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1. INTRODUCTION

GPS time is created by processing GPS pseudorange measure-
ments with the operational GPS Kalman filter. Brown [2]
refers to the object created by the Kalman filter as the GPS
composite clock, and to GPS time as the implicit ensemble
mean phase of the GPS composite clock. The fundamental
goal by the USAF and the USNO is to control GPS time to
within a specified bound of UTC/TAL (I refer to TAI/UTC
understanding that UTC has an accumulated discontinuity
(a sum of leap seconds) when compared to TAI. But unique
two-way transformations between TAI and UTC have been in
successful operational use since 1972. I have no need herein
to further distinguish between TAI and UTC.) I present here
a quantitative analysis of the GPS composite clock, derived
from detailed simulations and associated graphics. GPS clock
diffusion coefficient values used here were derived from Al-
lan deviation graphs presented by Oaks et al. [12] in 1998. I
refer to them as “realistic,” and in the sequel I claim “realistic”
results from their use. Figure 1 presents their diffusion coef-
ficient values and my derivation of associated Allan deviation
lines.

My interest in the GPS composite clock derives from
my interest in performing real-time orbit determination for
GPS NAVSTAR spacecraft from ground receiver pseudor-
ange measurements. (James R Wright is the architect of
ODTK (Orbit Determination Tool Kit), a commercial soft-
ware product offered by Analytical Graphics, Inc. (AGI).)

The estimation of NAVSTAR orbits would be incomplete
without the simultaneous estimation of GPS clock param-
eters. I use simulated GPS clock phase and frequency devi-
ations, and simulated GPS pseudorange measurements, to
study Kalman filter estimation errors.

This paper was first prepared for TimeNav’07 [20]. I am
indebted to Charles Greenhall (JPL) for encouragement and
help in this work.

2. THE COMPLETE ESTIMATION AND
CONTROL PROBLEM

The USNO operates two UTC/TAI master clocks, each of
which provides access to an estimate of UTC/TAI in real time
(1 pps). One of these clocks is maintained at the USNO, and
the other is maintained at Schriever Air Force Base in Col-
orado Springs. This enables the USNO to compare UTC/TAI
to the phase of each GPS orbital NAVSTAR clock via GPS
pseudorange measurements, by using a UTC/TAI master
clock in a USNO GPS ground receiver. Each GPS clock is
a member of (internal to) the GPS ensemble of clocks, but
the USNO master clock is external to the GPS ensemble of
clocks. Because of this, the difference between UTC/TAI and
the phase of each NAVSTAR GPS clock is observable. This
difference can be (and is) estimated and quantified. The root
mean square (RMS) on these differences quantifies the differ-
ence between UTC/TAI and GPS time. Inspection of the dif-
ferences between UTC/TAI and the phase of each NAVSTAR
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Frcure 1: Allan deviation lines for S1, S2, N1, and N2.

GPS clock enables the USNO to identify GPS clocks that re-
quire particular frequency-rate control corrections. Use of
this knowledge enables the USAF to adjust frequency rates of
selected GPS clocks. Currently, the USAF uses an automated
bang-bang controller on frequency-rate. (According to Bill
Feess, an improvement in control can be achieved by replac-
ing the existing “bang-bang controller” with a “proportional
controller.”)

3. STOCHASTIC CLOCK PHYSICS

The most significant stochastic clock physics are under-
stood in terms of Wiener processes and their integrals.
Clock physics are characterized by particular values of clock-
dependent diffusion coefficients, and are conveniently stud-
ied with aid of a relevant clock model that relates diffusion
coefficient values to their underlying Wiener processes. For
my presentation here I have selected “The clock model and
its relationship with the Allan and related variances” pre-
sented as an IEEE paper by Zucca and Tavella [19] in 2005.
Except for FM flicker noise, this model captures the most
significant physics for all GPS clocks. I simulate and vali-
date GPS pseudorange measurements using simulated phase
deviations and simulated frequency deviations, according to
Zucca and Tavella.

4. KALMAN FILTERS

I present my approach for the optimal sequential estimation
of clock deviation states and their error covariance functions.
Sequential state estimates are generated recursively from two
multidimensional stochastic update functions, the time up-
date (TU) and the measurement update (MU). The TU moves
the state estimate and covariance forward with time, accu-
mulating integrals of random clock deviation process noise
in the covariance. The MU is performed at a fixed measure-
ment time where the state estimate and covariance are cor-
rected with new observation information.

The sequential estimation of GPS clock deviations re-
quires the development of a linear TU and nonlinear MU.
The nonlinear MU must be linearized locally to enable ap-
plication of the linear Kalman MU. Kalman’s MU [9] de-
rives from Sherman’s theorem [11, 15, 16], Sherman’s the-
orem derives from Anderson’s theorem [1], and Anderson’s
theorem derives from the Brunn-Minkowki inequality the-
orem [5, 17]. The theoretical foundation for my linearized
MU derives from these theorems.

4.1. Initial conditions

Initialization of all sequential estimators requires the use of
an initial state estimate column matrix X|o and an intial state
estimate error covariance matrix Py for time f.

4.2. Kalman filter: linear TU and linear MU

Derivation and calculation for the discrete-time Kalman fil-
ter, linear in both TU and MU, is best presented by Meditch
[11, Chapter 5].

4.3. Linear TU and nonlinear MU

The simultaneous sequential estimation of GPS clock phase
and frequency deviation parameters can be studied with the
development of a linear TU and nonlinear MU for the clock
state estimate subset. This is useful to study clock parameter
estimation, as demonstrated in Section 6.

Let X;|; denote an n x 1 column matrix of state estimate
components, where the left subscript j denotes state epoch ¢;
and the right subscript i denotes time-tag t; for the last ob-
servation processed, where i, j € {0,1,2,...}. Let P;; denote
an associated n X n square symmetric state estimate error co-
variance matrix (positive eigenvalues).

4.3.1. LinearTU

For k € {0,1,2,3,..., M}, the propagation of the true un-
known n X 1 matrix state X is given by

X1 = P o Xk + Jk+1,k5 (1)

where Ji+1,x is called the process noise matrix. Propagation of
the known 7 X 1 matrix state estimate Xj i is given by

X1k = Dpr1 ;X (2)
because the conditional mean of Ji41x is zero. Propagation
of the known n X n matrix state estimate error covariance
matrix Py is given by

T
Pii1jk = Ppar kPrikPpy1 o + Qv ks (3)
where the n X n matrix Qg1 is called the process noise co-

variance matrix (see [19] for concrete clock examples of Ji11k
and Qk+1,k)-
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4.3.2. Nonlinear MU
Calculate the n X 1 matrix filter gain Kj4:
-1
Kir1 = Pese L [Hier Pt HE,, + Rest] - (4)

The filter measurement update state estimate n X 1 matrix
Xkt1]k+1> due to the observation y41, is calculated with

Xkt = Xesrk + Kist [veer — yKeer) |, (5)

where Ry, is the scalar variance on the observation resid-
ual yiy1 — y(Xks11x), and y(Xik+11x) is a nonlinear function of

Xk+1jk- Define the error AXji1jk+1 in Xgs1(k+1°

AXist ikt = Xiet — Xes ks (6)

Deﬁne the n X n state estimate error covariance matrix
Pritjksr with

N - T
Ppitjker = E{(AXk+1\k+l)(AXk+1|k+l) } (7)

Bucy and Joseph [3, page 141] recommend that Pk
should be calculated with

Pisijkt1 = Prrae — T, (8)
where
T= Pk+1\kaT+1§1:+11Hk+1Pk+1\k)
Riyr = Hy1 Prsrjc HY | + Reor.

)

Equations (8) and (9) reduce to the form given by Kalman:
Prsks1 = [I — Kis1Hie1 ] Prsa (10)

Calculation of Pyi1jk+1 by (8) and (9) is numerically stable,

whereas the Kalman form calculation is not.

4.4. Nonlinear TU and nonlinear MU

Refer to Section 4.3.2 for the nonlinear MU.

4.4.1. Nonlinear TU

The nonlinear TU always spans a nonempty time interval
and requires the use of a numerical state estimate integra-
tor ¢,. Given an initial time #j, a final time 7, and a force

model u(X' (t),1), then ¢ propagates the state estimate X (to)
from ¢ to t using forces u()?(r), T) to get)?(tf). That is,

)E(tf) = q)x{tf;)Z(to), to,u()?(‘r),‘r),to st<tp}. (11)

This can be shortened to write
X(tf) :(Px{tf’XA(tO)’tO}) (12)

where the use of forces u(X(z), 7) is tacitly implied. Thus, ¢,
is a column matrix with n elements:

g, =|Ps]. (13)

4.5. Kalman filter advantage

Severe computational problems are incurred in any attempt
to estimate unobservable states using iterated batch least
squares methods or iterated maximum likelihood methods
for navigation, because state-sized inversions of singular ma-
trices are required. Here the Kalman filter is distinguished in
that estimates of unobservable states can be created and used
without matrix inversion problems because the Kalman filter
MU is free of state-sized matrix inversions.

By design, one typically estimates observable states. But
the Kalman filter enables one to create unobservable states.
The USAF chose to create unobservable GPS clock parameter
states for construction of GPS time.

5. OBSERVABILITY

I have defined observability in terms of a Kalman filter for-
mulation, and I have proved simple theorems related thereto.
My definition of observability is different than Kalman’s def-
inition and, unlike Kalman’s definition, is directly applicable
to covariance matrices derived from a Kalman filter.

5.1. Definition

If the state estimate error variance of a particular state es-
timate component is reduced by processing an observation,
then that state estimate component is observable to that ob-
servation. Otherwise, that state estimate component is not
observable (unobservable) to that observation.

Theorem 1. If every component of the row matrix Hyy1 of
measurement-state partial derivatives is zero at time ty,1, then

every component of the state estimate )Z'kﬂ is unobservable at
time tiyq.

Proof. Hi+1 = 0 implies that Pyjjk+1 = Pr+1)x according to
(10). Thus none of the variances of Pg, 1k are reduced due to
processing the observation yi4;. Then by definition, }?k+1 is
unobservable in every component. O

Theorem 2. Given values for scalars Hii1, Prs1jk > 0, Rg1 >
0 at time txy1, and given that Hyy) #0, then the scalar state
estimate X1 is observable at time ty ;.

Proof. The obvious inequality Pk+1|kH,f+1 + Ris >
PrikHE,, > 0 implies that

2
PryykHiyy

1> ———7F5——""—>0. (14)
PraikHi,y + R
Multiply through by —1:
Py H?
oo Pendl, as)
PryikHi,; + R
Add 1:
P H?
0<[17%]<1. (16)
Pri1kHiy + Ry
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Multiply through by Pgsqk:

2
ProneHiy,

0< [1 -
PrsiikHE,, + R

:|Pk+1\k < Pryijk. (17)

Now use (4) and (10) to write

2
PrrcHi
2
PrikHi, ) + R

Prijkin = [1 - ]Pkﬂ\k- (18)

Insert (18) into the inequality (17) to get the result:
0 < Prsijk+1 < Ptk (19)

Thus the variance Py 1k is reduced due to processing the ob-

servation yk+1. Then the scalar state Xk+1 is observable by def-
inition. O

5.2. Theoretical foundation

These theorems are referred to expressions given by Kalman
for filter gain Ky; and covariance Pi+1)k+1, see (4) and (10).
Kalman’s expressions are derived from the rigorous theo-
rem chain provided by Sherman, Anderson, and Brunn-
Minkowski—the theoretical foundation is deep.

5.3. Determine observability directly

Given an optimal sequential estimator, given a particular col-
lection of applicable observations (real or simulated), and
given realistic state estimate error covariance matrices Pk
and Py 1k+1 at each time tx41, apply the definition of observ-
ability directly (note that this is impossible using Kalman’s
definition of observability) to distinguish between observable
and wunobservable state elements. An optimal sequential es-
timator is designed to eliminate significant aliasing between
estimated state elements, and thus enables this distinction.

6. UNOBSERVABLE GPS CLOCK STATES

GPS time is created by the operational USAF Kalman filter
by processing GPS pseudorange observations. GPS time is
the mean phase of an ensemble of many GPS clocks, and yet
the clock phase of every operational GPS clock is unobserv-
able from GPS pseudorange observations, as demonstrated
below. GPS NAVSTAR orbit parameters are observable from
GPS pseudorange observations. The USAF Kalman filter si-
multaneously estimates orbit parameters and clock param-
eters from GPS pseudorange observations, so the state esti-
mate is partitioned in this manner into a subset of unobserv-
able clock parameters and a subset of observable orbit pa-
rameters. This partition is performed by application of Sher-
man’s theorem in the MU.

6.1. GPS pseudorange representation

Let ) denote time of radio wave transmission for the hth
NAVSTAR clock, and let t§' denote time of radio wave receipt
for the ith ground station clock. (Refer all times to a coordi-
nate time, e.g., to GPS time. Appropriate transformations be-

tween proper time and coordinate time must be performed

in the operational algorithms, but state estimate observabil-
ity is independent of relativity, so observability can be de-
fined and discussed independent of relativity.) Let 653" and
ox§! denote Kalman filter estimation errors in clock phase
for " and t§'. Define time of transmission difference 2"

and time of receipt difference t&’

h h _ SoNh
= - 03,
. . . (20)
R = 1§ — 5x§.
Thus,
S
(21)

(5 = D1 + 3"

Equation (21) present tY and tgi as additive combinations of
deterministic times 2" and tP" and Kalman filter estimation
errors in clock phase 8%} and 8x§". Define the one-way GPS
pseudorange measurement p,.;:

prngi = c(t] — "), 1> B, (22)

Insert (21) into (22):

Panci = C([tRF+ 8x5] — [27 + 8x5M])

o (23)
= ([’ — 12" + [0xF" — 0z")),
where c is speed of light in vacuum. Define
At = B — Ph (24)
(Sthl _ 6’\61 8/\Nh (25)
Then,
Prngi = €(AL+887), (26)

where At is deterministic and 6§t is random.

6.2. Partition of Kalman filter estimation errors

Let x¢ denote the phase component of Kalman filter estima-
tion error that is common to every GPS ensemble clock, when
it exists. Define phase differences x5, and x37 with

xOR = 0%§' — xc,
(27)
xOT _ 6/\Nh
for ground station i and NAVSTAR h. Then Kalman filter es-
timation errors 63?%, ie{l,2,...}, for ground station clocks
and 53?1%”1, h € {1,2,...}, for NAVSTAR clocks have the ad-
ditive partition:
OXS = xc + x5k,
(28)
xRN = xc + £

(This partition was introduced by Brown [2].)
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6.3. The common random phase component
is unobservable

Insert (28) into (25):

ot = 63 — o)

= [xc + 8] = [xc +x07] (29)
gl )
Insert (29) into (26):
Panci = (At + [xGk — xOF]). (30)

Thus, the random phase component x¢ that is common to
the Kalman filter estimation error for every ensemble clock
has vanished in the range representation p,,,;. Variations
Axc in x¢ cannot cause variations Ap ., in pypeit

) .
Apnngi = gZZGl Axc (31)

because the partial derivative H = dp;,;;/0xc is zero:

0 .
9PNhKGi =0. (32)
Bxc

An application of Theorem 1 to (32) demonstrates that x¢ is
unobservable from p;, ;-

But the architect who designs the complete estimator
must design an optimal NAVSTAR orbit estimator to prevent
aliasing from NAVSTAR orbit estimation errors into xc. It
helps to know that there is no coupling between the orbit and
xc in the complete state transition function. I have provided
a new method herein to identify this aliasing, and I have pro-
vided suggestions on where to look for inadequate modeling
that would be the source of this aliasing. See Section 9.

6.4. Independent random phase components
are observable

The independent phase deviations x3% and x37 are observ-
able to GPS pseudorange observations because their partial
derivatives are nonzero:

apNGhiGi v

axOR (33)
9P NG - ¢

oxy1

Estimation of x3% and x3% by the Kalman filter will reduce
their error variances.

6.5. Partition of KF1 estimation errors

Subtract estimated clock deviations from simulated (true)
clock deviations to define and quantify Kalman filter (KF1)
estimation errors. Adopt Brown’s additive partition of KF1
estimation errors into two components. I refer to the first
component as the unobservable error common to each clock

(UECC), and to the second component as the observable
error independent for each clock (OEIC). (Observability is
meaningful here only when processing simulated GPS pseu-
dorange data.) See (28). x¢ is the UECC, xSk is the OEIC
for ground station clocks and x37 is the OEIC for NAVS-
TAR clocks. On initialization of KF1, the variances on the
UECC and OEIC are identical. On processing the first GPS
pseudorange measurements with KF1 the variances on both
fall quickly. But with continued measurement processing the
variances on the UECC increase without bound while the
variances on the OEIC appoach zero asymptotically.

For simulated GPS pseudorange data I create an optimal
sequential estimate of the UECC by application of a second
Kalman filter KF2 to pseudomeasurements defined by the
phase components of KF1 estimation errors.

Since there is no physical process noise on the UECC, an
estimate of the UECC can also be achieved using a batch least
squares estimation algorithm on the phase components of
KF1 estimation errors—demonstrated previously by Green-
hall [7]. (I apply sufficient process noise covariance for KF2
to mask the effects of double-precision computer word trun-
cation. Without this, KF2 does diverge.)

6.6. Unobservable error common to each clock

There are at least four techniques to estimate the UECC
when simulating GPS pseudorange data. First, one could take
the sample mean of KF1 estimation errors across the clock
ensemble at each time and form a sample variance about
the mean; this would yield a sequential sampling procedure,
but where each mean and variance is sequentially uncon-
nected. Second, one can employ Ken Brown’s implicit ensem-
ble mean (IEM) and covariance; this is a batch procedure re-
quiring an inversion of the KF1 covariance matrix followed
by a second matrix inversion of the modified covariance ma-
trix inverse; this is not a sequential procedure. Third, one
can adopt the new procedure by Greenhall [7] wherein KF1
phase estimation errors are treated as pseudomeasurements,
and are processed by a batch least squares estimator to ob-
tain optimal batch estimates and covariance matrices for the
UECC. Fourth, one can treat the KF1 phase estimation er-
rors as pseudomeasurements, invoke a second Kalman filter
(KF2), and process these phase pseudomeasurements with
KF2 to obtain optimal sequential estimates and variances
for the UECC. I have been successful with this approach.
Figure 3 presents an ensemble of “realistic” KF1 phase esti-
mation errors, overlaid with “realistic” KF2 sequential esti-
mates of UECC in phase. (By “realistic” I refer to realistic
clock diffusion coefficient values.)

6.7. Observable error independent for each clock

At each applicable time subtract the estimate of the UECC
from the KF1 phase deviation estimate, for each particular
GPS clock, to estimate the OEIC in phase for that clock. Dur-
ing measurement processing, the OEIC is contained within
an envelope of a few parts of a nanosecond (see Figure 4).
Figure 4 presents a graph of two cases of the OEIC
for ground station clock S1. For the blue line of Figure 4,
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FiGure 2: Simulated and estimated phase deviations for four 2-state
clocks.

intervals of link visibility and KF1 range measurement pro-
cessing are clearly distinguished from propagation intervals
with no measurements. During measurement processing, the
observable component of KF1 estimation error is contained
within an envelope of a few parts of a nanosecond.

Calculation of the sequential covariance for the OEIC re-
quires a matrix value for the cross-covariance between the
KF1 phase deviation estimation error and the UECC estima-
tion error at each time. I have not yet been able to calculate
this cross-covariance.

7. ALLAN VARIANCE AND PPN RELATIONS
7.1. Allan coefficients versus diffusion coefficients

Denote 7 as clock averaging time, of,(‘r) as Allan variance,
ao as Allan’s FMWN coefficient, a_, as Allan’s FMRW coef-
ficient, o; as the FMWN diffusion coefficient, and o, as the
FMRW diffusion coefficient. Then,

1
it + ol (34)

af,(r) =gt 'tasr=0 3

where
01 = +/4do,

(35)
gy =/ 3(172.

7.2. Proportionate process noise (PPN)

Let a denote a variable a« € {1,2,3,...,N} to identify each
GPS clock in an ensemble of N clocks. For each clock « define

the ratio S, between diffusion coefficients o1, and 04:
02

Soc = >
O1a

Then PPN is defined when, for each GPS clock « and each
associated ratio S,, we have

$1=8=8="---

014 > 0. (36)

= Sn. (37)

KF1 phase errors & KF2 UECC estimate (s)
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FiGure 3: KF1 phase errors and KF2 UECC estimate.

7.3. Casel2

The calculation of Sy = 024/010, & € {1,2,3,4}, according to
the diffusion coefficient values presented in Figure 1 shows
that PPN is not satisfied for Case 12:

I8~ 0,00% 10757,
0181
P2 = 473% 10757,

182

(38)

INL _ 550 x 10057,
O1IN1
PN2 67 % 107657,
O1N2

8. KALMAN FILTERS KF1 AND KF2

I have simulated GPS pseudorange measurements for two
GPS ground station clocks S1 and S2, and for two GPS
NAVSTAR clocks N1 and N2. Here I set simulated measure-
ment time granularity to 30 s for the set of all visible link in-
tervals. Visible and non-visible intervals are clearly evident
in the blue line of Figure 4. I set the scalar root-variance +/R
for both measurement simulations and Kalman filter KF1 to
VR = 1cm. Typically vV/R~1m for GPS pseudorange, but
when carrier phase measurements are processed simultane-
ously with pseudorange, the root-variance is reduced by two
orders of magnitude. So the use of /R = 1cm enables me
to quantify lower performance bounds for the simultaneous
processing of both measurement types.

8.1. Create GPS clock ensemble

Typically, one processes measurements with a Kalman filter
to derive sequential estimates of a multidimensional observ-
able state. Instead, here I imitate the GPS operational pro-
cedure and process simulated GPS pseudorange measure-
ments with KF1 to create a sequence of unobservable mul-
tidimensional clock state estimates. Clock state components



James R. Wright

S1 observable component phase errors (s)

Case 12
2-state clocks
3e—9 4 . .
KF2 process noise covariance
Color Q(phase (s”2)) Q(freq (s/s)"2)
2e-94 | | || 707 Tmmmmm mmmmmmes
le—1 le-2
Red le—16 —
le—9 4 e e le—26
0e—0 -
—le-9 A
(8] observable component phase) = ) - (UECC estimate)
—2e—-9 A KF2
Sim GPS pseudo-range KF1 measurement granflarity = 30s
—3e—9 4 Largest spikes are where KF1 measurements are|not visible
T T T T
100000 300000 500000 700000
Time (s)

FIGURE 4: S1 observable component phase error.

are unobservable from GPS pseudorange measurements. See
Figure 2 for an example of an ensemble of estimated unob-
servable clock phase deviation state components created by
KF1.

8.1.1.  Sherman’s theorem

GPS time, the unobservable GPS clock ensemble mean
phase, is created by the use of Sherman’s theorem [11, 18]
in the USAF Kalman filter measurement update algorithm
on GPS range measurements. Satisfaction of Sherman’s The-
orem guarantees that the mean-squared state estimate error
on each observable state estimate component is minimized.
But the mean-squared state estimate error on each unobserv-
able state estimate component is not reduced. Thus the un-
observable clock phase deviation state estimate component
common to every GPS clock is isolated by application of
Sherman’s theorem. An ensemble of unobservable state esti-
mate components is thus created by Sherman’s theorem—see
Figure 3 for an example.

8.2. |Initial condition errors

A significant result emerges due to the modeling of Kalman
filter (KF1) initial condition errors in phase and frequency.
Initial estimated clock phase deviations are significantly dis-
placed by the KF1 initial condition errors in phase. As time
evolves estimated clock phase deviation magnitudes diverge
continuously and increasingly when referred to true (simu-
lated) phase deviations, and this is due to filter initial condi-
tion errors in frequency. See Figure 2 for an example.

9. IDENTIFY NONCLOCK MODELING ERRORS

My interest in the GPS NAVSTAR (SV) orbit determination
problem, combined with that of the clock parameter estima-
tion problem, has enabled the identification of a useful diag-
nostic tool: given realistic values for diffusion coefficients for

each of the real GPS clocks, then quantitative upper bounds
can be calculated on OEIC magnitudes. These calculations
require the use of a rigorous simulator. Existence of signifi-
cant cross-correlations between GPS clock phase errors and
other nonclock GPS estimation modeling errors enables sig-
nificant aliasing into GPS clock phase estimates during op-
eration of KF1 on real data. But given rigorous quantita-
tive upper bounds on OEIC magnitudes, then significant vi-
olation of these bounds when processing real GPS pseudo-
range and carrier phase data identifies nonclock modeling
errors related to the GPS estimation model. Modeling error
candidates here include NAVSTAR orbit force modeling er-
rors, ground antenna modeling errors (multipath), and tro-
pospheric modeling errors. NAVSTAR orbit force modeling
errors include those of solar photon pressure, albedo, ther-
mal dump, and propellant outgassing. The accuracy of this
diagnostic tool depends on the use of realistic clock diffusion
coefficient values and a rigorous clock model simulation ca-
pability.

10. OBSERVABLE CLOCKS

In an earlier version of my paper, I reported on KF1 valida-
tion results where clock S1 was specified as a TAI/UTC clock,
external to the GPS clock ensemble consisting of S2, N1, and
N2. This brought observablity (see Sections 5 and 6 herein)
to S2, N1, and N2 clock states from GPS pseudorange mea-
surements, drove clocks S2, N1, and N2 immediately to the
TAI/UTC timescale, and enabled a clean validation of my fil-
ter implementation. Also it raised the question: why not the
same thing for the real GPS clock ensemble? Discussions with
Ed Powers (USNO) and Bill Feess (Aerospace Corporation)
reveal that this approach was tried and discarded after the
difficulty in recovery from an uplink hardware failure was
blamed on the use of a single TAI/UTC Master Clock. This
issue was resolved with Kenneth Brown’s introduction of the
implicit ensemble mean. The mean phase (GPS time) of the
GPS clock ensemble will remain unobservable to GPS pseu-
dorange measurements in the USAF Kalman filter for the
foreseeable future.
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