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Abstract—In this paper, the problem of determining the depth and radius of a circular pipe along with
the soil characteristics is studied, using electromagnetic waves with a fuzzy support vector machine as
well as a fuzzy support vector machine. To this end, three neural network based fuzzy support vectors
are used to determine the soil, depth, and dimensions. Also, using the 2D time domain numerical
simulations of electromagnetic field scattering, along with MATLAB software, 1030 data are generated
for training as well as neural network verification. Given the fact that for each of the three parameters
the nature of the problem is different, separate neural networks are considered with different parameters,
thus the number of different data for the network training is considered. In all three cases, the neural
network parameters are optimized using genetic algorithm to reduce the error and also reduce the
number of support vectors. It should be noted that the objective function of the genetic algorithm
consists of two components of the error, as well as the number of membership functions, which can
be determined by determining a control parameter. For soil permittivity, the algorithm can accurately
predict 93% of permittivities, and it decreases to 89.8 for the pipe depth determination. For diameter
it is seen that for 69.3 of the cases the algorithm can correctly classify the pipes.

1. INTRODUCTION

Ground penetrating radar (GPR) has been considered as a non-destructive evaluation tool. In this type
of radar, electromagnetic waves are sent from the transmitter antenna to the ground, and by comparing
the wave in the receiver with the transmitted signal, it attempts to find the sub-layers. The details of
the GPR structure and signal processing can be found in [1–3].

Due to the obscure effect of various factors in the signal received from the GPR (such as soil
characteristics, depth, and physical dimensions of buried objects, noise), automatic treatment of the
signal is a complex task. The problem becomes more complicated for low depth objects, in which the
return signal is close to the strong direct signal. In this case, the ordinary signal processing algorithms
fail in obstacle determination. Currently, this work is carried out by experts operators. The training of
such people is an expensive task.

Proper clustering of these signals can reduce the complexity and increase the accuracy of the
processing. By clustering the processing accuracy increases, and operator training costs are also reduced.
A straightforward method is to assume high-order auto regressive time series model as:

r (t) =
∑

j

αjs (t − τj) + n (t) (1)

for the received signal, to find the delays and coefficients, where r(t), αj , s(t− τj), and n(t) are received
signal, loss, delayed transmitted signal, and noise, respectively. Because delays (i.e., τjs) are in the
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range of ns, sampling and digital analysis of these types of signals require nano-second scale high-speed
A/D converters. Local maximum points of the cross-correlation function of the transmitted and received
signals indicate the delays. However, because of the stationary nature of the received signals, the signal
can be reconstructed and analyzed using slow A/Ds in several periods of time. Yule-Walker algorithm
may be classified in this category [4, 5].

In practice, this method requires high frequency bandwidth for data analysis. However, when the
resolution of the layers is negligible or for the thin layers, the time series method loses its effectiveness.
So other methods of signal analysis are taken into account. Also, in practice, due to the low speed
ADCs, the number of received signal samples is low, which mathematically reduces the accuracy of
the time series method. Therefore, it is necessary to look for methods that are able to extract the
information from the signal with a limited number of samples.

The first candidate in this regard is the array processing methods. Array processing techniques
employ multiple antennas at the receiver. The receiver receives highly correlated signals, allowing the
signal to be processed quickly and accurately with a low number of received samples. For example,
using the MUSIC algorithm, Thomas and Roy have attempted to calculate the thickness of the coal
layer [6].

Batard et al. have also attempted to determine the thickness of asphalt using ground penetrating
radar data and also compared the array processing algorithms with Yule-Walker algorithm [7]. It is
found that array processing algorithms generally perform better than Yule-Walker algorithm. Among
the three array methods presented, the ESPRIT method exactly determines the delays, and the noise
effect is completely eliminated.

Shrestha and Arai have used the MUSIC array processing algorithm with Fourier transform to
process the data. It should be noted that the algorithm has been applied on the FMCW radar.
The algorithm has demonstrated the overwhelming advantage of array processing methods over direct
methods. It seems that for the direct methods for near targets, the waveforms overlap, which is less
likely for array processing methods [8].

However, array processing methods increase the complexity of the receiver. Also, the processing
time in the receiver increases, which makes the system slower and in real-time practical applications
interrupts the device users. In addition, array processing methods need to calculate and process
(compute eigenvalue and eigenvector) the correlation matrix between the sensors, which increases the
processing load and reduces the program speed.

In recent years, artificial intelligence based methods have been considered as an alternative for time
series methods. These methods are either independent or in combination with the time series method
[9]. Pan et al. have used a combination of time series forecasting methods (forward-backward linear
prediction method (FBLP)) and support vector regression to solve the problem for continuous wave
radars. The support vector regression (SVR) is robust to small number of samples. Radar signal is
considered as time series of finite order, and series coefficients are obtained by SVR. The SVR function
is formulated for time series coefficients. The comparison of the simulation results for a sample problem
reveals that there are advantages of FBLP-SVR over the alternative method (FBLP) in the resolution
and required samples for the signal processing [9].

Xie et al. have used a support vector machine approach to estimate the locations of the cavities
in concrete for experimental and simulated data. They have used simulation to generate training data
and compared simulated results with experimental data. For the support vector machine, four linear,
Gaussian, sigmoid, and polynomial functions have been utilized. The average accuracy of the method
is 78.35, 88.90, 21.23, and 65.32 percent for the experimental data, respectively [10].

Williams et al. have used a support vector machine with a Markov chain to detect gaps in the
ice layers. The Markov chain is first used to process data and identify suspicious locations in images
for subsequent processing. The Markov chain output is then applied to a support vector machine
to determine the location of the layers (horizontal distance and depth). The paper reports an error
probability of 0.0007 for 129 experiments [11].

Zou and Yang have attempted to find disturbances within the asphalt on the airport road using
a support vector machine. Results for the three sets of data report the accuracy of the methods 97.9,
95.9, and 93.9 and the mean accuracy of 95.9, and compared to the conventional neural network with
87% accuracy, the results showed that the support vector machine method was more accurate. The
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Gaussian kernel has been used [12].
El-Mahallawy and Hashim have used a support vector machine method with discrete cosine

transform to cluster materials. First, by applying the cosine transform on the signal, the signal
characteristics are extracted and applied as input to the support vector machine. It has been found
that the noise-free signal is able to achieve a 100% true detection rate, and the detection probability
in the presence of noise decreases. It should be noted that the number of features used by the cosine
Fourier transform must be optimally selected. Selecting more or less attributes results in an error in
the method [13].

Bastard et al. have used support vector regression to determine the delay and material
characteristics. The paper argues that using the super-resolution capabilities of the support vector
regression method can prevent the distractive effects of the correlated echo signals. The Gaussian
kernel is used for the support vector regression. The problem is solved for two cases with interfering
and non-interfering echoes. It has been found that for non-interfering echoes the results are slightly
better than interfering echoes, although they are acceptable in both cases [14].

Shao et al. have proposed an automated classification method for GPR signals in the ground, with
the aim of examining the effect of gravel and sand around railway tracks. Signal analysis is performed
in the frequency domain. It is observed that for the gravel bed with 50% clay, the maximum signal
frequency spectrum is lower than that for the clean gravel bed and 50% coal bed. Also in the frequency
range 800 MHz to 1200 MHz, the coal bed signal loss rate is higher for most other platforms. The
analysis is based on three steps of preprocessing, feature extraction and class based on the support
vector machine. In the preprocessing the DC signal is removed, and harmful interference signals are
separated from the main signal. In the feature extraction, distinct frequencies are first separated from
the signal after Fourier transform and signal normalization. At the end of the extraction phase, the
local maximum features are extracted at the specified frequencies. It is claimed that for the number of
frequencies equal to 17, the support vector method is able to classify correctly at 100% rate [15].

In addition to the above references, the application of neural networks to analyze GPR data has
been recently considered. The use of SF-GPRs, neural networks for non-metallic pipe detection [16],
pipe crack detection algorithm [17], identification of concealed targets inside the book [18], and object
location classification [19] are some examples in this regard. Dumin et al. provided a brief review in
this regard [20].

The purpose of this paper is to present a suitable procedure for designing neural networks based
on a fuzzy support vector machine and fuzzy support vector regression. The article is arranged in 5
sections. The second section will provide a formulation appropriate to the problem. The appropriate
membership function as well as the method of extracting the appropriate attributes from the GPR
signal will be presented. The third section will be devoted to the algorithm implementation procedure.
Section 4 also presents the results of the algorithm implementation. Finally, the conclusion of the paper
will be provided.

2. PROBLEM FORMULATION

2.1. Support Vector Machine and Regression

The support vector machine is a neural network with supervised learning and is capable of performing
clustering (linear and nonlinear using kernel tricks) and regression. A brief history of the evolution of
the method is given in [21]. Since 1936, many researchers have been involved in the evolution of the
method. However, in most sources, Vapnik and his co-workers provide most of the role that in 1963
presented the standard formulation for the method. Of course, the relevant references were originally
written in Russian, with the 1976 English translation of the method presented. The aforementioned
researchers in 1992 proposed the use of kernel tricks for classification as well as regression of nonlinear
functions. The formulation proposed by Cortes was improved in 1993.

The purpose of binary linear clustering is to group the points in the dimensional P dimensional
space using a dimensional P − 1 hyperplane. Obviously, infinite number of hyperplanes can be found to
do this. The purpose of the support vector machine is to find the optimal hyperplane for performing the
clustering operation. The optimal hyperplane is the one with the maximum Euclidean distance from all
members of each cluster. In this regard forbidden area is assumed. No data should be in the restricted
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area. By properly formulating the problem of finding the optimal hyperplane, it becomes a convex
bounded optimization problem which can be solved by the Lagrangian multipliers method. The points
that lie on the border of the forbidden area are considered as support vectors, and we only need these
support vectors to find the characteristics of the hyperplane. None of the data can be located in the
forbidden area. In practice due to the noise and measurement errors, the hard support vector machine
method is not able to perform the clustering properly. The first step in solving the above problem is to
provide the possibility of a limited violation in the formulation of the support vector machine, which is
commonly called soft support vector machine. Also with the kernel trick and application of nonlinear
maps, it is possible to cluster the space with the curved hyperplane.

The support vector machine for clustering can be extended to fit the curve or approximation of
functions. This topic is known as the support vector regression method. The purpose of the problem is to
find a function that maps the input vector to the scalar output. The problem was initially formulated
for linear regression. Using kernel tricks, the problem can be generalized to approximate nonlinear
functions.

2.2. Fuzzy Support Vector Machine and Regression

The problem of support vector machine as well as support vector regression is the error due to
noisy training data. This problem can be solved by fuzzy logic by defining membership for each
training datum. Membership is a measure of confidence that a datum belongs to a class. With slight
modifications to the support vector machine formulation and support vector regression, membership
functions can be applied to the formulation. It should be noted that various formulations for the support
vector machine are mentioned [22–26]. Due to its simplicity of the formulation and similarity to the
standard formulation, the formulation introduced by Wu etand Yap is used in this paper [26]. The
probability of determination of data with low membership as a support vector is very low. By this
approach and proper membership function, the noise effect can be mitigated. A similar idea can be
utilized to the support vector regression.

The success of fuzzy methods to capture outliers depends on the selection of appropriate
membership functions for the training data. Several functions are recommended in this regard.
The membership functions can be divided into two categories of general membership functions and
application-oriented membership functions [27]. In general membership functions, the membership of a
datum is determined based on its distance from the center of the cluster or hyperplane. To the points
close to the center of the cluster (or hyperplane), the larger memberships are assigned, and the other
data play less role in the support vector training process.

An application-oriented approach to membership function is considered for application. Initially,
non-fuzzy support vector is applied to the data, and operational error is extracted. Then the
corresponding error is applied to the following membership function:

μ (xi) = α + (1 − α) tanh (γ|ei|) (2)

where α and γ are constants to be heuristically determined. eis are misclassification or mis-regression
penalty. Three parameters appear in membership function, which will be properly assigned. Fig. 1
depicts the membership versus error for various parameters. The proposed membership function has
the following properties. When the function argument tends to zero, the membership function tends to
α. It should be determined in such a way that the role of the data with negligible regression error can
be ignored. In this case, with the steep slope of the membership function, it responds more to small
errors. For large error, this function tends to one. Therefore, the role of data with large error becomes
more pronounced.

2.3. Feature Extraction

The sensor output in a period consists of a large number of samples, of which the samples due to the
soil type, pipe location, and pipe diameter occupy a small fraction of time interval relative to the entire
time interval. Proper selection has a great impact on the accuracy of measurements. Studying sample
figures, it is observed that the return signal presents finite time windows. The time delay of the first
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Figure 1. The proposed membership function.

window can represent the soil type. The second window represents the return signal of the pipe, the
location of the pipe beneath the soil. The width of the second signal depends on the target diameter.

Therefore, it seems that the location of the average signals in the window as well as the signal width
in the window can be suitable parameters for determining the characteristics of the targets. Given the
Gaussian shape of the transmitted signals, the Gaussian mean (μwi) and standard deviation (σwi) of
the measured signal (i.e., E(t)) is suggested as a suitable characteristic for fuzzy vector machine input.

μwi =

∫
wi

t |E (t)|
max (|E (t)|) (3)

σwi =

√√√√√√
∫

wi

(t − μwi)
2 |E (t)|2

max
(
|E (t)|2

) (4)

Therefore, the signal reception interval is subdivided into a number of sub-intervals. When the signal
is only inside a window, the non-zero mean represents the target location, and the non-zero standard
deviation can represent the target diameter in the window. In the absence of a signal in the window,
the mean and standard deviation are obviously zero. If the target is located in adjacent windows, the
mean and standard deviation of both windows are non-zero, which may indicate the target between the
two windows. Obviously, the smaller the windows are, the greater the resolution of the measurements
are, and consequently, the accuracy of the measurements is. This can lead to an increase in the number
of attributes. Therefore, the neural network structure becomes more complex, and large amounts of
training data are required to train the network, which is not desirable. Increasing the window size also
reduces the resolution, which reduces the accuracy of the measurement. Therefore, to determine the
size of the window, it is necessary to make a trade-off between the number of training samples and the
accuracy of the measurement.

3. ALGORITHM IMPLEMENTATION

In order to produce training data, circular pipes with diameters of 5 to 20 cm at depths of 0.5 to 2 m
in clay, sand, and mixed soils are considered. Pipe diameter, pipe depth, and soil type are considered
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randomly with a uniform statistical distribution. Ground penetrating radar signals are simulated using
time domain finite element method in MATLAB. MATLAB simulations are carried out on a computer
with a 3.4 GHz processor and 16 GB memory. 1100 training and validation data are extracted. The
whole process of getting data on the above computer took about a week (152 hours 34 minutes 18
seconds). The transmitted pulse is a Gaussian pulse-modulated centroid with a frequency of 250 MHz
and a period of 8 nanoseconds with which the pulse is expected to detect targets at a depth of 2 m and
a diameter of 20 cm [1]. The pulse repetition period is set at 80 ns. Each simulation period generates
1000 samples of the signal.

It is focused on determining the three parameters of soil permittivity, target depth, and radius
of curvature of the target. For this purpose, three support vector machines have been trained. Fuzzy
support vector regression is utilized to determine soil permittivity and depth. The support vector
regression is unable to determine the radius of curvature, and in this case the support vector machine is
used to classify the pipe diameter (diameter greater or less than 10 cm). In each case, the results of the
fuzzy neural network are compared with the results of the conventional network. Linear kernel is used
to determine the soil permittivity and also to classify the targets according to the radius of curvature.
To calculate the target depth, the Gaussian kernel is utilized.

The genetic algorithm is used to determine the network parameters, i.e., C fine, ε, window size,
and membership function parameters (α and γ). The objective function of the genetic algorithm is set
to minimize computational error for training data and try to minimize the number of support vectors
to maintain the generalizability of the network. For complex network, large amount of training and test
data is required. It is considered as(

N∑
i=1

|ti − yi|
)

×
(

0.5
(

S

Sd
+

Sd

S

))ζ

(5)

where yi and ti are the network outputs and the desired values, respectively; N is the number of training
data; S and Sd are the number of the actual and desired support vectors. ζ is a control parameter that
can be used to trade-off between the error rate and the number of support vectors. The expression
inside the bracket is minimized when this value is equal to one. If ζ = 0 is considered, the expression
in brackets has no effect on the minimization process of the genetic algorithm, and if it is greater than
zero, the support vectors approach the desired value. It should be noted that for the implementation
of the genetic algorithm we have used the GUI of OPTIMTOOL from MATLAB software.

4. RESULTS AND DISCUSSIONS

4.1. Soil Permittivity

As mentioned before, the soil is determined by the amount of relative permittivity. It is 7 for dry sandy
soil and 30 for wet clay soil, and depending on the grain it varies between two above mentioned values
for other types of soil. Two neural networks based on support vector regression have been trained in this
regard. In the neural network, the usual training method with linear kernel functions is used. Based
on the computational error of the first non-fuzzy network for training the second network data, the
network data are assigned membership values. In this case, 200 training data would be enough to train
network data. In this case, the value of the support vectors, Sd, is set to 50, and the control parameter
is set to 6. After optimization for the window, a value of 15.68 ns (196 times the sampling period) is
obtained. An error of ε = 0.59 and a penalty parameter of C = 163 are obtained.

Due to the small number of samples used for network training, many data are left unused for
verification purposes. After training the network for 930 validation data, the performance of the network
is evaluated. Fig. 2 shows the error for 930 samples. From this value, it is observed that for 756 samples
the measurement error is below 5%, for 131 samples a computational error between 5 and 10%, and for
43 samples a computational error greater than 10%. For the five samples (half percent of the cases),
the computational error is greater than 20 percent, which seems unacceptable.
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Figure 2. Relative error for soil permittivity determination.

4.2. Pipe Depth

Experience has shown that using the linear kernel function to determine the depth of the pipe results
in a high computational error. For this purpose, the Gaussian kernel function with constant width is
considered. Large amounts of training are required for the training. So from the 1030 available data,
we use 300 measurements for network training and 730 data for network validation. Given that in
practical applications for urban installations, the depth of the pipe in cold regions is 90 cm, we consider
the depth of pipe from 50 cm to two meters. The simulation data are provided randomly with a uniform
distribution in this regard. Genetic algorithm is used to determine the number of support vectors, error
value, violation penalty, window size, control parameter, and Gaussian function width. After optimizing
the values Sd = 194 for the number of support vectors, ε = 0.02 for error, C = 805 for violations penalty,
519 samples equivalent to 41.52 ns for the window and 7.3 for the Gaussian function width. The value
for the control parameter is γ = 10.

After training the network, for 730 validation data, the performance of the network is evaluated.
Fig. 3 reveals the error for 730 samples. It is found that for 590 samples 80.8% of the sampling error
is below 5%, for 66 samples 9%, computational error between 5 and 10%, and for 47 samples, 6.4%
is greater than 10%. For 27 samples (3.7% of the cases) the computational error is greater than 20%,
which seems unacceptable. Further examination shows that of the 27 tubing depth measurement errors,
17 are for depths greater than 60 cm (between 50 and 60 cm), which is acceptable given the interference
of the signals in this error. It should be noted that from the training data, 69 depth samples fall within
the above range, with 77% of the depths found with acceptable error. The next 6 samples are for pipe
in clay soil 1 m deep and above, which is justified by the high loss of the electromagnetic waves in the
clay soil. It should be noted that 288 of the samples are clayey. 4 samples also have depths greater than
60 cm. In this case, it is observed that the crude soil has a dielectric coefficient of less than 5, which
interferes with the first signal due to the larger diffusion rate in these types of soils. Second, it causes
errors. It should be noted that 33 out of 730 samples are from these soils and 12% of the calculations
are incorrect.

4.3. Pipe Radius

It is simply not possible to accurately determine the diameter of the pipe using electric field data. To
address this problem, the approach was changed as follows. The purpose of the problem is to cluster the
pipes into two large clusters (greater than 10 cm in diameter designated by +1 class) and small clusters
(less than 10 cm in diameter designated by class 1). Instead of support vector regression, support vector
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machine was used. The criterion of Eq. (5) was adopted to minimize the number of support vectors.
800 data from 1030 available data were used for network training and 230 data for network validation.
The linear kernel function was used in the support vector machine.

Genetic algorithm is used to determine the support vectors, violation penalty, window size, and
control parameter. After applying the genetic algorithm for the window, a value of 1 ns is obtained,
for a delay of 91.3 and for a control parameter of 9.3. The number of support vectors is also 354. The
difference between the actual class number value and the network output class number is used to display
the network results. Of the 230 validation data, 152 (66.1%) were clustered correctly. For 44 training
data (19.2% of cases), the small pipe was clustered as large pipes. This is 34 (14.7%) for large pipes. It
appears that the network error for smaller pipes is greater than that for large pipes. Fig. 4 summarizes
the results. Further investigation shows that in the validation data, the number of large tubes is 119,
of which 75 tubes (63%) are correctly clustered. The number of small tubes is 111, of which 77 (69.3%)
are appropriately clustered.
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5. CONCLUSION

In this paper, the problem of soil characteristic determination and buried obstacle was investigated using
optimized fuzzy support vector machine and fuzzy support vector machine. An application oriented
fuzzy membership function was proposed in this regard. Genetic algorithm was utilized to optimize
the neural network. Fuzzy support regression networks were designed to find the soil permittivity and
depth of the underground pipe. Also a fuzzy support vector machine was developed to classify pipe to
large (with diameter larger than 10 cm) and small pipes, according to the pattern of the received signal.
Simulation experiments reveal that the trained networks usually predict the required parameter with
acceptable accuracy.
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