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GPS/INS/Optic Flow Data Fusion for Position and Velocity estimation*

D. A. Mercado1, G. Flores1, P. Castillo1,2, J. Escareno3 and R. Lozano1,2

Abstract— This paper presents a simple and easy to imple-
ment sensor data fusion algorithm, using a Kalman filter (KF)
in a loosely coupled scheme, for estimation of the velocity
and position of an object evolving in a three dimensional
space. A global positioning system (GPS) provides the position
measurement while the velocity measurement is taken from the
optical flow sensor, finally, the inertial navigation system (INS)
gives the acceleration, which is considered as the input of the
system. Real time experimental results are shown to validate
the proposed algorithm.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have become important

tools for exploration, surveillance, search and rescue

applications thanks to the great advances in sensors

manufacturing which permit improving the accuracy of

the measurements, miniaturization and cost reduction.

However, a precise knowledge of the position and velocity

of the UAVs for outside hover flight position control

applications is still a big challenge. Not expensive GPS

sensors can provide this information, however, the errors,

of 2m at best, are not suitable for precise applications,

neither their low measurement rate of about 5Hz. Even

more, GPS signal can be easily lost leaving the system

without a position measurement. Another alternative

widely studied are the optical flow sensors which use

vision algorithms for estimating the motion velocity of

a system. Nevertheless they are sensible for lighting changes.

Several related works to data fusion for UAV loaclization

can be found in the literature, however, the most of them use

post-processed data took from a fast moving object, while for

this work, real time experiments for static objects are also

of interest, since that is the case for an helicopter in hover

flight. For example, in [1] several GPS/INS fusion algorithms

are presented using both, extended Kalman filter (EKF) and

unscented Kalman filter (UKF) in a loosely coupled scheme

for attitude estimation and validated in experiments with

post-processed data. Similarly in [2], the authors present

an attitude estimation algorithm with data from GPS and

INS sensors using a KF. A tightly coupled EKF scheme

is employed in [3], for delivering all available information

from the satellites to an INS/GPS sensor fusion algorithm,
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even when only one satellite is observable (traditional loosely

coupled filters require at least four observed satellites to work

properly). Additionally, an EKF with covariance matching

based adaptation algorithm is implemented in [4] using GPS,

INS and optical flow measurements. In [5] two KFs are

used to fusion data from GPS, INS, computer vision and

a laser range finder. Sensor fusion using Kalman filters is

also widely used for improving data obtained from com-

puter vision. For example, in [6] an EKF is presented for

target tracking and optical flow navigation in a GPS denied

environment using computer vision and INS data, while in

[7] different optical flow algorithms are integrated by a KF

for a better estimation of velocity. A different approach is

shown in [8] where using multiple UAVs, the position of a

particular UAV can be estimated when the GPS signal has

been lost, by measuring the distance with respect to the other

UAVs and employing an EKF. These positioning strategies

have also a great potential of application outside the mobile

robotics field, for example, in [9] they are used for aiding

blind pedestrian positioning.

The aim of this work is to take information from multiple

different kinds of sensors in order improve data and have a

precise and reliable estimation of the position and velocity.

In order to do so, the use of a KF is explored in a loosely

coupled scheme for fusing the information obtained from

GPS, INS and optical flow sensors.

This work is organized as follows: In section II, the problem

of interest is settled, as well as a reminder of the basic

Kalman filter’s equations to be used to solve it. In section

III, the data fusion formulation is presented together with

the optic flow algorithm. Experimental platform is described

and results are shown in section IV. Finally, conclusions are

made and future work is established in section V.

II. PROBLEM STATEMENT

A low-cost GPS unit generally provides an estimate of

the position within a few meters, by means of an internal

Kalman filter. However, such GPS estimation is likely to

be noisy; readings vary rapidly, though always remaining

within a few meters of the real position. This inaccurate

position estimation is not enough to accomplish the high

demands required in emerging micro and mini aerial vehicles

(MAV) applications [10], [11]. This estimation gives an error

depending on some surrounding conditions; like number and

geometry of satellites in view, the quality of GPS receiver or

the presence of objects that interfere with the signals from

the satellites [14]. An estimate for the accuracy is provided in

the GPS data-stream and is called accP for the position and

accV for the velocity. This accuracy changes dynamically
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depending on the actual conditions and represents an estimate

of the error’s magnitude, or in other words, the reliability of

the measurement.

Therefore, the idea is to provide extra information from other

sensors to improve the estimate of the position and velocity,

especially when the accuracy value of the GPS tends to be

too big. Let us consider a Kalman filter.

A. Discrete Kalman Filter

The Kalman filter is a well know, widely used optimal

state estimator [12], [13] of a discrete time linear dynamic

system perturbed by white noise

ξk = Aξk−1 +Buk−1 +ωk−1 (1)

Zk = Hξk +νk (2)

considering the state vector ξ , the input vector u and the

measurement vector Z. A, B and H stand for the state

transition, input and observation matrices, respectively, and

subindex k is the discrete time index. The process and

measurement noise ω, ν are supposed to be white with

normal probability distributions, i.e.

ω ∼ N(0,Q) (3)

ν ∼ N(0,R) (4)

with Q, R being the process noise covariance and the

measurement noise covariance, respectively.

Then, the a priori state estimates ξ̂−

k is given by

ξ̂−

k = Aξ̂k−1 +Buk−1 (5)

the a priory error covariance P−

k can be calculated as

P−

k = APk−1AT +Q (6)

Now, the Kalman gain matrix Kk can be determined

Kk = P−

k HT (HP−

k HT +R)−1 (7)

and after measuring the process, the a posteriori state esti-

mate ξ̂ and error covariance Pk are respectively

ξ̂k = ξ̂−

k +Kk(Zk −Hξ̂−

k ) (8)

Pk = (I −KkH)P−

k (9)

III. GPS/INS/OPTIC FLOW DATA FUSION

A. System Model

Consider the state vector

ξ = [x y z V x V y V z]T (10)

which represents the position (x, y, z) and velocity

(V x, V y, V z) of an object moving in the three dimensional

space, with respect to the inertial frame I fixed to the ground.

Thus, the motion equations of the system can be written as

ξ̇ =












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ẋ
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+ω (11)

where u = [ax ay az]
T are the inputs of the system. In our

case the accelerations measured from the INS sensor, and

ω ∈ ℜ6 stands for the process noise. Then the measurement

vector is given by

Z =


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+ν (12)

with [xGPS yGPS zGPS]
T being the position computed from the

GPS sensor, VOFx and VOFy define the translational velocities

in the horizontal plane calculated from an optical flow

algorithm, and V zh denotes the vertical velocity. ν ∈ ℜ6

represents the measurement noise.

In order to implement the KF, the system (11) has to be

discretized. By means of the Euler’s forward method one

gets

ξk =

















xk−1 +TV xk−1

yk−1 +TV yk−1

zk−1 +TV zk−1

V xk−1 +Taxk−1
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V zk−1 +Tazk−1

















+ωk−1 (13)

Zk = ξk +νk (14)

where T defines the sampling period.

B. Optical Flow

In this study we consider the camera-experimental plat-

form arrangement moving in a 3-dimensional space with

respect to a rigid scene. The camera velocities in the inertial

frame are given by (Vx,Vy,Vz). The optical flow computed

at an image point (xi,yi) is composed of a translational and

rotational part as follows [15]
[

OFxi

OFyi

]

= TOF +ROF (15)

where the rotational part ROF is given as

ROF =





xiyi

fx
−( fx +

(xi)
2

fx
) yi

( fy +
(yi)

2

fy
) −

xiyi

fy
−xi









ωx

ωy

ωz



 (16)

and the translational part as

TOF =
1

z

[

− fx 0 xi

0 − fy yi

]





ẋc

ẏc

żc



 (17)

From (15), OFxi and OFyi are the optical flow components in

the x and y coordinates, respectively, of the (xi,yi) feature.

(ẋc
, ẏc

, żc), in (17), are the camera translational velocities and

(wx,wy,wz) are the camera rotation rates. The focal lengths

of the camera are fx and fy.

The optical flow is computed by using the pyramidal im-

plementation of the Lucas-Kanade algorithm [16]. With the
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Fig. 1. Experimental platform.

purpose of obtaining a better estimation, the Lucas-Kanade

algorithm is coupled with a rich texture point detector .

When computing the optical flow, all the (xi,yi) feature’s

coordinates are known, furthermore, they all share the same

movement. By using all the tracked features, a mean value

for the optical flow can be expressed as

¯OFx = V̄OFx +KxV̄OFz + R̄OFx (18)

¯OFy = V̄OFy +KyV̄OFz + R̄OFy (19)

where ¯OFx and ¯OFy are the means of the optical flow sensed

in the image coordinate system, V̄OFz represents the relative

depth and Kx and Ky are known scale factors depending on

intrinsic parameters of the camera. The rotational optical

flow terms R̄OFx and R̄OFy are despicable for this study

since the camera movement is fixed to the horizontal plane,

otherwise, they have to be compensated. Then, the pseudo-

speeds (V̄OFx ,V̄OFy ,V̄OFz) can be represented as

V̄OFx = − fx

ẋ

z
(20)

V̄OFy = − fy

ẏ

z
(21)

V̄OFz =
ż

z
(22)

In the experimental setup, the camera is mounted on the

experimental platform, thus both of them share the same

translational movement, i.e, (ẋc
, ẏc

, żc) = (ẋ, ẏ, ż).

IV. EXPERIMENTAL RESULTS

In order to validate in real time the proposed fusion

schema, it was developed an experimental platform consist-

ing of a wheeled table equipped with a GPS, an INS and a

camera for the optical flow (see Fig. 1). All the algorithms

are performed in a portable computer attached to the table.

To simplify the experiment, only the states in the xy plane

are estimated, therefore, the height z is fixed at a constant

value. In order to extend the estimation to a 3-dimensional

space, with variable height, a height sensor is required. The

OpenCV libraries are used to capture the image from the

camera, perform the optical flow and estimate the horizontal

velocities. Similarly, the KFilter library is used to implement

the Kalman filter. A GPS provides the measurements of

the position at a rate of 5Hz with an error of 2m in the

best scenario. The vision algorithm is executed at a rate of

40Hz and the INS sensor measures the accelerations using

accelerometers. Notice that the developed platform can be

easily used to test other data fusion configurations including

nonlinear formulations.

Test results for the case when the object is fixed to a point in

an outside urban environment, surrounded by buildings using

only natural light (in this case a parking area with sunlight),

are presented in Figures 2 - 10. The process noise matrix Q

is set diagonal with very little values, i.e

Q =

















0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0.005 0 0

0 0 0 0 0.005 0

0 0 0 0 0 0.005

















(23)

It is hard to know the exact value for the measurement covari-

ance matrix R, since the GPS data stream does not provide

it, and the experimental conditions are always changing (e.g.

the number of satellites in range and its position, or the

lighting). However, this parameter can be used to inform the

filter about the reliability of a measurement. In addition, we

propose to relate the estimate accuracy parameter from the

GPS (accP) to matrix R such that when the GPS’s conditions

are not appropriate, the Kalman filter stops trusting the GPS

measurements and bases its estimations on the process model

and the other measurements. Hence, the measurement noise

covariance matrix R is selected diagonal with values directly

proportionals to the GPS accuracy estimation (accP), for

position measurements from the GPS and small ones for the

corresponding to the optical flow velocity measurements, i.e.

R =

















accP 0 0 0 0 0

0 accP 0 0 0 0

0 0 accP 0 0 0

0 0 0 0.1 0 0

0 0 0 0 0.1 0

0 0 0 0 0 0.1

















(24)

The accelerations of the system, measured by the INS, are

shown in Fig. 2. As expected, they are very close to zero

since the object is not moving. Figures 3 and 4 present,

respectively, the position and velocity of the object measured

from the GPS sensor. As it is well known, the GPS is not

reliable under these conditions (remaining in a static position,

in an urban area surrounded by buildings which interfere

with the satellites signals), as can be observed from Fig.

5 which displays the GPS accuracy (under ideal conditions

it is supposed to be of 2m). Velocity computed from the

optical flow algorithm is exhibit in Fig. 6, while the estimated

estates from the Kalman filter are shown in Fig. 7 and 8 for

the position and velocity, respectively. Finally, a comparison
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between the position estimated only by the GPS and the one

estimated using the proposed fusion algorithm is presented in

Fig. 9 for the xy plane and in Fig. 10 for a three dimensional

space view.

V. CONCLUSIONS AND FUTURE WORK

In this work, a GPS/INS/Optic flow data fusion algorithm

using a KF was developed and implemented, for velocity

and position estimation. Experimental results were shown

and, from them, it can be observed that under bad GPS

conditions and a good velocity measurement from the optical

flow sensor, the estimate position and velocity were improved

with respect to the direct measurement from the GPS. Further

experiments are required to completely validate the proposed

observer scheme.

KF implies a tradeoff between measured data from the

sensors and expected state from the dynamic model, this
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tradeoff is somehow related to the process and measurement

noise (bigger measurement noise implies less reliable mea-

surements). This can be used to improve results in changing

environments, where noise is hard to model, by changing

dynamically the process noise covariance matrix in order to

rely on the measured data when the conditions are ideal for

the sensors and otherwise to rely on the process.

Future work includes implementation and analysis of other

data fusion formulations with these three sensors (GPS, INS

and camera) to find out the best solution for the considered

problem. Also, it is highly desired to implement this data

fusion algorithms embedded in an UAV for solve the po-

sition and trajectory tracking control problems for outside

applications.
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