = linear(t
(2)
0 , t

(2)

f
, 1.58184, 0.796238) × 105 kg,

u(2) = (0, 1, 0),

t
(2)
0 = 75.2 s,

t
(2)

f
= 150.4 s,

r(3) = r̄,
v(3) = v̄,

m(3) = linear(t
(3)
0 , t

(3)

f
, 7.27838, 3.22940) × 104 kg,

u(3) = (0, 1, 0),

t
(3)
0 = 150.4 s,

t
(3)

f
= 261 s,

r(4) = r̄,
v(4) = v̄,

m(4) = linear(t
(4)
0 , t

(4)

f
, 2.34640, 0.41640) × 104 kg,

u(4) = (0, 1, 0),

t
(4)
0 = 261 s,

t
(4)

f
= 961 s,

where (r̄, v̄) are obtained from a conversion of the orbital elements (a, e, i, θ , φ, ν) =
(af , ef , if , θf , φf , 0) to ECI Cartesian coordinates [Bate et al. 1971] and ν is the true
anomaly. The GPOPS − II solution is shown in Figure 18. In this example the mesh re-
finement accuracy tolerance of 10−6 is satisfied on the initial mesh and, thus, no mesh
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Fig. 18. Solution of multiple-stage launch vehicle ascent problem using GPOPS − II.

refinement is performed. The solution obtained using GPOPS − II matches closely with
the solution obtained using the software SOCS [Betts 2010], where it is noted that the
optimal objective values obtained using GPOPS − II and SOCS are −7529.712680 and
−7529.712412, respectively.

6. CAPABILITIES OF GPOPS − II

The five examples provide in Section 5 highlight the capability of GPOPS − II to solve
a wide variety of problems. First, the hypersensitive example shows the capability of
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the ph mesh refinement method in increasing the number of mesh intervals and col-
location points in regions where the dynamics are changing more rapidly, while the
reusable launch vehicle entry example demonstrates the ability of the ph mesh re-
finement method to keep the number of collocation points much smaller than might
be possible using a fixed low-order collocation method. Second, the space station at-
titude control and kinetic batch reactor examples demonstrate the flexibility of the
software to achieve better performance on an application by modifying the default
settings. Third, the launch vehicle ascent problem shows that GPOPS − II has been
designed with the ability to employ different NLP solvers. The different examples also
demonstrate the wide variety of problems that can be formulated in GPOPS − II. Such
problems range from one-phase problems with a Lagrange cost (for example, the hyper-
sensitive and space station attitude control examples), Mayer cost (e.g., the reusable
launch vehicle entry and launch vehicle ascent examples), and problems that include
static parameters (e.g., the kinetic batch reactor example). Moreover, it was shown
that GPOPS − II has the ability to solve challenging multiple-phase problems (e.g., the
kinetic batch reactor example). The fact that GPOPS − II is capable of solving the chal-
lenging benchmark optimal control problems shown in this article shows the general
utility of the software on problems that may arise in different application areas.

7. LIMITATIONS OF GPOPS − II

Like all software, GPOPS − II has limitations. First, it is assumed in the implementa-
tion that all functions have continuous first and second derivatives. In some applica-
tions, however, the functions themselves may be continuous while the derivatives may
be discontinuous. In such problems, GPOPS − II may struggle because the NLP solver
is not being provided with accurate approximations to the derivative functions. Fur-
thermore, the ability of any given NLP solver to obtain a solution is always problem
dependent. As a result, for some examples, it may be the case that IPOPT will per-
form better than SNOPT, but in some cases SNOPT may may significantly outperform
IPOPT (the launch vehicle ascent problem is an example where SNOPT outperforms
IPOPT with GPOPS − II). Also, problems with high-index path constraints may result
in the constraint qualification conditions not being satisfied on fine meshes. In such
cases, unique NLP Lagrange multipliers may not exist. In some cases, these Lagrange
multipliers may become unbounded. Finally, as is true for many optimal control soft-
ware programs, applications whose solutions lie on a singular arc can create problems
due to the inability to determine the optimal control along the singular arc. In such
cases highly inaccurate solution may be obtained in the region near the singular arc,
and mesh refinement may only exacerbate these inaccuracies. The approach for prob-
lems whose solutions lie on a singular arc is to modify the problem by including the
conditions that define the singular arc (thus removing the singularity).

8. CONCLUSIONS

A general-purpose MATLAB software program called GPOPS − II has been described
for solving multiple-phase optimal control problems using variable-order Gaussian
quadrature methods. In particular, the software employs a Legendre-Gauss-Radau
quadrature orthogonal collocation where the continuous-time control problem is tran-
scribed to a large sparse nonlinear programming problem. The software implements
two previously developed adaptive mesh refinement methods that allow for flexibility
in the number and placement of the collocation and mesh points in order to achieve
a specified accuracy. In addition, the software is designed to compute all derivatives
required by the NLP solver using sparse finite-differencing of the optimal control func-
tions. The key components of the software have been described in detail and the util-
ity of the software is demonstrated on five benchmark optimal control problems. The
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software described in this article provides researchers a useful platform upon which to
solve a wide variety of complex constrained optimal control problems.
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