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GPOWER is a completely interactive, menu-driven program for IBM-compatible and Apple Mac­
intosh personal computers. It performs high-precision statistical power analyses for the most com­
mon statistical tests in behavioral research, that is, t tests, Ftests, and X

2 tests. GPOWER computes
(1) power values for given sample sizes, effect sizes and a levels (post hoc power analyses); (2) sam­
ple sizes for given effect sizes, a levels, and power values (a priori power analyses); and (3) a and f3

values for givensample sizes, effect sizes, and f3la ratios (compromise power analyses). The program
may be used to display graphically the relation between any two of the relevant variables, and it of­
fers the opportunity to compute the effect size measures from basic parameters defining the alter­
native hypothesis. This article delineates reasons for the development of GPOWER and describes the
program's capabilities and handling.

Following Jacob Cohen's (1962) pioneering work on
the power ofstatistical tests in behavioral research, many

authors have stressed the necessity of statistical power
analyses. Textbooks and articles have appeared that pro­
vide more or less extensive tables of power and sample
sizes (e.g., Cohen, 1969, 1977, 1988, 1992; Cohen &

Cohen, 1983; Hager & Moller, 1986; Kraemer & Thie­
mann, 1987; Lipsey, 1990). Inaddition, several computer

programs for performing a variety of power analyses
have become available during the past few years (for a re­
view, see Goldstein, 1989). Given this state of affairs,
does it make sense to publish yet another power analysis
program?

In the first part of this article, we present reasons as to
why the answer to this question is "yes." We begin with

an analysis of the probable causes for the unchanged low
level of statistical power in behavioral research. Weargue
that this might, to some extent, be a consequence of the
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weaknesses of existing power analysis tools. In the
second part ofthis article, GPOWER, a new power analy­

sis program, is presented as an alternative. We report
GPOWER's algorithms and their precision. The final
part of the paper describes the scope, handling, and avail­

ability of the program.

WEAKNESSES OF EXISTING

POWER ANALYSIS TOOLS

Sedlmeier and Gigerenzer (1989) investigated the im­
pact ofpower analysis studies and textbooks on the power

of recent psychological studies. Surprisingly, these au­
thors found no significant increase in power values since
1962 when Cohen published his power study of the 1960

volume ofthe Journal ofAbnormal & Social Psychology

(JASP). In fact, the average power ofstudies published in
the 1984 volume ofthe Journal ofAbnormal Psychology

(a successor to the JASP) had dropped slightly compared
with Cohen's (1962) results. Rossi (1990) conducted a sim­
ilar study based on the 1982 volume ofthe Journal ofAb­

normal Psychology and other journals. He found power
values slightly larger than Cohen's (1962) results. He
commented, however, that "these increases are no cause
for joy" (Rossi, 1990, p. 650).

In an attempt to explain this discouraging state of af­
fairs, Cohen (1988, 1992) referred to the generally slow
methodological advances in psychology. Sedlmeier and
Gigerenzer (1989), in contrast, focused on persistent
shortcomings in the statistical education of psycholo­

gists as reflected in ambiguities and errors in textbooks
on statistical methods in behavioral research. As Bre­
denkamp (1972), Gigerenzer and Murray (1987), Oakes
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(1986), Pollard and Richardson (1987), Tversky and
Kahneman (1971), and others have shown, there is obvi­

ously some confusion about the notion of statistical sig­
nificance and the role of sample size among both stu­
dents of psychology and professional psychologists.
According to Sedlmeier and Gigerenzer (1989), a major

reason for this confusion is the "hybridization" of the
Fisherian and the Neyman-Pearson theories of statistical
inference in the psychological literature (see also Giger­

enzer, 1993).
We agree with Sedlmeier and Gigerenzer's (1989) di­

agnosis. Nevertheless, errors and ambiguities in text­

books are probably not the only and perhaps not even the
most important reasons for the persistence of low statis­

tical power in behavioral research. Basically, there are
only two ways to raise the power if the null hypothesis

(Ho), the alternative hypothesis (HI)' and the test statis­
tic have already been specified: One must increase either
the sample size N or the Type 1 error probability a.1

However, as will be discussed in more detail below, both
ways are associated with serious practical problems.
These problems could be the major reasons for the neg­
ative results obtained by Sedlmeier and Gigerenzer (1989)

and by Rossi (1990).
Let us first consider a priori power analyses, which are

considered the ideal type of power analysis by most au­
thors. In an a priori power analysis, researchers specify

the size of the effect to be detected (i.e., a measure ofthe
"distance" between Hoand HI), the a level, and the de­
sired power level (1 - /3) of the test. Given these speci­

fications it is possible to compute the necessary sample
size N. In standard applications, the selection of the ef­
fect size and of the error probabilities is based on con­

ventions. There is a long tradition of using either a =
.05 or a = .01 as Type 1 error probability (Cowles &

Davis, 1982), and it is common to select effect sizes that
are "small," "medium," or "large" as defined by Cohen
(1962,1969,1977,1988,1992). No unique conventions

have been established with respect to the Type 2 error
probability /3. Cohen (1977, 1988) suggested using /3 =

.20 as a standard level, whereas other researchers prefer

a and /3 levels to be equal (e.g., Bredenkamp, 1980).
A priori power analyses are ideal in that low error

probabilities a and /3 can be achieved for any specifica­
tion of the effect size. Unfortunately, however, the cal­
culated sample sizes are usually much larger than what
is considered manageable in behavioral research. Time

constraints, financial constraints, and methodological
reasons (e.g., sample heterogeneity in case of data ag­
gregation across studies) prohibit the use of"ideal" sam­
ple sizes.

Let us assume, then, that a behavioral scientist has ar­
rived at some maximum N that can be achieved given the
institutional constraints of the research. This N will most

likely be smaller than the ideal N as determined by an a
priori power analysis. Thus, the only way to arrive at a
reasonable power level is to increase the chances ofcom­
mitting an a error (Cohen, 1965). Unfortunately, how­
ever, power tables are typically based on conventional a

levels (i.e., a ~ .1) exclusively and therefore do not pro­
vide the information necessary to arrive at a reasonable
power value.I Power analysis programs, in contrast,

allow for nonstandard a levels in principle but do not en­

courage researchers to make use of them. All programs
we know of are restricted to a priori and post hoc power
analyses. A priori power analyses are useless when N is

fixed. In post hoc power analyses, researchers specify a,
the effect size, and the sample size N to compute the

power ofa test.3 However, the mere possibility of speci­
fying any a value is oflittle use, because there is no clue

as to which a level is reasonable given the limited sam­
ple size and the size of the effect to be detected. In this

confusing situation, researchers might be tempted to rely
on some standard a value and to ignore the power prob­
lem entirely.

From this perspective, it is not at all surprising that the
power of psychological studies seems immune to criti­

cisms oflow-power research. If researchers stick to stan­
dard a levels and, at the same time, face difficulties in
increasing the effect size and the sample size, a stable

low level of statistical power is the unavoidable conse­
quence. The hope for future developments (Cohen,
1988), the publication of simplified sample size tables

(Cohen, 1992), or improvements in the methodological
literature (Sedlmeier & Gigerenzer, 1989) cannot be ex­
pected to remedy the problem. What behavioral re­
searchers need is the means of planning rationally the

level of a, taking into account the available resources.
Compromise power analyses (Erdfelder, 1984) have

been designed especially for this purpose. In compro­

mise power analyses, researchers specify the size of the
effect to be detected, the maximum possible sample size,
and the ratio q := Bta; which defines the relative seri­
ousness of both types of errors (Cohen, 1965, 1988).

Given these specifications, an optimum critical value for
the test statistic and the associated a and /3 values is
computed. This optimum critical value is a rational com­

promise between the demands for a low a risk and a
large power level, given a fixed sample size, a fixed ef­
fect size, and an error ratio ofq.

It goes without saying that compromise power analy­

ses may produce nonstandard levels of a and /3. Given a
relatively small sample size, a compromise analysis might,

for instance, suggest the use of a = /3 = .168. Although
unusual, these error probabilities may certainly be rea­
sonable. To illustrate, consider the case of a substantive

hypothesis that implies as Hothe hypothesis of no inter­
action. Does it make more sense to choose a = /3 = .168
rather than to insist on the standard level a = .05 asso­
ciated with /3 = .623? Obviously, the standard a level

makes no sense in this situation because it implies a very
high risk to falsely accept the hypothesis of interest.

The reverse problem arises in those rare cases in

which researchers can make use ofextremely large sam­
ples. In such cases, a compromise analysis might suggest

using a = /3 = .003. It is again much better to follow this
advice rather than choosing a = .05, which is associated
with a power of(1 - /3) > .999, even for negligible devi-



ations from Ho. Usually, one is not interested in a test in­

dicating tiny effects. In most applications, effect sizes

must be at least "small" (Cohen, 1977, 1988) to be of

practical importance.

In principle, compromise power analyses can be ap­

proximated by repeatedly performing post hoc power

analyses until the desired ratio of a and /3 is found with

a sufficient degree of precision. However, with existing

power analysis tools, this is troublesome and time­

consuming. That was one major reason why we developed

the GPOWER program.

At a more general level, GPOWER was designed to

serve as an efficient, broadly applicable, and easy-to-use

research tool. Therefore, options that are useful primar­

ily in an educational context (e.g., Monte Carlo simula­

tions or illustrations of the relation between mean dif­

ferences, error variances, and effect sizes) were omitted.

Good programs for these purposes have already become

available (e.g., Borenstein & Cohen, 1988; Borenstein,

Cohen, Rothstein, Pollack, & Kane, 1990, 1992; Roth­

stein, Borenstein, Cohen, & Pollack, 1990). In develop­

ing GPOWER, we gave priority to providing for a vari­

ety ofpower analyses for most ofthe common statistical

tests in behavioral research. It appears that t tests, F tests,

and X2 tests characterize this class sufficiently." More­

over, we aimed at high-precision power calculations that

are offered by only a few of the available power pro­

grams (see Goldstein, 1989). A high level of precison is

especially important for power analyses based on small

a and /3 values (as they occur, for instance, when a or /3
are adjusted in order to control for the cumulation of

error probabilities; see Westermann & Hager, 1986).

THE GPOWERPROGRAM

GPOWER is available in two computationally equiv­

alent versions for IBM-compatible PCs (written in Turbo­

Pascal 6.0; Faul & Erdfelder, 1992) and Apple Macintosh

PCs (written in Think-Pascal; Buchner, Faul, & Erdfelder,

1992), both of which have similar user interfaces. There­

fore, we will describe the MS-DOS version and the Mac­

intosh version simultaneously.

GPOWER users can select either an accuracy mode or

a speed mode for computing a priori, post hoc, and com­

promise power analyses. The accuracy mode is based on

the actual noncentral distributions of the relevant test

statistics, while the speed mode calculations approxi­

mate the noncentral distributions by other distribution

types. We first describe the numerical algorithms of

GPOWER. Next, we compare GPOWER results with re­

sults obtained by other power analysis tools. Finally, the

program handling and the hardware and software re­

quirements are described briefly.

Algorithms

GPOWER's a priori, post hoc, and compromise power

analyses are all based on the same subroutines. These sub­

routines compute (or approximate) power values for a cer­

tain noncentral distribution type (depending on the de-
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grees offreedom, the noncentrality parameter, and on the

a level), which is what is needed for post hoc power anal­

yses. In a priori power analyses, however, N must be ad­

justed to fit a prespecified power level. GPOWER does this

by first searching for an arbitrary upper bound NUb to the

solution. IfNIb denotes the smallest possible sample size,

then the solution must be an integer element of the real

interval [NIb' Nub]' This interval is iteratively dissected,

using a slight modification of the Van Wijngaarden­

Dekker-Brent method (see Press, Flannery, Teukolsky, &

Vetterling, 1988, chap. 9.3): The smallest integer value

N E [NIb' Nub] yielding a power value larger than or

equal to the prespecified power level is regarded as the

solution.P

Almost the same procedure is used in compromise

power analyses. Here, GPOWER searches for a value of

a E [10-6, (1 - 10-6) ] , which fits the prespecified ratio

q := /31a. Again, this interval is dissected by means of

the Van Wijngaarden-Dekker-Brent method using an in­

terval width of 10-6 as the criterion of convergence.

Six subroutines are used for power calculations, these

being both approximate and precise routines for the non­

central t, F, and X2 distributions. All speed mode calcu­

lations are based on the approximate routines. The non­

central t distribution is approximated using Formula

12.2.1 in Cohen (1988, p. 544), which is based on Dixon

and Massey (1957, p. 253). Laubscher's (1960) cube root

normal approximation is used for the noncentral F dis­

tribution (see Cohen, 1988, p. 550, Formula 12.8.4), and

a Pascal adaptation of Milligan's (1979) program is used

for an approximation of the non central X2 distribution.

The precise routines are used in all accuracy mode

calculations of GPOWER. They are slightly modified

PASCAL adaptations of the subroutines NCTX (non­

central t integrals), NCFX (noncentral F integrals), and

NCHI (noncentral X2 integrals) published by Bargmann

and Ghosh (1964) in FORTRAN-II code. Our modifica­

tions of these subroutines do not change the basic algo­

rithms. Rather, they make the program faster and render

the program source code more readable.

Routines to compute the incomplete beta function and

the incomplete gamma function playa key role in calcu­

lating exact probabilities for the central t, F, and X2 dis­

tributions. These routines were not adapted from Barg­

mann and Ghosh (1964). Instead, PASCAL adaptations

of the more efficient C routines published by Press et al.

(1988, chap. 6) were used.

Evaluation ofthe GPOWER Algorithms

According to Bargmann and Ghosh (1964), the

FORTRAN-II subroutines on which the accuracy mode

calculations of GPOWER are based should be correct to

at least five significant digits for all input values, pro­

vided the parameters of the noncentral distributions re­

main within the range [10- 8, 10+8] . We decided to test

this for our implementation by comparing the accuracy

mode post hoc power analyses of GPOWER with the

"exact" X2 and F power values published by Patnaik

(1949), and with a sample of results from the SAS rou-
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Program Handling

The present versions of GPOWER assume that users

are familiar with the basic concepts of statistical power

analyses. Moreover, it is useful if users know about Co­

hen's effect size measures and the definitions of"small,"

"medium," and "large" effect sizes. The relevant back­

ground information may be found in Cohen (1988). How­

ever, GPOWER also allows calculation of the effect size

where n denotes the average sample size per cell of the

ANOVA design,jdenotes Cohen's (1977, 1988, chap. 8.2)

effect size index, and A is the noncentrality parameter of

the non central F distribution (see Johnson & Kotz, 1970,

chap. 30). These formulas are correct for global F tests,

because here the number k ofcells is equal to u + 1 (see

Equation 7 below). However, as noted by Cohen (1977,

1988, p. 365), Formula I is incorrect for special F tests

in factorial designs in which the relation between k and

u breaks down. To cope with this problem, Cohen sug­

gested adjusting n so that

1977 and 1988, pp. 364-379). As already noted by Koele

and Hoogstraten (1980, see also Koele, 1982, p. 514,

note I), Cohen (1977, 1988) systematically underesti­

mated the power and overestimated the sample sizes if

the total sample size N and the term v + u + I differ,

where v and u denote the numerator and the denomina­

tor degrees offreedom ofthe F test, respectively. In order

to reduce the number oftables necessary to perform power

analyses, Cohen provided readers with tables for global

F tests only (i.e., his Cases 0 and I of ANOVA F tests,

see Cohen, 1977 and 1988, pp. 356-364). These tables

are based on the premises that

(2)

(1)

(3)

v = (n - 1)(u + 1)

n':= v/(u + 1) + 1

and

is used in his tables instead of n. Substituting n' for n in

Equation 1 shows that this adjustment indeed leads to the

correct denominator degrees of freedom (v) in all pos­

sible cases. Unfortunately, the adjustment has an unde­

sirable side effect in Formula 2, in which A is replaced

by A' = f2(v + u + I). Ingeneral, It' ~ A, with It' = A if

and only if v + u + 1 = N. Actually, this problem can

be solved by simultaneously adjusting f so that f' :=
f (N/(u + v + 1)) 1/2 is used instead off (see Koele &

Hoogstraten, 1980, p. 9). Iff is not adjusted, the power

is underestimated. The underestimation is negligible for

small effect sizes f, but it becomes substantial for large

effect sizes and large differences between N and v +
u + I. To illustrate, Cohen (1977 and 1988, p. 375,

Table 8.3.34) reported a power of .66 for the B X C two­

way interaction test in a 3 X 4 X 5 ANOVA design (thus,

u = 12), given a large effect size (j= .40), a = .01, and

n = 3 per cell (thus, v = 120). The GPOWER accuracy

mode calculates a power of .8531 for the same situation.

tines TPROB, FPROB, and CPROB, which are known to

be highly accurate (see Hardison, Quade, & Langston,

1983). We obtained perfect 4-digit agreement with Pat­

naik's (1949, Tables 1-5) "exact" X2 power values in 61

of 65 cases and no disagreements on the first 2 digits. A

similar picture emerged for Patnaik's (1949, Table 6)

"exact" F power values. We observed perfect 3-digit

agreement in 22 of 24 cases and a difference of .00 I in

the remaining two cases.

An even closer agreement was observed with respect

to the SAS routines for non central t, F, and X2 integrals.

The 6-digit power values for the noncentral t distribution

agreed perfectly in 599 of 600 cases. The disagreement

in the remaining case was .000001. More disagreements

were obtained for F power values. Again, however, none

of the 32 differences from a total of 1,440 comparisons

concerned the first 5 digits. Absolutely no differences in

140 comparisons were observed for 6-digit X2 power

values.

We conclude that the power values obtained by

GPOWER's accuracy mode calculations are indeed cor­

rect up to 5 significant digits, provided the input param­

eters are not too extreme. Since Patnaik's (1949) "exact"

values are based on highly complex and laborious cal­

culations by hand, the rare differences between his val­

ues and the GPOWER results are probably due to occa­

sional rounding errors in his tables.

Although the accuracy mode and the speed mode cal­

culations of GPOWER produce quite similar results for

most of the standard analyses, significant differences

may sometimes occur. For example, the speed mode of

GPOWER calculates a power of .8340 for one-tailed cor­

relation t tests based on N = 8 pairs ofvalues (thus, df =
6), a = .01, and a very large population correlation (p =

0.9). The accuracy mode computes a power of .9805 for

the same set of parameters. These differences are due to

the fact that speed mode results may be very misleading

for extreme values of the parameters. Therefore, we rec­

ommend the speed mode only for taking a first glance at

the problem. Publications of power values and final de­

cisions concerning sample sizes or critical values should

always be based on accuracy mode calculations.

We also investigated the agreement between

GPOWER results and the tables published by Cohen

(1988), because power analyses have often been con­

ducted based on Cohen's books. In general, Cohen (1988)

and GPOWER agree quite well. Of course, perfect 2­

digit agreement with GPOWER's accuracy mode results

cannot be expected because most of the power values

and sample size tables in Cohen (1988) are based on ap­

proximations. Nevertheless, we found perfect agreement

quite often, and power differences larger than .03 were

rare. If such large differences appeared, it was usually

for extreme values of the parameters.

Noteworthy exceptions to this are power analyses for

special Ftests in complex analysis ofvariance (ANOVA)

designs, for example, F tests for main effects or inter­

actions (i.e., Cases 2 and 3 of ANOVA F tests in Cohen,



GPOWER 5

measures from basic parameters such as means, vari­
ances, and probabilities.

The first three steps in GPOWER applications are

(1) the selection of the statistical test to be considered,
(2) the specification of the desired type of power analy­
sis, and (3) the selection ofthe accuracy level of the com­

putations. This is done by choosing the appropriate items
in the "Test" menu (Macintosh version: "Type of Test"),
the "Analysis" menu (Macintosh version: "Type ofPower

Analysis"), and the "I prefer..." menu, respectively.

GPOWER offers both accurate and approximate a priori,
post hoc, and compromise power analyses for seven types

of tests: (1) t tests for means based on two independent
samples (Cohen, 1977, 1988, chap. 2); (2) t tests for cor­
relations (Cohen, 1977, 1988, chap. 3); (3) other t tests;

(4) Ftests in fixed-effects ANOVAs(Cohen, 1977, 1988,
chap. 8); (5) F tests in multiple regression/correlation
(MRC) analyses (Cohen, 1977, 1988, chap. 9); (6) other

Ftests; and (7) X2 tests (Cohen, 1977, 1988, chap. 7). The

X2 test option is general in the sense that power analyses
can be conducted for all X2 tests on discrete data. The
"Other t Tests" and "Other F Tests" items were added to

allow for power analyses of nonstandard t tests and F

tests. One-sample and matched-pairs t tests are examples

of the former, while approximate Ftests for fixed factors

in mixed models (Koele, 1982) and approximate multi­

variate analysis ofvariance (MANOVA) Ftests (Breden­
kamp & Erdfelder, 1985; Cohen, 1988, chap. 10; O'Brien

& Muller, 1993) are examples of the latter. Last but not
least, power analyses for z tests based on the standardized

normal distribution can also be conducted with GPOWER,
because the noncentral t distribution with noncentrality

parameter 8 and the normal distribution with mean 8
and standard deviation I converge for df ~ 00 (Johnson
& Kotz, 1970, p. 207). Thus, in order to compute the

power of the z test, one selects the "Other t Tests" item
and specifies a very large dfvalue (e.g., df= 32000).

GPOWER always adjusts the display to the selected
type of test and the type of power analysis. For example,
if a post hoc power analysis for t tests for means is

selected and performed for the default input values (by
clicking on the "Calculate" button or pressing the return

key), the MS-DOS version and the Macintosh version of
GPOWER present the displays shown in Figures I and 2,

respectively. The visible parameters are either input or
output parameters. Input parameters can be manipulated

by users, while output parameters correspond to power
analytic implications of the input parameters.

Input parameters. One part of the obligatory input

is determined by the selected type of test. For example,

= Test s 17 31 51

Calc EffectslzeCalculate

Effect size d ... Delta 2.500a

Alpha ... Critical t (98)=1. 6606I ' ..

'I,. ~~' {c. ~t~

Sample size nl 1_ Power 0.798900 '"
~ L ", ~

n2 IBL. Test is ..;~. . J. <:' ..•

Protocol

, Effect sIze conventions small = 0 20 medium = 0.50 large = 0 80

Alt X EXit t-test for means

Figure 1. GPOWER display for post hoc power analyses in t tests for means (MS-DOS version).
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Type of Power Analysis

o A priori

@Post-hoc

o Compromise

Type of Test

@ t-Test (means) @ one-tailed

o t-Test (correlations) 0 two-tailed

o Other t-Tests

Alpha: 10.0500I
Power (1-beta): 0.7989

Eff." slz. "do: 1•.5•••fC.I, "d"1

n 1: 150 n 2: 50

2.5000

t(98) = 1.6606

Of-Test (ANOUA)

Of-Test (MCR)

o Other f-Tests

o Chi-square Test

I prefer••• 0 Speed
@Accuracy

Delta:

Critical t:

Eff.ct sin connntions:

d •.80 ·1""9. M

d =.50 • m.dium M

d= .20 ·sm..l1M

[ Draw graPh)

I( Calculate J
Figure 2. GPOWER display for post hoc power analyses in t tests for means (Macintosh version).

for all three types of t tests, users must specify whether
they consider a one-tailed or a two-tailed test. In addi­

tion, the degrees of freedom are needed in the "Other t

Tests" procedure. If, alternatively, ANOVA F tests are
selected, then it is necessary to specify whether the analy­

sis refers to global or special F tests. A global F test is a
test ofthe hypothesis that all means are equal (i.e., the Ho
in one-way ANOVAs or the hypothesis of neither main
effects nor interactions in multi-way ANOVAs). Special

F tests refer to subsets of linear contrasts (e.g., trend

tests or planned comparisons in one-factorial designs
and tests for interactions in multifactorial designs). For
both types of F tests, it is necessary to specify the total

number ofgroups or treatment combinations. For special
F tests, it is also mandatory to determine the numerator

degrees offreedom.
The distinction between global and special tests is also

necessary for F tests in MRC analyses. For MRC analy­

ses, global tests refer to the hypothesis that the multiple
correlation is zero, whereas special tests refer to the hy­
pothesis that the regression weights are zero for some

proper subset of the predictors. For both types of tests,
the total number of predictors in the regression model
must be specified. In addition, again, the numerator de­

grees of freedom are needed in order to perform power
analyses for special F tests.

GPOWER offers no separate option for Ftests in analy­
ses of covariance (ANCOVAs) because these are easily
expressed as MRC F tests (see, e.g., Cohen & Cohen,

1983). In order to perform power analyses for ANCOVAs,
one simply selects the MRC special F test option, enters
the appropriate number of numerator degrees of free­

dom, and specifies the number of covariates plus the

total number of groups minus I as the total number of

predictor variables.
Although the ANOVA and MRC F test options cover

a considerable number of F test applications, not all F

tests fit into these two frames. Therefore, the "Other F

Tests" item was added, which allows for power analyses

ofany Ftest (including those handled more conveniently
by the ANOVA and MRC options). Both the numerator

and the denominator degrees of freedom are requested as
input parameters with this option.

For all types of tests, the remaining obligatory input is

determined by the type of power analysis selected. In
a priori power analyses, the desired a and f3levels as well
as a test-specific effect size measure must be specified.

In post hoc analyses, the a level, the sample size, and the
effect size need to be determined. Finally, compromise
analyses require the specification of the sample size, the

effect size, and the error ratio q := f3la.
For most of the tests covered by GPOWER, all three

types of power analyses are available. The exceptions
are that no a priori analyses can be selected in the "Other
t Tests" and "Other F Tests" procedures. This restriction

is necessary because the parameter N is not linked to df,

the (denominator) degrees offreedom of the test, in the
"Other t Tests" or "Other F Tests" procedures. The prob­

lem is that the parameters Nand df must be specified in­
dependently for the "Other t Tests" and "Other F Tests"
items to be applicable to all possible t tests and F tests,
respectively. Taking a small detour, it is nevertheless

possible to compute a priori power analyses. One simply
performs post hoc analyses repeatedly, adjusting Nand

the corresponding dfvalue until the desired power level
is found.
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are the sample sizes in Groups I and 2, respectively. In t

tests for correlations,

The standardized effect size measures f or f2 are also

used in power analyses for F tests. Their relation to the

noncentrality parameter A. of the noncentral F distribu­

tion is given by

(6)

(5)IT0= I--.-JN
~ ' l _ p2 '

where N is the total sample size (i.e., the number ofpairs

of values) and p is the population correlation coefficient

according to HI (i.e., Cohen's r; see Cohen, 1977, 1988,
pp.77-81).

In the "Other t Tests" option, we used f as an effect

size measure (Cohen, 1977 and 1988, chap. 8.2). The re­

lation between 0 and f is simply

A. = f2 . N, (7)

where f2 := p2/(l- p2), and p2 denotes the coefficient

of determination in the population according to HI (see,
e.g., Koele, 1982, p. 514).6

(4)

where d: = l,ul - ,u21/O'is Cohen's (1977 and 1988, p. 40)

effect size parameter for t tests for means, and n1 and n2

Cohen's (1969, 1977, 1988, 1992) effect size mea­

sures are well known and his conventions of "small,"

"medium," and "large" effects proved to be useful. For

these reasons, we decided to render GPOWER com­

pletely compatible with Cohen's measures and to dis­

play the effect size conventions appropriate for the type

of test selected. Effect size values can either be entered

directly or they can be calculated from basic parameters

characterizing HI (e.g., means, variances, and probabil­

ities). To use the latter option, users must click on the

"Calc Effectsize" button (Macintosh version: "Calc 'x' ,"

with x representing the effect size parameter).

In order to prepare the appropriate GPOWER input, it

may sometimes be necessary to know the relation be­

tween sample sizes and effect size measures on the one

hand and the noncentrality parameters of the noncentral

distributions on the other hand. In t tests for means, the

noncentrality parameter 0 is

" Tests 12 36 01

Total sample size ...

Analysis

I want to see...

as a function of ...

Cancel

PrevlOUS Plot

Graph
Start End......

Calculate

End<->Inc

Alpha

Number of Steps ...

Effect size d

Figure 3. GPOWER graph display for t tests for means (MS-DOS version).
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Type of Power Rnalysis:

Post-hoc

I want to see ...
Y-R xis l-p-o-w-er-----,

Type of Test:

t-Test (means) one-tailed

fixed ualues:

Rlpha: 10.0500I
Power (l-beta):

...as a function of

X-RXisl Effect size

Start Increment Stop

10.2500I 10.0500I 10.7500I

Effect size Old":

Total sample size: 1100

I prefer...

o Speed

@ accurecg

~ 6 r i d

o Plot ualues

~ Draw line
~ Protocol (table) Cancel ) l OK

Figure 4. GPOWER graph display for t tests for means (Macintosh version).

For X2 tests based on m-cell contingency tables (m E

N ), Cohen (1977, 1988, chap. 7) used

(8)

as an effect size measure, where POi and Pu denote the
cell probabilities for the ith cell according to Hoand HI'
respectively. Then

A = w 2 . N (9)

is the noncentrality parameter of the noncentral X2 dis­
tribution (Cohen, 1988, p. 549).

Output parameters. Pressing the return key or click­
ing on the "Calculate" button initiates the GPOWER cal­
culations. The output consists of (1) sample sizes in

a priori analyses, power values in post hoc analyses, and
a as well as f3 values in compromise analyses; (2) the
noncentrality parameter of the reference distribution as

implied by N and the effect size specification; (3) the
critical value of the test statistic defining the boundary of
the rejection region of Ho; and (4) the degrees of free­
dom of the test. We recommend comparing the degrees
of freedom output with the degrees of freedom as re­
ported by the computer program used for statistical data
analysis. If the reported degrees of freedom mismatch,

either the GPOWER input or the input to the data analy­
sis package has been misspecified. In either case, the
GPOWER results do not apply to the test reported by the
data analysis program. If the reported degrees of free­

dom match and if, in addition, users make sure that they
base their statistical decision on the critical value as re­
ported by GPOWER, then there is only one possible
source of error left, namely, the noncentrality parameter
of the reference distribution. By carefully specifying the

effect sizes and the sample sizes, errors can be ruled out

completely for most of the tests offered in the "Test"
menu. However, special care must be taken when using
the "Other t Tests" and "Other F Tests" options. Only

users who are familiar with the definition of the non­
centrality parameter for their special type of test should
make use of these options. Equations 6 and 7 will help to
specify the input parameters N and! correctly.

Each power calculation conducted by GPOWER is au­
tomatically copied to a protocol window. The contents of
this window can be saved to a file.

Graph options. GPOWER results can be displayed
graphically by clicking on the "Graph" button (Macin­
tosh version: "Draw graph"). Starting from the main
windows shown in Figures 1 or 2, the graph parameters

are specified in windows as displayed in Figure 3 (MS­
DOS version) or Figure 4 (Macintosh version). For most
of the tests covered by GPOWER, each of the variables

a, 1 - f3, effect size, and sample size can be plotted as a
function ofany other of these variables. However, for the
reasons already discussed, sample sizes may not be se­

lected as variables when using "Other t Tests" or "Other
F tests." Plots can be generated with several display op­
tions turned on or off, and a table containing the plotted
values can be copied to the protocol window. Users can
specify the lowest ("Start") and the largest value ("End")

on the abscissa and the number of data points to be cal­
culated. Both speed mode and accuracy mode calcula­
tions are available in the graph window.

The plots shown in Figures 5 and 6 were generated

with the MS-DOS and the Macintosh versions, respec­
tively. They may be obtained by preparing the inputs
shown in Figures 3 or 4 and pressing the return key or
clicking on the "Calculate" button (Macintosh version:
"OK" button). In the Macintosh version, the graph can
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t Test for Means
Total sample size = 100~ Alpha = 0.05

Test is one-tailed
1.0

0.9

0.8

I..
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Figure 5. Graph ofthe power ofthe t test for means as a function ofthe effect size d (generated by the MS-DOS version

ofGPOWER).

be copied (in PICT format) and pasted into another ap­
plication to be edited and printed. For the MS-DOS ver­

sion, additional software is needed in order to generate
a hard copy of the screen contents (i.e., so-called capture

programs or "screen-shot programs").

Hardware and Software Requirements
The Macintosh version of GPOWER should run on

any 68K Macintosh using system 6.0.7 or higher. It has

also been tested successfully on some PowerMacintosh
models where it runs in emulation mode. Two different

implementations are available, one that requires and takes
advantage ofan arithmetic coprocessor (GPOWER/FPU),

and one that does not (GPOWER).
The MS-DOS GPOWER version requires an IBM­

compatible PC with MS-DOS 3.31 or higher and a graphic
card. GPOWER may also be used in the DOS windows
of Windows 3.1 or OS/2 2.0. We recommend installing
the program on a 386 (or better) PC with an arithmetic

coprocessor. To take full advantage of all GPOWER op­
tions, a VGA graphic card and a color monitor are nec­

essary. A mouse is not necessary but it is very helpful.
When using the MS-DOS version without a mouse, one
selects options by pressing the key corresponding to the

appropriate highlighted letter (selecting items within the

active region of the window) or by pressing "AIt" plus
the key matching the appropriate highlighted letter (ac­

tivating another region of the window and selecting an
item from the new active region). Ifthe same letter is high­

lighted twice, it is always in different regions of the win­
dow. Within parts of the regions, items can also be se­

lected with the arrow keys.

AVAILABILITY OF THE PROGRAM

GPOWER 2.0 can be obtained free of charge. The
most convenient way to get a copy of GPOWER is to

download the program from the public FTP server at the
University of Trier, Germany (ftp.uni-trier.de; user 10:

anonymous; password: your e-mail address). The self­
extracting archive "gpower2i.exe" contains all necessary

files for the MS-DOS version ofGPOWER. It is located
in the directory "/pub/pc/msdos." Both Macintosh imple­
mentations may be obtained by downloading the StuffIt

archive "gpower202.sit" from the directory "/pub/mac/
local." Alternatively, Macintosh users may download

"gpower202.sit" from the "MacPsych archive for psy­
chology concerning the Macintosh computer" (see Huff
& Sobiloff, 1993, for details). Transfer of the programs

via regular mail is also possible. Interested readers should
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Graph window

t-T.st ( m . ~ n s ) . o n . - t ~ n . d

POIr'et' (I-bet~) Alpha: 0.0500 lota1sample s;ze: 100

O~ O~ O~ O~ O~ O~

Effect s ~ e "d"

Note: Accuracy mode ca1cu1at;on.

Figure 6. Graph ofthe power ofthe ttest for means as a function ofthe effect size d (generated by the Mac­

intosh version of GPOWER).

write to the first or second author if they want to receive

the MS-DOS version, and to the third author if they want
the Macintosh version. A completely new, unformatted
floppy disc must be enclosed.

In publications involving the use of GPOWER, users
are expected to cite the program version used (i.e., Faul
& Erdfelder, 1992, for the MS-DOS version and Buch­

ner et aI., 1992, for the Macintosh version).
Although considerable effort has been directed toward

making GPOWER error free, there is no warranty. Users

are kindly asked to communicate any problems encoun­
tered with the program to the authors.
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NOTES

I. IfH 1 is not determined uniquely, increasing the effect size may be

a third way to raise statistical power (Rossi, 1990). Techniques to in­

crease effect sizes aim at controlling the various sources of error vari­

ance, for example, by using highly reliable measures as dependent

variables (Erdfelder & Bredenkamp, 1994). Where such possibilities

exist, they should of course be used. However, it appears that substan­

nal gains m statistical power cannot be achieved along these lines.

2. The tables by Hager and Moller (1986) are a pleasing exceptIon,

covering selected a values in the range .002 ~ a ~ .40. However, these

tables are based on the noncentral X2 distributions exclusively, which

allow only rough approximations of the power of the F test.

3. One anonymous reviewer pointed out that the term post hoc power

analysis might possibly be misunderstood. Therefore, we want to em­

phasize that this term does not mean that the power IScomputed for an

effect size as estimatedfrom a sample. We use the term in the same way

as Cohen (\ 969, 1977, 1988) did. Thus the effect size is a population

parameter to be specified a priori m all types of power analyses. This

specification should not depend on a sample of data but on theoretical

considerations. In fact, it is erroneous to assume that a post hoc power

analysis applied to effect sizes equated with their sample estimates

yields something like the "true power level" in all applications ofa sta­

tistical test. This assumptIon would be valid only if one could make

sure that the population effect size were equal to the effect size esti­

mate, irrespectIve of sample size. Obviously, it is impossible to show

this, and if it would be possible, then there would be no need to con­

duct statisttcal tests.

4. Some variants of power analyses for nonparametric tests can be

conducted by adjusting the result obtamed for the corresponding para­

metric test (Bredenkamp, 1980; Singer, Lovie, & Lovie, 1986). For ex­

ample, an a priori power analysis for the Wilcoxon-Mann-Whrtney V

test can be conducted by first performing an a priori power analysis for

the t test for means. If the t test model is valid, and N, designates the

sample size necessary for the t test to achieve some given power (I ­

(3), then the sample size Nu = N,JA.R.E. yields approximately the

same power for the V test. A R.E. denotes the asymptotic relative ef­

ficiency (or Pitman efficiency) of the Vtest relative to the t test, which

IS3,1r = .955 (see Lehmann, 1975). The same procedure may often be

used to approximate the power of randomization tests (Onghena,

1994). In this case, the A.R.E. of the randomization test relative to the

corresponding parametnc test IS I. For power analyses in randomiza­

tion tests that do not have a corresponding parametric test, special

computer software is in preparation (Onghena, 1994; Onghena & Van

Damme, 1994).

5 To be precise: In the procedures "Other t Tests" and "Other F

Tests," no rounding to integer values is performed. In t tests for means

and analysis of variance (ANOVA) F tests, in contrast, the solution is

always the smallest multiple of the number k of groups that yields a

power value as large or larger than the prespecified value.

6. For global ANOVA F tests, p 2 is just 1/2 For special F tests of

main effects or interactions m complex ANOVA designs, p 2 equals the

partial 1/2. Analogously, p 2 coincides with the (partIal) squared mul­

tiple correlation in multiple regression. correlation F tests (Cohen,

1988, chap. 9.2.1).
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