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Abstract

This paper investigates the problem of position estimation of unmanned surface vessels
(USVs) operating in coastal areas or in the archipelago. We propose a position estimation
method where the horizon line is extracted in a 360° panoramic image around the USV.
We design a CNN architecture to determine an approximate horizon line in the image and
implicitly determine the camera orientation (the pitch and roll angles). The panoramic
image is warped to compensate for the camera orientation and to generate an image from
an approximately level camera. A second CNN architecture is designed to extract the
pixelwise horizon line in the warped image. The extracted horizon line is correlated with
digital elevation model (DEM) data in the Fourier domain using a MOSSE correlation filter.
Finally, we determine the location of the maximum correlation score over the search area to
estimate the position of the USV. Comprehensive experiments are performed in field trials
conducted over three days in the archipelago. Our approach provides excellent results by
achieving robust position estimates with GPS-level accuracy in previously unvisited test

areas.



1 Introduction

In recent years, unmanned systems such as Unmanned Aerial Vehicles (UAVs), Unmanned Ground Vehicles
(UGVs), and Unmanned Surface Vessels (USVs) have become increasingly popular providing safe and secure
operations in remote environments. Within unmanned systems, the aim of USVs is to perform various
ocean sensing tasks in a variety of cluttered sea environments. Generally, these USVs (autonomous or tele-
operated) are reliant on accurate position measurements provided by the Global Positioning System (GPS)
for safe navigation. However, the GPS signal is not always available and reliable. GPS outages are rare
(William J. Hughes Technical Center, 2014), but they do occur and they need to be accounted for in the
USV navigation system. Perhaps a more severe issue, in one of the early test trials conducted for this paper
with a USV, we experienced a case with a short time period of completely erroneous GPS measurements.
The GPS receiver repeatedly computed position estimates which were located south of the equator, and
not in southern Sweden where the trials were actually performed. The GPS receiver fed the USV autopilot
with these faulty position estimates, and the autopilot completely lost control of its true position and the
appropriate heading to proceed to the next waypoint in the planned mission. The pilot, being standby to
tele-operate the USV, had to save the situation. The onboard USV navigation system must be capable of
handling such erroneous position estimates from the GPS. Moreover, in hostile ocean scenarios, the GPS
signal can be unreliable or not available at all. All in all, these potential shortcomings of the GPS create the
need for alternative and complementary position sensors. In this paper, we tackle the problem of providing

accurate position measurements for a USV operating in challenging coastal areas or in the archipelago.

Terrain navigation, without any need for externally controlled signals and sensors, is suitable as an alternative
position sensor in these scenarios. Terrain navigation is a family of techniques where measurements of the
surrounding terrain are correlated with a terrain spatial database to provide position measurements. Terrain
navigation is well established as a position sensor and the underlying sensor measurements could originate
from various techniques such as radars, sonars, altimeters, lidars, and cameras (Vaman, 2012; Han et al.,
2016; Melo and Matos, 2017). For the position estimation in our scenario, the USV can utilize information
obtained from an omnidirectional camera, a digital compass, and a high-resolution digital elevation model

(DEM) of the operational area (see Figure 1).

In recent years, deep learning and convolutional neural networks (CNNs) have significantly boosted the level
of performance for various computer vision tasks including image classification, object segmentation, and

object tracking. Generally, a CNN consists of two main parts. The first part, the encoder, generates powerful



Figure 1: Left: The USV equipped with a Ladybug omnidirectional camera. Right: Test image position
estimates with the GPS (green) and the proposed method (white).

feature descriptors to represent the input image at various levels of detail. The second part utilizes these
image representations and, depending on the application, is trained to output e.g. the image object class,
a pixelwise segmentation, the location of a tracked object, or the camera location. For unmanned systems,
CNNs have e.g. been used for object recognition in UAV images (Radovic et al., 2017), road lane guidance for
autonomous cars (Nugraha et al., 2017), and collision avoidance manoeuvers for USVs (Xu et al., 2017). In
this paper, we employ CNNs to extract terrain information from USV images to generate accurate position

measurements for the USV.

To aggregate terrain information from consecutive images and to align the image content with DEM data
for USV position estimation, object tracking and registration are essential components. In recent years,
the best performing visual object trackers apply a discriminatively trained correlation filter (DCF) on top
of multidimensional features (Kristan et al., 2017). The foundation for DCF-based trackers is the MOSSE
correlation filter (Bolme et al., 2010). A filter is trained to model the appearance of the tracked object in
some example images. To search for the object in the next frame or, in our case, to register the object with
DEM data, a correlation score is computed over the search area. For computational speed, the correlation

is performed in the Fourier domain.

For terrain navigation of a manned surface vessel in coastal areas and in the archipelago, humans would
intuitively use readily observable characteristic landmarks in a few directions, project the directions on a sea
chart or map, and use cross bearing to determine the vessel position. The horizon line most often constitutes
a spatially extended characteristic landmark for islands and the shore. Matching of the complete horizon

line around the vessel with a map is mathematically a more robust cross bearing measurement than just



using a few directions. To obtain highly accurate position estimates, the horizon line must be captured with
high angular resolution, which camera sensors can provide. These insights are the motivations behind our

proposed position estimation method.

Our proposed method requires that an approximate position is known to limit the search area and to make
the method real-time capable, which is necessary if it is to be used as a position sensor for onboard navigation
of the USV. The approximate position could e.g. be obtained from continuous position tracking over time
using the proposed method from mission start, GPS measurements (when available and reliable), cross
bearing measurements based on detection of seamarks/landmarks, a large scale position estimation method

as in (Baatz et al., 2012), or position estimates from the proposed method at a coarser scale.

We propose a position estimation method where two CNNs are employed to extract the camera orientation
and the horizon line, respectively, in a 360° panoramic image around the USV. The horizon line is correlated
with DEM data in the Fourier domain using a MOSSE correlation filter. Finally, we determine the location
of the maximum correlation score over the search area to estimate the position of the USV. The core of
the proposed method has previously been presented in (Grelsson et al., 2018). In this paper, we provide
new comprehensive field trials performed over three days in different locations of the Swedish east-coast
archipelago. The results demonstrate that our method can be trained on previously captured image data
from one region and achieves a global position accuracy of 2.72+1.58 meters relative to the GPS ground
truth data when evaluated on images from a previously unvisited area. To reduce the search time, we provide
evidence that our method can be used in a multi-grid approach. We verify that our method works at a coarser
scale to generate a slightly less accurate position estimate, which is then refined at a finer scale. We also
show that our method can be used in applications with narrower field of view (FOV) images than a full 360°
panoramic image. The evaluation shows that the position accuracy of our method degrades gracefully when
narrowing the FOV. The field trials and the results achieved are described in section 5. Figure 1 shows an
image containing the USV with the omnidirectional camera (left) and the position estimates (right) obtained

with the GPS (green) and the proposed approach (white).

Our contributions are: 1) The proposed method for USV terrain navigation, 2) CNNs designed for camera
orientation estimation and horizon segmentation in a marine environment, 3) Horizon line registration with
a MOSSE correlation filter, 4) Comprehensive field trials that demonstrate the GPS-level accuracy of the

proposed method.



2 Related work

Our proposed method for camera localization includes two CNNs for fast estimation of the camera orientation
and segmentation of the horizon line in the image. Any fast and accurate segmentation method would fit
into our proposed method. In this section, however, we focus on CNN-based methods. Automatic extraction
of the horizon line and water line (which is the first water to land/sky transition seen from the vessel) in the
image is equivalent to segmentation of the image into sky/land/water groups. Previous works (Lee et al.,
2017; Verbickas and Whitehead, 2014) have investigated the use of CNNs to determine straight lines and
sky segmentation in images. In (Lee et al., 2017), the authors propose an approach where a CNN is trained
to find straight lines in order to extract semantically meaningful information from the image. A CNN-based
method for sky segmentation is proposed in (Verbickas and Whitehead, 2014). In their approach a simple
two convolutional layer network is trained from scratch on the authors’ own dataset. A convolutional and
deconvolutional network is employed in (Porzi et al., 2016) to determine the horizon line in full size, i.e.
not in a downsampled image. A comparison of deep learning methods for horizon/sky line segmentation is
presented in (Ahmad et al., 2017). However, their evaluation is only performed on sky/mountain images.
To the best of our knowledge, we have not encountered any public benchmark or CNN-based segmentation

method with respect to marine images and USVs.

In recent years, several surveys of image-based localization methods have been published by (Piasco et al.,
2018) for urban environments, (Wu et al., 2018) focussing on unknown environments and different types
of SLAM methods, and (Brejcha and Cadik, 2017) for city-scale and natural environments. In the latter
survey, the localization methods are classified based on the reference data used. The authors refer to two
main classes of methods, Image-based methods and methods utlizing Multiple modality data, e.g. having a
terrain model as a reference. A flow chart of localization methods in accordance with this classification is

shown in Figure 2.

The Image-based methods require a large database of geo-tagged images from the test area. In an urban
environment, the database can often be made available from public photographs or street-view images taken
from cars. The database enables e.g. image retrieval methods for localization. The location of a query
image is inferred by retrieving similar images from the database using various matching algorithms including
Bag-of-Words and hashing approaches (Arandjelovic et al., 2016; Sattler et al., 2017; Chum et al., 2009).
Another option for localization is Train and regress methods where the image database is used to train a

classifier and then directly regress the location of the query image (Kendall et al., 2015; Weyand et al.,
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Figure 2: Flowchart of image-based localization methods. Our proposed method is a local scale method
utilizing multiple modality data.

2016; Felsberg and Hedborg, 2007). An image database also enables 3D reconstruction of the scene using
Structure-from-Motion (SfM). Various techniques have been proposed to align the query image with the 3D

model to infer the camera location (Irschara et al., 2009; Sattler et al., 2011; Li et al., 2012).

In a natural environment covering large areas without any infrastructure or road network to guide your
movements within the area, these image databases are rarely available. Often you do not have access to
any images from the test area. This calls for cross-domain matching of the query image with Multiple
modality data. Terrain models are commonly used as reference data since they are easily accessible and
readily generated worldwide with large scale coverage using satellite imagery or radars (SRTM, 2019). For
cross-domain registration of images, features such as horizon lines and edge maps are often utilized. The
class of multiple modality data methods can be further divided into global scale methods (Brejcha and Cadik,
2017), striving to estimate a coarse position within a large search area, and local scale methods aiming at
accurate position estimates within a smaller search region. Our proposed method is a local scale method

which is capable to provide accurate position estimates in a previously unvisited test area.

To the best of our knowledge, the first large scale localization method using multiple modality data was
presented by (Baatz et al., 2012). They segment the horizon line in the image and extract contour word
descriptors called contourlets. They use a DEM to generate a database of contours from a 360° view. Then
they employ a Bag-of-Words approach to search for a contour in the database that matches all contourlets
in the query image to infer the camera location. They correctly locate 88% of the mountainous test images
within a 1km radius searching over the whole country of Switzerland. A similar large scale method is
presented by (Tzeng et al., 2013). They propose an alternative feature descriptor based on the concavity of

the horizon line. They use geometric hashing to find candidate matches with synthesized horizon lines from



a DEM to localize the query image.

Most previous works on horizon registration on the local scale, where a rough position is already known,
have been performed in the spatial domain. Woo et al. compute the curvature of mountain peaks in the
image plane and on DEM data (Woo et al., 2007). They use a Markov Chain Monte Carlo method to
generate position hypotheses and to find the best match over the search area. Ramalingam et al. use an
omnidirectional camera in order to estimate the position of car in a city (Ramalingam et al., 2009). They
segment the skyline in the image and use graph cuts to find the best match with the skyline generated from
DEM data. Dumble and Gibbens precompute reference horizon profiles from DEM data in the Alps in a set
of 3D grid points (Dumble and Gibbens, 2015). They extract the reference profile at the grid point closest
to the assumed position of their aerial vehicle. To refine the estimated location, they use gradient descent to
iteratively minimize the error between the horizon line in the image and the transformed reference profile.
The method requires a large horizon profile variance, which prevents its use in our scenario in the archipelago
with low altitude islands. A method for accurate registration of low variance horizon profiles is proposed by
(Grelsson et al., 2016), but they only estimate the camera orientation and not the position. Another method
suitable for low variance horizon lines is proposed by (Chiodini et al., 2017), where a Mars rover is localized
by matching the detected skyline with DEM data. For position estimation, they do a grid search over the
location and the viewing angle, and minimize the least-square error between the detected and the rendered

skyline.

There are some previous works on registration of the horizon line with DEM data in the Fourier domain.
To align and annotate mountain pictures captured at a known position, Baboud et al. detect edges in the
image and match with silhouettes from the DEM data (Baboud et al., 2011). The matching to find the
orientation angles is performed using spherical cross correlation in the Fourier domain. The orientation
estimates obtained are very accurate. The processing time (corresponding to a GeForce GTX 1080 Ti)
is around 15s per image, which is why the method would not be suitable for online navigation of a USV
searching over an area with multiple position hypotheses. The work of Brejcha and Cadik builds on the
previous method and they complement the edge lines with semantic information to make the registration
more robust (Brejcha and Cadik, 2018). The registration to find the camera orientation is performed with
spherical cross correlation in the Fourier domain. The introduction of the MOSSE correlation filter (Bolme
et al., 2010) showed that image object tracking with adaptive correlation filters in the Fourier domain is
significantly faster and also more robust to variations in target appearance than previous trackers working

in the spatial domain.



3 Classical methods for position estimation

The approach of our position estimation method is based on registration of the horizon line with DEM data.
In this section, we sketch an algorithm with classical computer vision methods for position estimation. This
algorithm is used to create the target labels for the CNNs in the proposed method. It also provides a baseline
for the position estimate accuracy that can be obtained by registration in the spatial domain. An algorithm
flowchart is shown in Figure 3. For each step in the algorithm, an example image is included in the flowchart

to illustrate the output from that step. Note that the illustrations are cropped images for better visibility.

1. Compute camera 2. Warp image 3. Compute distance
orientation function on edge map
V4

- ’ WF

6. Fine tune 5. Spatial registration 4. Compute geometric
horizon line of horizon lines horizon
v % v
— —
7. Position
estimation

Figure 3: Flowchart for position estimation with classical methods. Predicted horizon line (red) overlaid on
image (1). Geometric horizon line (green) and water line (red) overlaid on distance function (3) and warped
image (4) before registration, after registration (5), and after fine tuning (6).

The camera used in our field trials generates panoramic images in a cylindrical projection. First, to determine
an approximate camera orientation from the image, we use Canny edge detection (Canny, 1986) and Hough
voting (Hough, 1962). We search for the approximate horizon plane on the unit cylinder, which will be an
S-shaped curve in the panoramic view. We adapt the method in (Grelsson et al., 2016) and vote for the

normal vector of the horizon plane parameterized with the pitch and roll angles.

The second step in the algorithm is to warp the image to compensate for the camera orientation. The
warping will create an image corresponding to an approximately level camera, suitable for the subsequent
registration process with the geometric horizon. As a third step, to prepare for the registration, we compute
a Canny edge image on the warped image and a distance function D based on the edge image. Another input

to the registration is the geometric horizon line from the digital elevation model. The DEM for the test site



was provided by Vricon'. The DEM is computed from recent satellite imagery and has a pixel resolution on
the ground of 0.5m. The altitude accuracy is in the same order as the pixel resolution. The DEM of the test

area is illustrated in Figure 4.

Figure 4: Digital elevation model of the test area with GPS trajectory (white) from one trial day overlaid.
The bar shows the altitude above sea level in meters.

To create the target labels for training the CNNs, we use the position given by the GPS and the heading
angle from the digital compass or, if not available, the tangent vector from the logged GPS trajectory. The
geometric horizon is generated by ray-tracing using DEM data. For the desired number of image columns
around the vessel, we extract the altitude profile from the DEM. In each direction, we compute the elevation
angle of all objects along the ray. The maximum elevation angle is taken as the horizon point in that
direction. The water line point, the first water to land/sky transition in each direction, is taken as the
vertical viewing angle to the point where the DEM makes a step larger than a 0.2m threshold along the ray
direction. The search radius is set to 6km in all directions. The ideal horizon, assuming a flat and spherical
earth, is at 3.2km for a camera at 1.0m height, but we add some margin to cope with the topography. When
overlaid on the image, the geometric horizon may be slightly off-set due to small errors in the pitch, roll,

and heading angle estimates.

Ideally, the complete geometric horizon line would be located where the distance function D is zero. To
find the horizon line in the image, we search for a rotation of the geometric horizon line points on the

unit cylinder, such that when projected onto the image, their summed distance function values will be a

Ihttps://www.vricon.com/



minimum, i.e. we minimize the score

s = argmin Y D {R(¢)7(R(0, ¢)7 " (h:)) } (1)

0,60 <

where h; are the horizon line points, 7 is the projection from the unit cylinder to the image surface, 6, ¢,

and v are the pitch, roll and heading angles, R is a rotation matrix and D is the distance function.

For registration, we perform a grid search over the pitch, roll and heading angles. For the first two angles we
need to compute the rotation matrix and project the transformed points onto the image plane. The heading
angle rotation simply corresponds to a horizontal shift on the image. The step size in pitch and roll is set to
0.25° and we search over the range +2°. We extract the rotation angles for the minimum score and project
the geometric horizon line and water line onto the warped image after transformation with the said rotation
angles. In general, there is a good fit between the geometric horizon line and water line with the image
content, but occasionally there are small deviations. The main reason is that the DEM is not a perfect
representation of the real world. To adjust for these discrepancies we perform a final tuning step of the
geometric horizon line in the image. For final tuning we first convolve the warped image with a Sobel filter
to enhance gradients in the vertical direction. For each image column we search for a local maximum of the
gradient, exceeding a threshold, in a small region close to the horizon line obtained in the registration step.
If no gradient maximum is detected in the search region, the horizon line from the registration is retained.

Image columns occluded by sensors and antennas on the vessel are excluded from the tuning process.

For position estimation, the algorithm is run for various positions over an XY grid and the minimum score
obtained according to (1) is recorded for each position. We extract the location of the minimum score over
the search area. To refine the position estimate, the scores of the nearest neighbors to the minimum are
extracted in the X and Y directions, see Figure 5. A second order polynomial fit is applied in the X and Y

directions to obtain a refined subgrid position estimate.

The main drawback with this classical method for position estimation is that it is prohibitively slow for
real-time applications. In our implementation, the spatial registration took more than 1s per position grid

point, whereas our proposed method below achieved more than 40 grid points per second.
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Figure 5: Correlation scores are extracted from the nearest neighbors to the minimum score over the search
area in the X and Y directions to compute the subgrid position estimate.

4 CNN-based position estimation method

Prior to designing our proposed method, we experimented with an end-to-end CNN to output the position
estimate directly from the input image. We tried a modified version of Posenet (Kendall et al., 2015), which
we adapted to our image input format. We trained it to learn the camera position and orientation, but the
training failed completely and did not converge to anything useful. The reason for this behavior is straight-
forward. Posenet was designed for images on land. In our images, only a small part (the land objects)
contain information that is useful for position estimation. The sky and sea change appearance over time
and will only distract the position estimation if using the full image content. Hence, prior knowledge about

what is the relevant part of the image for position estimation is required.

This insight motivates the design of our proposed method for position estimation, which is similar to the
classical method in its architecture. The proposed algorithm consists of seven steps, which are explained in

detail in this section and shown in a flow chart in Figure 6.

1. HorizonFinder CNN 2. Warp image 3. HorizonSegmenter CNN
-> Camera orientation - Horizon line

4. Heading angle ]

phase correlation
7. Position 6. MOSSE filter registration
estimation of horizon lines
5. Compute geometric
horizon

Figure 6: Flowchart for position estimation with the proposed CNN-based method.



4.1 HorizonFinder CNN

To determine a rough camera orientation (pitch and roll angles), i.e. to find an approximate horizon line in
the panoramic image, we employ a convolutional neural network called HorizonFinder. This CNN replaces

the Canny detector and the Hough voting in the classical method.

We use a ResNet50 network (He et al., 2016) pretrained on ImageNet to provide feature descriptors. We then
add two stacks with a convolutional layer, vertical pooling, and a Leaky Rectified Linear Unit (Lrelu) (Maas
et al., 2013) activation function. Finally, we have a fully connected layer to output the camera orientation
angles. We found that the network training was more accurate when the output was the cosine and sine of
the pitch and roll angles, 6 and ¢, rather than having the orientation angles by themselves as output. Since
we had relatively few training images, only the weights of the new network layers (after ResNet50) were

trained. The network design is shown in Figure 7.

Image { ResNet50 ]_'

256x512x3 32x64x2048

Conv 5x5
Vpool 2x1
Lrelu

Conv 5x5
Vpool 2x1
Lrelu

14x64x512 5x64x256

Figure 7: Network design for HorizonFinder. The numbers denote the input and output size (Hx W xC) for
each network layer.

As a loss function we use the L1 loss between the predicted and target labels for the parameters cos 6, sin 6,
cos ¢, and sin ¢. This network design and loss function gave satisfactory results as judged by viewing the
backprojected horizon line on the panoramic image. Since we did not have access to any exact ground truth
for the camera orientation from external sensors, we could not perform any quantitative comparison for
different network designs and loss functions. We trained the network for 100 epochs. The initial learning

rate was set to 0.0001 and it was then reduced by a factor of two every nine epochs.

4.2 Image warping

Based on the predicted pitch and roll angles from the HorizonFinder CNN, we warp the panoramic image
to compensate for the camera orientation. Since the horizon now will be almost vertically centered in the
image, we only warp the central part of the image. The size of the original panoramic image is 2048x 1024,

whereas the warped image is 2048 x384.
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4.3 HorizonSegmenter CNN

To predict the location of the horizon line and water line in the warped image, we employ a second CNN
called HorizonSegmenter, which was proposed in our previous paper (Grelsson et al., 2018). The water line,
when seen from a camera at low height with small gracing angles to the sea, was found to not improve the
position accuracy and it is, in contrast to our previous paper (Grelsson et al., 2018), no longer used for

registration in the proposed method nor in the spatial registration method.

The HorizonSegmenter CNN has no one-to-one counterpart in the classical method. We use a similar network
design as for HorizonFinder. We start with a pretrained ResNet50 to generate feature descriptors. We use
three stacks of layers, each comprising a convolutional layer, vertical pooling, and a Lrelu activation function.
To obtain the same horizontal resolution as the target labels, we insert two horizontal upsampling layers
with bilinear interpolation. Finally, a fully connected layer is added to output the vertical pixel location of
the horizon line and water line for all image columns. As a loss function we use the absolute pixel difference
between the predicted and target horizon line and water line summed over the training image. The network

design is shown in Figure 8.

Horizon line

Hor. up. 1x2 Hor. up. 1x2

Conv 3x3 Water line
Image ResNet50 Conv 5x5 Conv 5x5
Vpool 2x1
Vpool 2x1 Vpool 2x1 Lrelu

6x256x64

Lrelu 24x128x1024 Lrelu 12x256x256

384x512x3 48x64x2048

Figure 8: Network design for HorizonSegmenter. The numbers denote the input and output size (HxWxC)
for each network layer.

To avoid considerable overfitting during training due to relatively few images, we randomly generate training
images from the original warped images. We make a random horizontal crop of a 512x384 image from the
original image during training. We used the same learning rate scheme as for the HorizonFinder network,

and only the weights of the new network layers were trained.

4.4 Phase correlation for relative heading angle measurements

For the registration with the MOSSE correlation filter in the next step, we need the camera heading angle
for each image in a global coordinate system as an input. The absolute heading angle of the first image in a
sequence can be obtained from a digital compass (without relying on GPS) with an accuracy better than 2°
(Airmar GH2183 specification , 2019). In our field trial we did not have access to a digital compass. Instead,
we replaced the heading for the first image with the ground truth heading from the GPS trajectory plus

some noise simulating the digital compass.
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To find the relative change in heading angles from one video frame to the next, we employ phase correla-
tion matching (Meneghetti et al., 2015) of the horizon line output from the HorizonSegmenter network for
successive images. We denote the Fourier transform of the complete 360° horizon line for two consecutive

images with I and J respectively. For this image pair, we compute the signal

J* 1
() 2
171 @)

* is the complex conjugate and - denotes element-wise multiplication. The phase angle of s is a

where
measure of the heading angle change between the two images. The estimated heading angle 1); of image 7 in
a sequence is given by

Yipr = mod (arg(s) + i, 2m) (3)

where 1) is the heading angle taken from the digital compass.

4.5 Compute geometric horizon

The geometric horizon is computed in exactly the same manner as described in the classical position esti-

mation method.

4.6 MOSSE correlation filter

We adapt the MOSSE (Minimum Output Sum of Squared Error) correlation filter (Bolme et al., 2010),
originally developed for visual object tracking. The MOSSE filter is designed to generate a desired output
signal (typically a Gaussian) shifted to the temporal or spatial location most closely corresponding to a set
of learned reference signals. For efficiency, the filter is evaluated in the Fourier domain. The filter is trained

with multiple references to improve its robustness against changes in appearance and noise.

In our case we use the segmented horizon lines from an image sequence projected onto the unit cylinder as
the reference. We align the segmented horizon lines in the spatial domain in accordance with their estimated
heading angle. In the spatial domain, they are all centered around the estimated mean heading angle of the
images in the sequence. In general, we use a sequence of ten consecutive images to compute the MOSSE
filter. Figure 9 shows ten segmented horizon lines (green) from an image sequence, and the geometric horizon
line (black) computed from one position hypothesis. We select the target signal to be a one-dimensional

Gaussian signal g that makes one revolution on the unit cylinder, see Figure 9. The Gaussian target signal
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Figure 9: Segmented horizon lines (green) from ten consecutive images and the geometric horizon line (black)
projected onto the unit cylinder (left), from position D in Figure 11. Gaussian target signal on the unit
cylinder (right).

is also centered around the estimated mean heading angle of the images. The bandwidth of the target signal
is chosen to be around 1°. In the Fourier transform domain, we denote the segmented horizon lines in the
sequence with F; and the Gaussian target signal with G. We want to find the MOSSE filter K, which
minimizes

K =argminy |F; - K* — G;|%. 4
en zl:l | (4)

We compute the MOSSE filter K as

G- F*
ko= G )
> Fi- FY
and the MOSSE filter signal response as
r=%""{H K*} , (6)

where H is the Fourier transform of the geometric horizon line from the DEM. Ideally, » will be the Gaussian
target signal with a zero phase shift if the heading angle estimate is correct. An erroneous heading angle
estimate will generate an angular shift of the MOSSE filter signal response. Since the digital compass gives
the absolute heading with an accuracy around 2°, we search for the peak signal response within a +5° band
from the center to have some margin. As a quality measure of the signal response, i.e. our MOSSE filter
correlation score, we use the peak-to-output-energy ratio (Javidi and Wang, 1994). We suppress the response
within the expected Gaussian signal bandwidth around the detected peak and compute the average energy
over the remainder of the signal response. The score is the peak signal over the square root of the average

energy.
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4.7 Position estimation

To generate a position estimate, we compute the MOSSE filter correlation score for an image sequence in
various positions over an XY grid. We extract the maximum score over the search area and apply a second
order polynomial fit, in the same manner as for the classical method, to obtain a refined subgrid position

estimate.

5 Experiments and Results

5.1 Field trials

Field trials were performed on three days in the archipelago outside Vastervik in Sweden. The first two days
were consecutive days and the third trial day occurred two weeks later. The three days are denoted day 1,
2 and 3 in the sequel. In the field trials, omnidirectional images were captured with a Ladybug3 camera
(FLIR Ladybug3 specification, 2019) mounted on a tele-operated USV (4m long), see Figure 10. Each day
about 25k images were captured at 10 fps during a 40-45 minute trial. The USV position was measured with
a U-blox EVK-8 GPS receiver (U-blox EVK-8 specification, 2019) acquired at 1 fps. The relative positions
between the camera and the GPS antenna are illustrated in a local USV coordinate system in Figure 10.

The USV trajectories during the field trials, as measured by the GPS, are shown in Figure 11.

z
Camera

2.00m GPS antenna
)

0.35m

Y X

Figure 10: Left: Photo of the Piraya USV with Ladybug camera and GPS antenna. Right: Local USV
coordinate system with nominal heights above the water surface.
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Figure 11: Left: USV trajectory on day 1 (cyan), day 2 (white), and day 3 (green). Right: Sections of the
trajectories selected for training and test data from day 1 (cyan), day 2 (white), and day 3 (green). The
letters denote positions referred to in the evaluation of the CNNs.

5.2 CNNs for horizon detection and segmentation

Image data from the three trial days were selected such that they originate from three distinct areas, see
Figure 11. Due to this selection, the CNNs could be trained on image data from two days/areas and tested
on image data from a third day/area. In the evaluation, we first trained the two CNNs on images from days
1 and 2, and tested on images from day 3. Second, we trained on images from days 1 and 3, and tested
on images from day 2. From the map in Figure 11, it can be concluded that in the selected sections from
days 1 and 2, the USV is swrrounded by islands/land in all directions. In the selected section from day 2,
one part is outside the islands where the camera will see open water in a large part of the panoramic view.
Example images from the test areas are shown below in the evaluation of the two CNNs, see Figures 12
and 14. In these images, it can be seen that a small part of the view (roughly 7°) was occluded by a radio

communication antenna on the USV.

The selected sections from each day contain in the order of 6000-7000 images. Image data were grouped as
image sequences, each containing 100 consecutive images acquired at 10 fps. We selected about 15 image
sequences from each day for training of the CNNs. Target labels for the training data were generated with
the methods described in Section 3. The evaluation of the CNNs, and the complete position estimation

method, were performed on all images from the respective test areas.



5.2.1 HorizonFinder

Evaluating the HorizonFinder CNN in inference mode on the test images shows that it robustly locates the
horizon line in the panoramic image. The test error relative to the target labels is in general less than 0.2°
on both the pitch and the roll angles. Figure 12 shows the results for six test images at locations indicated

in Figure 11.

G v

)

Figure 12: HorizonFinder results: CNN output (white) and target labels (black). HorizonFinder predicts
the approximate horizon line well. The letters denote the positions shown in Figure 11.

One observation that we made is that the HorizonFinder network in many cases tends to give a visually



better approximation of the horizon line than the target labels generated with Canny detection and Hough
voting, see e.g. Figure 12 B) and C). The reason is probably that the network has learned to generalize and
average the errors produced in the target label generation. Since we have no ground truth for the camera

orientation from other sensors, we cannot provide a quantitative evidence for this observation.

We also noted some failure cases and discrepancies between the results for HorizonFinder and the classical

method with Canny detection and Hough voting, see Figure 13. In the first image