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ABSTRACT 

In natural language processing, ambiguity res- 

olution is a central issue, and can be regarded 
as a preference assignment problem. In this 
paper, a Generalized Probabilistic Semantic 

Model (GPSM) is proposed for preference 

computation. An effective semantic tagging 
procedure is proposed for tagging semantic 

features. A semantic score function is de- 
rived based on a score function, which inte- 
grates lexical, syntactic and semantic prefer- 
ence under a uniform formulation. The se- 
mantic score measure shows substantial im- 

provement in structural disambiguation over 
a syntax-based approach. 

1. Introduction 

In a large natural language processing system, 
such as a machine translation system (MTS), am- 
biguity resolution is a critical problem. Various 
rule-based and probabilistic approaches had been 
proposed to resolve various kinds of ambiguity 
problems on a case-by-case basis. 

In rule-based systems, a large number of rules 
are used to specify linguistic constraints for re- 
solving ambiguity. Any parse that violates the se- 
mantic constraints is regarded as ungrammatical 
and rejected. Unfortunately, because every "rule" 
tends to have exception and uncertainty, and ill- 

formedness has significant contribution to the er- 
ror rate of a large practical system, such "hard 

rejection" approaches fail to deal with these situa- 
tions. A better way is to find all possible interpre- 
tations and place emphases on preference, rather 
than weU-formedness (e.g., [Wilks 83].) However, 
most of the known approaches for giving prefer- 
ence depend heavily on heuristics such as counting 
the number of constraint satisfactions. Therefore, 
most such preference measures can not be objec- 
tively justified. Moreover, it is hard and cosily 
to acquire, verify and maintain the consistency of 
the large fine-grained rule base by hand. 

Probabilistic approaches greatly relieve the 
knowledge acquisition problem because they are 
usually trainable, consistent and easy to meet cer- 
tain optimum criteria. They can also provide 
more objective preference measures for "soft re- 
jection." Hence, they are attractive for a large sys- 
tem. The current probabilistic approaches have a 
wide coverage including lexical analysis [DeRose 
88, Church 88], syntactic analysis [Garside 87, 
Fujisaki 89, Su 88, 89, 91b], restricted semantic 
analysis [Church 89, Liu 89, 90], and experimental 
translation systems [Brown 90]. However, there 
is still no integrated approach for modeling the 
joint effects of lexical, syntactic and semantic in- 
formation on preference evaluation. 

A generalized probabilistic semantic model 
(GPSM) will be proposed in this paper to over- 
come the above problems. In particular, an in- 
tegrated formulation for lexical, syntactic and se- 
mantic knowledge will be used to derive the se- 
mantic score for semantic preference evaluation. 
Application of the model to structural disam- 

177 



biguation is investigated. Preliminary experiments 
show about 10%-14% improvement of  the seman- 

tic score measure over a model that uses syntactic 
information only. 

2. Preference Assignment Using 
Score Function 

In general, a particular semantic interpretation of  
a sentence can be characterized by a set of lexical 
categories (or parts of  speech), a syntactic struc- 
ture, and the semantic annotations associated with 
it. Among the-various interpretations of a sen- 
tence, the best choice should be the most probable 
semantic interpretation for the given input words. 
In other words, the interpretation that maximizes 
the following score function [Su 88, 89, 91b] or 
analysis score [Chen 91] is preferred: 

Score (Semi, Sgnj, Lexk, Words) 

-- P (Semi, Synj,  LezklWords) 

= P (SemilSynj,  Lexk, Words) 

× P (Syn I ILexk, Words) 

x P (LexklWords) 

(1) 

(semantic score) 

(syntactic score) 
(lexical score) 

where (Lex,, Synj, Semi) refers to the kth set of  
lexical categories, the j th syntactic structure and 
the ith set of  semantic annotations for the input 

Words. The three component functions are re- 
ferred to as semantic score (Ssem), syntactic score 
(Ssyn) and lexical score (Stex), respectively. The 
global preference measure will be referred to as 
compositional score or simply as score. In partic- 
ular, the semantic score accounts for the semantic 
preference on a given set of  lexical categories and 
a particular syntactic structure for the sentence. 

Various formulation for the lexical score and syn- 
tactic score had been studied extensively in our 
previous works [Su 88, 89, 91b, Chiang 92] and 
other literatures. Hence, we will concentrate on 
the formulation for semantic score. 

3. Semantic Tagging 

Canonical Form of Semantic 
Representation 

Given the formulation in Eqn. (1), first we will 
show how to extract the abstract objects (Semi, 
Synj, LexD from a semantic representation. In 
general, a particular interpretation of a sentence 
can be represented by an annotated syntax tree 
(AST), which is a syntax tree annotated with fea- 
ture structures in the tree nodes. Figure 1 shows 
an example of  AST. The annotated version of a 
node A is denoted as A = A [fa] in the figure, 
where fA is the feature structure associated with 
node A. Because an AST preserves both syntactic 
and semantic information, it can be converted to 
other deep structure representations easily. There- 
fore, without lose of  generality, the AST represen- 
tation will be used as the canonical form of  seman- 
tic representation for preference evaluation. The 
techniques used here, of  course, can be applied to 
other deep structure representations as well. 

A[~] / /- . .< 
B[fB] C[fc] 

D[fD] E[fE] F[fF] G[fc] 

C I C2 C 3 C4 

(wl) (w2) (w3) (w4) 

Ls={A } 
L7={B, C } 
L~={B, F ,  G } 
Ls={B, F,c4} 
L4={B, c3, c4} 
L3={D,E ,c3,ca} 
L2={D, c2, c3, c4} 
L1 ={Cl, C2, C3, C4 } 

Figure 1. Annotated Syntax Tree 
(AST) and Phrase Levels (PL). 

The hierarchical AST can be represented by 

a set of  phrase levels, such as L] through L8 in 
Figure 1. Formally, a phrase level (PL) is a set 
of  symbols corresponding to a sententialform of 
the sentence. The phrase levels in Figure 1 are 
derived from a sequence of rightmost derivations, 
which is commonly used in an LR parsing mech- 
anism. For example, 1-,5 and L4 correspond to the 

rightmost derivation B F Ca ~+ B c3 c4. Note 
rm 

that the first phrase level L] consists of all lexical 
categories cl ... cn of  the terminal words (wl ... 
w,,). A phrase level with each symbol annotated 
with its feature structure is called an annotated 
phrase level (APL). The i-th APL is denoted as 
Fi. For example, L5 in Figure 1 has an annotated 
phrase level F5 = {B [fB], F [fF], c4 [fc,]} as its 
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counterpart, where fc, is the atomic feature of the 
lexical category c4, which comes from the lexical 
item of  the 4th word w4. With the above nota- 
tions, the score function can be re-formulated as 
follows: 

Score (Semi, Synj , Lexk, Words) 

- P (FT, L 7, c~ I,o7) 
n n = P (r~ n IL~ n , c 1 , wl ) 

x P(LT'Ic , wD 
x P (c, [w 1 ) 

(2) 

(semantic score) 

(syntactic score) 

(lexical score) 

where c]" (a short form for {cl ... c,,}) is the 
kth set of  lexical categories (Lexk), /-,1" ({L] ... 
Lr,,}) is the jth syntactic structure (Synj), and r l  m 
({F1 ... Fro}) is the ith set of  semantic annotations 
(Semi) for the input words wl" ({wl ... wn}). A 
good encoding scheme for the Fi's will allow us 
to take semantic information into account with- 
out using redundant information. Hence, we will 
show how to annotate a syntax tree so that various 
interpretations can be characterized differently. 

Semantic Tagging 
A popular linguistic approach to annotate a tree 
is to use a unification-based mechanism. How- 
ever, many information irrelevant to disambigua- 
tion might be included. An effective encod- 
ing scheme should be simple yet can preserve 
most discrimination information for disambigua- 
tion. Such an encoding scheme can be ac- 
complished by associating each phrase struc- 
ture rule A --+ X 1 X 2 . . .  XM with a head list 
( X i , , X i , . . . X i M ) .  The head list is formed by 
arranging the children nodes ( X 1 , X 2 , . . . , X M )  
in descending order of  importance to the compo- 
sitional semantics of  their mother node A. For this 
reason, Xi~, Xi~ and Xi, are called the primary, 
secondary and the j-th heads of  A, respectively. 
The compositional semantic features of the mother 
node A can be represented as an ordered list of  the 
feature structures of its children, where the order 
is the same as in the head list. For example, for 
S ~ NP VP, we have a head list (VP, NP), be- 
cause VP is the (primary) head of  the sentence. 
When composing the compositional semantics of  

S, the features of  VP and NP will be placed in 
the first and second slots of  the feature structure 
of  S, respectively. 

Because not all children and all features in 
a feature structure am equally significant for dis- 
ambiguation, it is not really necessary to annotate 
a node with the feature structures of all its chil- 
dren. Instead, only the most important N chil- 
dren of  a node is needed in characterizing the 
node, and only the most discriminative feature of 
a child is needed to be passed to its mother node. 
In other words, an N-dimensional feature vector, 
called a semantic N-tuple, could be used to char- 
acterize a node without losing much information 
for disambiguation. The first feature in the se- 
mantic N-tuple comes from the primary head, and 

is thus called the head feature of  the semantic N- 
tuple. The other features come from the other 
children in the order of  the head list. (Compare 
these notions with the linguistic sense of  head and 
head feature.) An annotated node can thus be 
approximated as A ,~ A ( f l , f 2 , . . .  , fN) ,  where 
f j  = HeadFeature X~7~,~) is the (primary) head 
feature of  its j-th head (i.e., Xij) in the head list. 
Non-head features of  a child node Xij will not be 
percolated up to its mother node. The head fea- 
ture of  ~ itself, in this case, is fx. For a terminal 
node, the head feature will be the semantic tag of 
the corresponding lexical item; other features in 
the N-tuple will be tagged as ~b (NULL). 

Figure 2 shows two possible annotated syn- 
tax trees for the sentence "... s a w  the boy in 
the park." For instance, the "loc(ation)" feature 
of  "park" is percolated to its mother NP node 
as the head feature; it then serves as the sec- 
ondary head feature of  its grandmother node PP, 
because the NP node is the secondary head of  
PP. Similarly, the VP node in the left tree is an- 
notated as VP(sta,anim) according to its primary 
head saw(sta,q~) and secondary head NP(anim,in). 
The VP(sta,in) node in the fight tree is tagged dif- 

ferently, which reflects different attachment pref- 
erence of the prepositional phrase. 

By this simple mechanism, the major charac- 
teristics of  the children, namely the head features, 
can be percolated to higher syntactic levels, and 
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sta: stative verb 
S S def." definite article 

. ~ . ~ ~ ~ .  loc: location 
anim: animate 

°t(a-hlLz-h2) ~ ~ ( ~ - h l , ~ - h 2 )  ot (¢X-h l~ t~s ta , in~ . ._  ~(~--h~,~-h~) 

N P ~  f ~ -  ~ ) s a w ( : t a : ( ~ d ) e ~ : , ~ ) i n ( i n ~ , d e f )  

the(def'~,¢) boy(-y~(~m,¢)in(in,~) ~ the(def#)/#)~p~par~Nk(loc,¢) 

the(def,t~) park(loc#) 

Figure 2. Ambiguous PP attachment patterns annotated with semantic 2-tuples. 

their correlation and dependency can be taken into 
account in preference evaluation even if they are 
far apart. In this way, different interpretations will 
be tagged differently. The preference on a partic- 
ular interpretation can thus be evaluated from the 
distribution of the annotated syntax trees. Based 
on the above semantic tagging scheme, a seman- 
tic score will be proposed to evaluate the seman- 
tic preference on various interpretations for a sen- 
tence. Its performance improvement over syntac- 
tic score [Su 88, 89, 91b] will be investigated. 
Consequently, a brief review of the syntactic score 
evaluation method is given before going into de- 
tails of the semantic score model. (See the cited 
references for details.) 

4. Syntactic Score 

According to Eqn. (2), the syntactic score can be 
formulated as follows [Su 88, 89, 91b]: 

S,y,, =_ P(SynilLeZk,W'~) = P(L'~lc'~,w~) (3) 
f t i  

= HP(Lt lL~- ' ,c~,w~) 
1=2 

1-I P (L, IL',-') 
~" I I  P(L ' IL ' - ' )  

= HP( {o~ t ,  A,, /3,} I{o,,, ~',}) 
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where at, fit are the left context and right context 
under which the derivation At =~ X 1 X 2 . . .  XM 
occurs. (Assume that Lt = {at, At,fit} and 
LI-1 = {at ,X1,""  ,XM,fil}.) If L left context 
symbols in al and R right context symbols in fit 
are consulted to evaluate the syntactic score, it is 
said to operate in LLRR mode of operation. When 
the context is ignored, such an LoRo mode of oper- 
ation reduces to a stochastic context-free grammar. 

To avoid the normalization problem [Su 91b] 
arisen from different number of transition prob- 
abilities for different syntax trees, an alternative 
formulation of the syntactic score is to evaluate 
the transition probabilities between configuration 
changes of the parser. For instance, the config- 
uration of an LR parser is defined by its stack 
contents and input buffer. For the AST in Figure 
1, the parser configurations after the read of cl, 
c2, c3, c4 and $ (end-of-sentence) are equivalent 
to L1, L2, L4, 1-.5 and Ls, respectively. Therefore, 
the syntactic score can be approximated as [Su 
89, 91b]: 

S, vn ~ P(Ls, LT ' "  L2IL,) (4) 

P(LslL~) x P(LsIL4) x P(L41L2) x P(L21L1) 

In this way, the number of transition probabilities 
in the syntactic scores of all AST's will be kept 
the same as the sentence length. 



5. Semantic Score 

Semant ic  score evaluation is similar to syntactic 
score evaluation. From Eqn. (2), we have the 
following semantic model for semantic  score: 

S,  em (Semi ,  Syn j  , Lex~:, Words)  

= p (p~n ILT, c~, w~) 
m 

I - - 1  r a  n n = I" [P(F ,  IF1 ,L1 ,Cl,Wl) 

(5) 

1 = 2  

1"I P(r,  lr,_l) 
= 

where 3~j am the semantic tags from the chil- 
dren of A1. For example, we have terms 
like e ( V P ( s t a ,  anim) [ a,  VP ~- v NP,f l)  and 
P ( V P ( s t a ,  in) l a ,  V e ~ v  NP PP,f l) , respec-  
fively, for the left and right trees in Figure 2. The 
annotations of  the context am ignored in evalu- 
ating Eqn. (6) due to the assumption of  seman- 
tics compositionality. The operation mode will be 
called LLRR+Alv, where N is the dimension of the 
N-tuple, and the subscript L (or R) refers to the 
size of  the context window. With an appropriate 
N, the score will provide sufficient discrimination 
power for general disambiguation problem with- 
out resorting to full-blown semantic analysis. 

where At = At ( f t , l , f l n , . . . , f u v )  is the anno- 
tated version of At, whose semantic N-tuple is 
(fl,1, f l ,2,-" ,  ft,N), and 57, fit are the annotated 
context symbols. Only Ft.1 is assumed to be sig- 
nificant for the transition to Ft in the last equa- 
tion, because all required information is assumed 
to have been percolated to Ft-j through semantics 
composition. 

Each term in Eqn. (5) can be interpreted as 
the probability tha tAt  is annotated with the partic- 
ular set of head features (fs,1, f t , 2 , . . . ,  fI ,N),  given 
that X1 ... XM are reduced to At in the context of 
a7 and fit. So it can be interpreted informally as 

P(At (fl,1, ft,2, . . . , fz ~v) I Ai ~ X 1 .  . . X M  , 
in the context of ~-7, fit ). It corresponds to the se- 
mantic preference assigned to the annotated node 

A t" Since (11,1, f l ,~ , ""  f t ,N) are the head features 
from various heads of the substructures of A, each 
term reflects the f ea ture  co-occurrence preference 
among these heads. Furthermore, the heads could 
be very far apart. This is different from most 
simple Markov models, which can deal with local 
constraints only. Hence, such a formulation well 
characterizes long distance dependency among the 
heads, and provides a simple mechanism to incor- 
porate the feature co-occurrence preference among 
them. For the semantic N-tuple model, the seman- 
tic score can thus be expressed as follows: 

S~.~ (6) 
m 

"~ I-[ P ( A* ( f t , , ,  f,,2 " " " f t ,N) la , ,A ,  , - -  X l  " " gM,/~l)  
l = 2  
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6. Major Categories and 
Semantic Features 

As mentioned before, not all constituents are 
equally important for disambiguation. For in- 
stance, head words  are usually more important 
than modifiers in determining the compositional 
semantic features of their mother node. There is 
also lots of redundancy in a sentence. For in- 
stance, "saw boy in park" is equally recogniz- 
able as "saw the boy in the park." Therefore, 
only a few categories, including verbs, nouns, ad- 

ject ives ,  preposi t ions and adverbs  and their pro- 
jections (NP, VP, AP, PP, ADVP), are used to 
carry semantic features for disambiguation. These 
categories are roughly equivalent to the major  cat- 

egories in linguistic theory [Sells 85] with the in- 
clusion of adverbs as the only difference. 

The semantic feature of each major category 
is encoded with a set of semant ic  tags that well 
describes each category. A few rules of thumb 
are used to select the semantic tags. In particular, 
semantic features that can discriminate different 
linguistic behavior from different possible seman- 
tic N-tuples  are preferred as the semantic tags. 
With these heuristics in mind, the verbs, nouns, 
adjectives, adverbs and prepositions are divided 
into 22, 30, 14, 10 and 28 classes, respectively. 
For example, the nouns are divided into "human," 
"plant," "time," "space," and so on. These seman- 
tic classes come from a number of sources and 



the semantic attribute hierarchy of the ArchTran  
MTS [Su 90, Chen 91]. 

Table 1. Close Test of Semantic Score 

7. Test and Analysis 

The semantic N-tuple model is used to test the 
improvement of  the semantic score over syntactic 
score in structure disambiguation. Eqn. (3) is 
adopted to evaluate the syntactic score in L2RI 
mode of  operation. The semantic score is derived 
from Eqn. (6) in L2R~ +AN mode, for N = 1, 2, 
3, 4, where N is the dimension of  the semantic 
S-tuple. 

A total of  1000 sentences (including 3 un- 
ambiguous ones) are randomly selected from 14 
computer manuals for training or testing. They 
are divided into 10 parts; each part contains 100 
sentences. In close tests, 9 parts are used both 
as the training set and the testing set. In open 
tests, the rotation estimation approach [Devijver 
82] is adopted to estimate the open test perfor- 
mance. This means to iteratively test one part of  
the sentences while using the remaining parts as 
the training set. The overall performance is then 
estimated as the average performance of  the 10 
iterations. 

The performance is evaluated in terms of Top- 
N recognition rate (TNRR), which is defined as 
the fraction of  the test sentences whose preferred 
interpretation is successfully ranked in the first 

N candidates. Table 1 shows the simulation re- 
suits of  close tests. Table 2 shows partial results 
for open tests (up to rank 5.) The recognition 
rates achieved by considering syntactic score only 
and semantic score only are shown in the tables. 
(L2RI+A3 and L2RI+A4 performance are the same 
as L2R~+A2 in the present test environment. So 
they are not shown in the tables.) Since each sen- 
tence has about 70-75 ambiguous constructs on 
the average, the task perplexity of  the current dis- 
ambiguation task is high. 

Score 

Rank 

1 

2 

3 

4 

5 

13 

18 

Syntax Semantics Semantics 
(L2R1) (L2RI+A1) (L2RI+A2) 

Count TNRR 

(%) 

781 

101 

9 

5 

Count TNRR 

(%) 

87.07 872 

98.33 20 

99.33 5 

99.89 

100.00 

97.21 866 

99.44 24 

100.00 4 

2 

1 

Count TNRR 

(%) 

96.54 

99.22 

99.67 

99.89 

100.00 

DataBase: 900 Sentences 

Test Set: 897 Sentences 

Total Number of Ambiguous Trees = 63233 

(*) TNRR: Top-N Recognition Rate 

Table 2. Open Test of Semantic Score 

Score Syntax 
(L2R1) 

Rank Count TNRR 

(%) 

1 430 43.13 

2 232 66A0 

3 94 75.83 

4 80 83.85 

5 35 87.36 

Semantics 
(L2RI+A1) 

Count TNRR! 

(%) 

569 57.07 

163 73.42 

90 82.45 

50 87.46 

22 89.67 

Semantics 
(L2RI+A2) 

Count TNRR 

(%) 

578 57.97 

167 74.72 

75 82.25 

49 87.16 

28 89.97 

DataBase: 900 Sentences (+) 

Test Set: 997 Sentences (++) 

Total Number of Ambiguous Trees = 75339 

(+) DataBase : effective database size for rotation 
estimation 

(++) Test Set : all test sentences participating the 
rotation estimation test 
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The close test Top-1 performance (Table 1) 
for syntactic score (87%) is quite satisfactory. 
When semantic score is taken into account, sub- 
stantial improvement in recognition rate can be 
observed further (97%). This shows that the se- 
mantic model does provide an effective mecha- 
nism for disambiguation. The recognition rates 
in open tests, however, are less satisfactory under 
the present test environment. The open test per- 
formance can be attributed to the small database 
size and the estimation error of the parameters 
thus introduced. Because the training database is 
small with respect to the complexity of the model, 
a significant fraction of the probability entries in 
the testing set can not be found in the training set. 
As a result, the parameters are somewhat "over- 
tuned" to the training database, and their values 
are less favorable for open tests. Nevertheless, 
in both close tests and open tests, the semantic 
score model shows substantial improvement over 
syntactic score (and hence stochastic context-free 
grammar). The improvement is about 10% for 
close tests and 14% for open tests. 

In general, by using a larger database and bet- 
ter robust estimation techniques [Su 91a, Chiang 
92], the baseline model can be improved further. 
As we had observed from other experiments for 
spoken language processing [Su 91a], lexical tag- 
ging, and structure disambiguation [chiang 92], 
the performance under sparse data condition can 
be improved significantly if robust adaptive leam- 
ing techniques are used to adjust the initial param- 
eters. Interested readers are referred to [Su 91a, 
Chiang 92] for more details. 

8. Concluding Remarks 

In this paper, a generalized probabilistic seman- 
tic model (GPSM) is proposed to assign semantic 
preference to ambiguous interpretations. The se- 
mantic model for measuring preference is based 
on a score function, which takes lexical, syntactic 
and semantic information into consideration and 
optimizes the joint preference. A simple yet effec- 
tive encoding scheme and semantic tagging proce- 
dure is proposed to characterize various interpreta- 
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tions in an N dimensional feature space. With this 
encoding scheme, one can encode the interpre- 
tations with discriminative features, and take the 
feature co-occurrence preference among various 
constituents into account. Unlike simple Markov 
models, long distance dependency can be man- 
aged easily in the proposed model. Preliminary 
tests show substantial improvement of the seman- 
tic score measure over syntactic score measure. 
Hence, it shows the possibility to overcome the 
ambiguity resolution problem without resorting to 
full-blown semantic analysis. 

With such a simple, objective and trainable 
formulation, it is possible to take high level se- 
mantic knowledge into consideration in statistic 
sense. It also provides a systematic way to con- 
struct a disambiguation module for large practical 
machine translation systems without much human 
intervention; the heavy burden for the linguists to 
write fine-grained "rules" can thus be relieved. 
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