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ABSTRACT
Graph neural networks (GNNs) have been demonstrated to be

powerful in modeling graph-structured data. However, training
GNNs usually requires abundant task-specific labeled data, which
is often arduously expensive to obtain. One effective way to reduce
the labeling effort is to pre-train an expressive GNN model on un-
labeled data with self-supervision and then transfer the learned
model to downstream tasks with only a few labels. In this paper,
we present the GPT-GNN∗ framework to initialize GNNs by genera-
tive pre-training. GPT-GNN introduces a self-supervised attributed
graph generation task to pre-train a GNN so that it can capture
the structural and semantic properties of the graph. We factorize
the likelihood of the graph generation into two components: 1)
Attribute Generation and 2) Edge Generation. By modeling both
components, GPT-GNN captures the inherent dependency between
node attributes and graph structure during the generative process.
Comprehensive experiments on the billion-scale Open Academic
Graph and Amazon recommendation data demonstrate that GPT-
GNN significantly outperforms state-of-the-art GNN models with-
out pre-training by up to 9.1% across various downstream tasks.
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1 INTRODUCTION
The breakthroughs in graph neural networks (GNNs) have rev-

olutionized graph mining from structural feature engineering to
representation learning [1, 9, 17]. Recent GNN developments have
been demonstrated to benefit various graph applications and net-
work tasks, such as semi-supervised node classification [17], rec-
ommendation systems [42], and knowledge graph inference [28].

Commonly, GNNs take a graphwith attributes as input and apply
convolutional filters to generate node-level representations layer by
layer. Often, a GNN model is trained with supervised information
in an end-to-end manner for one task on the input graph. That
said, for different tasks on the same graph, it is required to have
enough and different sets of labeled data to train dedicated GNNs
corresponding to each task. Usually, it is arduously expensive and
sometimes infeasible to access sufficient labeled data for those tasks,
particularly for large-scale graphs. Take, for example, the author
disambiguation task in academic graphs [34], it has still faced the
challenge of the lack of ground-truth to date.

Similar issues had also been experienced in natural language
processing (NLP). Recent advances in NLP address them by training
a model from a large unlabeled corpus and transferring the learned
model to downstream tasks with only a few labels—the idea of pre-
training. For example, the pre-trained BERT language model [4]
is able to learn expressive contextualized word representations by
reconstructing the input text—next sentence and masked language
predictions, and thus it can significantly improve the performance
of various downstream tasks. Additionally, similar observations
have also been demonstrated in computer vision [2, 13, 35].

Inspired by these developments, we propose to pre-train graph
neural networks for graph mining. The goal of the pre-training is to
empower GNNs to capture the structural and semantic properties
of a input graph, so that it can easily generalize to any downstream
tasks with a few fine-tuning steps on the graphs within the same
domain. To achieve this goal, we propose to model the graph distri-
bution by learning to reconstruct the input attributed graph.

To pre-train GNNs based on graph reconstruction, one straight-
forward option could be to directly adopt the neural graph gen-
eration techniques [16, 18, 43]. However, they are not suitable for
pre-training GNNs by design. First, most of them focus only on
generating graph structure without attributes, which does not cap-
ture the underlying patterns between node attributes and graph
structure—the core of convolutional aggregation in GNNs. Second,
they are designed to handle small graphs to date, limiting their
potential to pre-train on large-scale graphs.
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Figure 1: The pre-training andfine-tuningflowofGPT-GNN:
First, a GNN is pre-trained with the self-supervised learning
task—attribute and structure generations. Second, the pre-
trained model and its parameters are then used to initialize
models for downstream tasks on the input graph or graphs
of the same domain.

Contributions. In this work, we design a self-supervised attrib-
uted graph generation task for GNN pre-training, with which both
the structure and attributes of the graph are modeled. Based on
this task, we present the GPT-GNN framework for generative pre-
training of graph neural networks (Cf. Figure 1). The pre-trained
GNN on the input graph can be then used as the initialization of
models for different downstream tasks on the same type of graphs.
Specifically, our contributions are illustrated below.

First, we design an attributed graph generation task to model
both node attributes and graph structure. We decompose the graph
generation objective into two components: Attribute Generation
and Edge Generation, whose joint optimization is equivalent tomax-
imizing the probability likelihood of the whole attributed graph. In
doing this, the pre-trained model can capture the inherent depen-
dency between node attributes and graph structure.

Second, we propose an efficient framework GPT-GNN to conduct
generative pre-training with the aforementioned task. GPT-GNN
can calculate the attribute and edge generation losses of each node
simultaneously, and thus only need to run the GNN once for the
graph. Additionally, GPT-GNN can handle large-scale graphs with
sub-graph sampling and mitigate the inaccurate loss brought by
negative sampling with an adaptive embedding queue.

Finally, we pre-train GNNs on two large-scale graphs—the Open
Academic Graph (OAG) of 179 million nodes & 2 billion edges
and Amazon recommendation data of 113 million nodes. Extensive
experiments show that the GPT-GNN pre-training framework can
significantly benefit various downstream tasks. For example, by
applying the pre-trained model on OAG, the node classification and
link prediction performance is on average lifted by 9.1% over the
state-of-the-art GNN models without pre-training. In addition, we
show that GPT-GNN can consistently improve the performance of
different base GNNs under various settings.

2 PRELIMINARIES AND RELATEDWORK
The goal of pre-training is to allow a model (usually neural net-

works) to initialize its parameters with pre-trained weights. In this
way, the model can leverage the commonality between the pre-
training and downstream tasks. Recently pre-training has shown

superiority in boosting the performance of many downstream ap-
plications in computer vision and natural language processing. In
the following, we first introduce the preliminaries about GNNs and
then review pre-training approaches in graphs and other domains.

2.1 Preliminaries of Graph Neural Networks
Recent years have witnessed the success of GNNs for modeling

graph data [12, 15, 17, 36]. A GNN can be regarded as using the input
graph structure as the computation graph for message passing [9],
during which the local neighborhood information is aggregated to
get a more contextual representation. Formally, suppose H (l )t is the
node representation of node t at the (l)-th GNN layer, the update
procedure from the (l-1)-th layer to the (l)-th layer is:

H
(l )
t ← Aggregate

∀s ∈N (t ),∀e ∈E(s,t )

({
Extract

(
H
(l−1)
s ;H (l−1)t , e

)})
, (1)

whereN (t) denotes all the source nodes of node t and E(s, t) denotes
all the edges from node s to t .

There are two basic operators for GNNs, which are Extract(·)
and Aggregate(·). Among them, Extract(·) represents the neigh-
bor information extractor. It uses the target node’s representation
H
(l−1)
t and the edge e between the two nodes as query, and extract

useful information from source node H (l−1)s . Aggregate(·) serves
as the aggregation function of the neighborhood information. The
mean, sum, and max functions are often considered as the basic
aggregation operators, while sophisticated pooling and normaliza-
tion functions can also be designed. Under this framework, various
GNN architectures have been proposed. For example, the graph
convolutional network (GCN) proposed by Kipf et al. [17] averages
the one-hop neighbor of each node in the graph, followed by a lin-
ear projection and then a non-linear activation. Hamilton et al. [12]
propose GraphSAGE that generalizes GCN’s aggregation operation
from average to sum, max and a RNN unit.

Also, there are a bunch of works incorporating the attention
mechanism into GNNs. In general, the attention-based models im-
plement the Extract(·) operation by estimating the importance of
each source node, based on which a weighted aggregation is ap-
plied. For example, Velickovi et al. [36] propose the graph attention
network (GAT), which adopts an additive mechanism to calculate at-
tention and uses the sameweight for calculatingmessages. Recently,
Hu et al. propose the heterogeneous graph transformer (HGT) [15]
that leverages multi-head attentions for different relation types to
get type-dependent attentions. The proposed pre-training frame-
work GPT-GNN can apply to all of these GNN models.

2.2 Pre-Training for Graphs
Previous studies have proposed to utilize pre-training to learn

node representations, which largely belong to two categories. The
first category is usually termed as network/graph embedding, which
directly parameterizes the node embedding vectors and optimizes
them by preserving some similarity measures, such as the network
proximity [33] or statistics derived from random walks [6, 11, 26].
However, the embeddings learned in this way cannot be used to
initialize other models for fine-tuning over other tasks. In contrast,
we consider a transfer learning setting, where the goal is to pre-train
a generic GNN that can deal with different tasks.



With the increasing focus on GNNs, researchers have explored
the direction of pre-training GNNs on unannotated data. Kipf et al.
propose Variational Graph Auto-Encoders [16] to reconstruct the
graph structure. Hamilton et al. propose GraphSAGE [12], which
can optimize via an unsupervised loss by using random walk based
similarity metric. Velickovic et al. introduce Graph Infomax [37],
which maximizes the mutual information between node represen-
tations obtained from GNNs and a pooled graph representation. Al-
though these methods show enhancements over purely-supervised
learning settings, the learning tasks can be achieved by forcing
nearby nodes to have similar embeddings, ignoring the rich seman-
tics and higher-order structure of the graph. Our work proposes
to pre-train GNNs by the permutated generative objective, which
is a harder graph task and thus can guide the model to learn more
complex semantics and structure of the input graph.

In addition, there are attempts to pre-train GNNs to extract graph-
level representations. Sun et al. present InfoGraph [29], which max-
imizes the mutual information between graph-level representations
obtained from GNNs and the representations of sub-structures. Hu
et al. [14] introduce different strategies to pre-train GNNs at both
node and graph levels and show that combining them together can
improve the performance on graph classification tasks. Our work is
different with them as our goal is to pre-train GNNs over a single
(large-scale) graph and conduct the node-level transfer.

2.3 Pre-Training for Vision and Language
Pre-training has been widely used in computer vision (CV) and

natural language processing (NLP). In CV, early pre-training tech-
niques [5, 10, 24] mostly follow the paradigm of first pre-training a
model on large-scale supervised datasets (such as ImageNet [3]) and
then fine-tuning the pre-trained model on downstream tasks [10]
or directly extracting the representations as features [5]. Recently,
some self-supervised tasks [2, 13, 35] have also been utilized to
pre-train vision models. In NLP, Early works have been focused on
learning (shallow) word embeddings [22, 25] by leveraging the co-
occurrence statistics on the text corpus. More recently, significant
progresses have been made on contextualized word embeddings,
such as BERT [4], XLNET [41] and GPT [27]. Take BERT as an ex-
ample, it pre-trains a text encoder with two self-supervised tasks in
order to better encode words and their contexts. These pre-training
approaches have been shown to yield state-of-the-art performance
in a wide range of NLP tasks and thus used as a fundamental com-
ponent in many NLP systems.

3 GENERATIVE PRE-TRAINING OF GNNS
In this section, we formalize the attributed graph generation task

and introduce the generative pre-training framework (GPT-GNN).

3.1 The GNN Pre-Training Problem
The input to GNNs is usually an attributed graphG = (V, E,X),

where V and E denote its node and edge sets, and X represents
the node feature matrix. A GNN model learns to output node rep-
resentations under the supervision of a specific downstream task,
such as node classification. Sometimes there exist multiple tasks on
a single graph, and most GNNs require sufficient dedicated labeled

data for each task. However, it is often challenging to obtain suf-
ficient annotations, in particular for large-scale graphs, hindering
the training of a well-generalized GNN. Therefore it is desirable to
have a pre-trained GNN model that can generalize with few labels.
Conceptually, this model should 1) capture the intrinsic structure
and attribute patterns underlying the graph and 2) thus benefit
various downstream tasks on this graph.
GNN Pre-Training. Formally, our goal of GNN pre-training con-
cerns the learning of a general GNN model fθ purely based on
single (large-scale) graph G = (V, E,X) without labeled data such
that fθ is a good initialization for various (unseen) downstream
tasks on the same graph or graphs of the same domain. To learn
such a general GNN model without labeled data on the graph, a nat-
ural question arises here is: how to design an unsupervised learning
task over the graph for pre-training the GNN model?

3.2 The Generative Pre-Training Framework
Recent advances in self-supervised learning for NLP [4, 41] and

CV [2, 13, 35] have shown that unlabeled data itself contains rich
semantic knowledge, and thus a model that can capture the data dis-
tribution is able to transfer onto various downstream tasks. Inspired
by this, we propose GPT-GNN, which pre-trains a GNN by recon-
structing/generating the input graph’s structure and attributes.

Formally, given an input graphG = (V, E,X) and a GNN model
fθ , we model the likelihood over this graph by this GNN as p(G;θ )—
representing how the nodes inG are attributed and connected. GPT-
GNN aims to pre-train the GNN model by maximizing the graph
likelihood, i.e., θ∗ = maxθ p(G;θ ).

Then, the first question becomes how to properly model p(G;θ ).
Note that most existing graph generation methods [18, 43] follow
the auto-regressivemanner to factorize the probability objective, i.e.,
the nodes in the graph come in an order, and the edges are generated
by connecting each new arriving node to existing nodes. Similarly,
we denote a permutation vector π to determine the node ordering,
where iπ denotes the node id of i-th position in permutation π .
Consequently, the graph distribution p(G;θ ) is equivalent to the
expected likelihood over all possible permutations, i.e.,

p(G;θ ) = Eπ
[
pθ (Xπ ,Eπ )

]
,

where Xπ ∈ R |V |×d denotes permutated node attributes and E is
a set of edges, while Eπi denotes all edges connected with node iπ .
For simplicity, we assume that observing any node ordering π has
an equal probability and also omit the subscript π when illustrating
the generative process for one permutation in the following sec-
tions. Given a permutated order, we can factorize the log likelihood
autoregressively—generating one node per iteration—as:

logpθ (X ,E) =
|V |∑
i=1

logpθ (Xi ,Ei | X<i ,E<i ). (2)

At each step i , we use all nodes that are generated before i , their
attributes X<i , and the structure (edges) between these nodes E<i
to generate a new node i , including both its attribute Xi and its
connections with existing nodes Ei .

Essentially, the objective in Eq. 2 describes the autoregressive
generative process of an attributed graph. The question becomes:
how to model the conditional probability pθ (Xi ,Ei |X<i ,E<i )?



Figure 2: An illustrative example of the proposed attributed graph generation procedure.

3.3 Factorizing Attributed Graph Generation
To compute pθ (Xi ,Ei |X<i ,E<i ), one naive solution could be to

simply assume that Xi and Ei are independent, that is,

pθ (Xi ,Ei |X<i ,E<i ) = pθ (Xi |X<i ,E<i ) · pθ (Ei |X<i ,E<i )

With such decomposition, for each node, the dependency between
its attributes and connections are completely neglected. However,
the ignored dependency is the core property of attributed graphs
and also the foundation of convolutional aggregation in GNNs.
Therefore, such a naive decomposition cannot provide informative
guidance for pre-training GNNs.

To address this issue, we present the dependency-aware fac-
torization mechanism for the attributed graph generation process.
Specifically, when estimating a new node’s attributes, we are given
its structure information, and vice versa. During the process, a part
of the edges has already been observed (or generated). Then the
generation can be decomposed into two coupled parts:
• given the observed edges, generate node attributes;
• given the observed edges and generated node attributes,
generate the remaining edges.

In this way, the model can capture the dependency between the
attributes and structure for each node.

Formally, we define a variable o to denote the index vector of all
the observed edges within Ei . Thus, Ei,o denotes the observed edges.
Similarly, ¬o denotes the index of all the masked edges, which are to
be generated. With this, we can rewrite the conditional probability
as an expected likelihood over all observed edges:

pθ (Xi ,Ei | X<i ,E<i )

=
∑

o
pθ (Xi ,Ei,¬o | Ei,o ,X<i ,E<i ) · pθ (Ei,o | X<i ,E<i )

=Eo
[
pθ (Xi ,Ei,¬o | Ei,o ,X<i ,E<i )

]
=Eo

[
pθ (Xi | Ei,o ,X<i ,E<i )︸                       ︷︷                       ︸

1) generate attributes

·pθ (Ei,¬o | Ei,o ,X≤i ,E<i )︸                           ︷︷                           ︸
2) generate edges

]
. (3)

This factorization design is able to model the dependency be-
tween node i’s attributes Xi and its associated connections Ei .
The first term pθ (Xi | Ei,o ,X<i ,E<i ) denotes the generation of
attributes for node i . Based on the observed edges Ei,o , we gather

the target node i’s neighborhood information to generate its at-
tributes Xi . The second term pθ (Ei,¬o | Ei,o ,X≤i ,E<i ) denotes the
generation of masked edges. Based on both the observed edges Ei,o
and the generated attributes Xi , we generate the representation of
the target node i and predict whether each edge within Ei,¬o exists.
A graph generation example. We intuitively show how the pro-
posed factorization-based graph generation process works. Take,
for example, an academic graph, if we would like to generate one
paper node, whose title is considered as its attribute, while this
paper node is connected to its authors, published venue, and cited
papers. Based on some observed edges between this paper and some
of its authors, our generation process first generates its title. Then,
based on both the observed edges and generated title, we predict
its remaining authors, published venue, and references. In this way,
this process models the interaction between the paper’s attribute
(title) and structure (observed and remaining edges) to complete
the generation task, bringing in informative signals for pre-training
GNNs over the academic graph.

So far, we factorize the attributed graph generation process into
a node attribute generation step and an edge generation step. The
question we need to answer here is: How to efficiently pre-train
GNNs by optimizing both attribute and edge generation tasks?

3.4 Efficient Attribute and Edge Generation
For the sake of efficiency, it is desired to compute the loss of

attribute and edge generations by running the GNN only once
for the input graph. In addition, we expect to conduct attribute
generation and edge generation simultaneously. However, edge
generation requires node attributes as input, which can be leaked
to attribute generation. To avoid information leakage, we design to
separate each node into two types:
• Attribute Generation Nodes. We mask out the attributes
of these nodes by replacing their attributes with a dummy
token and learn a shared vector X init to represent it†. This
is equivalent to the trick of using the [Mask] token in the
masked language model [4].
• Edge Generation Nodes. For these nodes, we keep their at-
tributes and put them as input to the GNN.

†X init has the same dimension as Xi and can be learned during pre-training.



We then input the modified graph to the GNN model and generate
the output representations. We use hAttr and hEdдe to represent
the output embeddings of Attribute Generation and Edge Genera-
tion Nodes, respectively. As the attributes of Attribute Generation
Nodes are masked out, hAttr in general contains less information
than hEdдe . Therefore, when conduct the GNN message passing,
we only use Edge Generation Nodes’ output hEdдe as outward mes-
sages. The representations of the two sets of nodes are then used
to generate attributes and edges with different decoders.

For Attribute Generation, we denote its decoder as DecAttr (·),
which takes hAttr as input and generates the masked attributes.
The modeling choice depends on the type of attributes. For example,
if the input attribute of a node is text, we can use the text generator
model (e.g., LSTM) to generate it. If the input attribute is a standard
vector, we can apply a multi-layer Perceptron to generate it. Also,
we define a distance function as a metric between the generated at-
tributes and the real ones, such as perplexity for text or L2-distance
for vectors. Thus, we calculate the attribute generation loss via:

LAttri = Distance
(
DecAttr (hAttri ),Xi

)
. (4)

By minimizing the distance between the generated and masked
attributes, it is equivalent to maximize the likelihood to observe
each node attribute, i.e., pθ (Xi | Ei,o ,X<i ,E<i ), and thus the pre-
trained model can capture the semantic of this graph.

For Edge Generation, we assume that the generation of each edge
is independent with others, so that we can factorize the likelihood:

pθ (Ei,¬o | Ei,o ,X≤i ,E<i ) =
∏

j+∈Ei,¬o
pθ (j+ | Ei,o ,X≤i ,E<i ). (5)

Next, after getting the Edge Generation node representation
hEdдe , we model the likelihood that node i is connected with node
j by DecEdдe (hEdдei ,h

Edдe
j ), where DecEdдe is a pairwise score

function. Finally, we adopt the negative contrastive estimation to
calculate the likelihood for each linked node j+. We prepare all the
unconnected nodes as S−i and calculate the contrastive loss via

LEdдe
i = −

∑
j+∈Ei,¬o

log
exp

(
DecEdдe (hEdдei , h

Edдe
j+ )

)∑
j ∈S−i ∪{j+ } exp

(
DecEdдe (hEdдei , h

Edдe
j )

)
(6)

By optimizing LEdдe , it is equivalent to maximizing the likeli-
hood of generating all the edges, and thus the pre-trained model is
able to capture the intrinsic structure of the graph.

Figure 2 illustrates the attributed graph generation process. Specif-
ically: (a) We determine the node permutation order π for the input
graph. (b) We randomly select a portion of the target node’s edges
as observed edges Ei,o and the remaining as masked edges Ei,¬o
(grey dashed lines with cross). We delete masked edges in the graph.
(c) We separate each node into the Attribute Generation and Edge
Generation nodes to avoid information leakage. (d) After the pre-
processing, we use the modified adjacency matrix to calculate the
representations of node 3,4 and 5, including both their Attribute
and Edge Generation Nodes. Finally, as illustrated in (d)–(e), we
train the GNN model via the attribute prediction and masked edge
prediction task for each node in parallel. The overall pipeline of
GPT-GNN is illustrated in Algo. 1 (See Appendix B for details).

Algorithm 1 The GPT-GNN Pre-Training Framework

Require: Input Attributed Graph G, Graph Sampler Sampler (·).
Ensure:
1: Initialize the GNNmodel as fθ , the attribute generation decoder

as DecAttr , and the edge generation decoder as DecEdдe .
2: Initialize the adaptive node embedding queue Q = {} and the

attribute vector hinit .
3: for each sampled graph Ĝ ∈ Sampler (G) do
4: For each node, sample the observed edge index o and masked

edges ¬o, and delete masked edges Ei,¬o accordingly.
5: Separate each node into the Attribute Generation and Edge

Generation nodes. Replace the input to Attribute Genera-
tion node as hinit . Apply GNN fθ to get two sets of node
embeddings hAttr and hEdдe for each node in the graph.

6: for node i with attributes Xi and masked edges Ei,¬o do
7: Calculate the attribute generation loss LAttr by Eq. 4
8: Prepare negative samples S−i for edge generation by con-

catenating unconnected nodes and adaptive queue Q .
9: Calculate the edge generation loss LEdдe by Eq. 6
10: end for
11: Optimize θ by minimizing LAttr and LEdдe .
12: UpdateQ by adding inhEdдe and popping out most outdated

embeddings.
13: end for
14: return Pre-trained model parameters θ∗ for downstream tasks

3.5 GPT-GNN for Heterogeneous & Large Graphs
In this section, we discuss how to apply GPT-GNN to pre-train for

large-scale and heterogeneous graphs, which can be of practical use
for modeling real-world complex systems [7, 30], such as academic
graphs, product graphs, IoT networks, and knowledge graphs.
Heterogeneous graphs. Many real-world graphs are heteroge-
neous, meaning that they contain different types of nodes and edges.
For heterogeneous graphs, the proposed GPT-GNN framework can
be straightforwardly applied to pre-train heterogeneous GNNs. The
only difference is that each type of nodes and edges may have its
own decoder, which is specified by the heterogeneous GNNs rather
than the pre-training framework. All the other components remain
exactly the same.
Large-scale graphs. To pre-train GNNs on graphs that are too
large to fit into the hardware, we sample subgraphs for training.
In particular, we propose to sample a dense subgraph from ho-
mogeneous and heterogeneous graphs by using the LADIES al-
gorithm [45] and its heterogeneous version HGSampling [15], re-
spectively. Both methods theoretically guarantee that the sampled
nodes are highly interconnected with each other and maximally
preserve the structural information.

To estimate the contrastive loss in Eq. 6, it is required to go over
all nodes of the input graph. However, we only have access to the
sampled nodes in a subgraph for estimating this loss, making the
(self-)supervision only focus on local signals. To alleviate this issue,
we propose the Adaptive Queue, which stores node representations
in previously-sampled subgraphs as negative samples. Each time
we process a new subgraph, we progressively update this queue



by adding the latest node representations and remove the oldest
ones. As the model parameters will not be updated rigorously, the
negative samples stored in the queue are consistent and accurate.
The Adaptive Queue enables us to use much larger negative sample
pools S−i . Moreover, the nodes across different sampled sub-graphs
can bring in the global structural guidance for contrastive learning.

4 EVALUATION
To evaluate the performance of GPT-GNN, we conduct exper-

iments on the Open Academic Graph (OAG) and Amazon Rec-
ommendation datasets. To evaluate the generalizability of GPT-
GNN, we consider different transfer settings—time transfer and
field transfer—which are of practical importance.

4.1 Experimental Setup

Datasets and Tasks.We conduct experiments on both heteroge-
neous and homogeneous graphs. For heterogeneous graphs, we use
the Open Academic Graph and Amazon Review Recommendation
data. For homogeneous graphs, we use the Reddit dataset [12] and
the paper citation network extracted from OAG. All datasets are
publicly available and the details can be found in Appendix A.

Open Academic Graph (OAG) [34, 38, 44] contains more than
178 million nodes and 2.236 billion edges. It is the largest publicly
available heterogeneous academic dataset to date. Each paper is la-
beled with a set of research topics/fields (e.g., Physics and Medicine)
and the publication date ranges from 1900 to 2019. We consider
the prediction of Paper–Field, Paper–Venue, and Author Name
Disambiguation (Author ND) as three downstream tasks [7, 15].
The performance is evaluated by MRR—a widely adopted ranking
metric [19].

Amazon Review Recommendation Dataset (Amazon) [23] contains
82.8 million reviews, 20.9 million users, and 9.3 million products.
The reviews are published from 1996 to 2018. Each review consists
of a discrete rating score from 1 to 5 and a specific field, including
book, fashion, etc. For downstream tasks, we predict the rating
score as a five-class classification task within the Fashion, Beauty,
and Luxury fields. We use micro F1-score as the evaluation metric.
The base GNNmodel. On the OAG and Amazon datasets, we use
the state-of-the-art heterogeneous GNN—Heterogeneous Graph
Transformer (HGT) [15]—as the base model for GPT-GNN. Further-
more, we also use other (heterogeneous) GNNs as the base model
to test our generative pre-training framework.
Implementation details. For all base models, we set the hidden
dimension as 400, the head number as 8, and the number of GNN
layers as 3. All of them are implemented using the PyTorch Geo-
metric (PyG) package [8].

We optimize the model via the AdamW optimizer [21] with the
Cosine Annealing Learning Rate Scheduler [20] with 500 epochs
and select the one with the lowest validation loss as the pre-trained
model. We set the adaptive queue size to be 256.

During downstream evaluation, we fine-tune the model using
the same optimization setting for 200 epochs as that in pre-training.
We train the model on the downstream tasks for five times and
report the mean and standard deviation of test performance.

Pre-training baselines. There exist several works that propose
unsupervised objectives over graphs, which can potentially be used
to pre-train GNNs. We thus compare the proposed GPT-GNN frame-
work with these baselines:
• GAE [16], which denotes graph auto-encoders, focuses on a
traditional link prediction task. It randomlymasks out a fixed
proportion of the edges and asks the model to reconstruct
these masked edges.
• GraphSAGE (unsp.) [12] forces connected nodes to have sim-
ilar output node embeddings. Its main difference with GAE
lies in that it does not mask out the edges during pre-training.
• Graph Infomax [37] tries to maximize the local node embed-
dings with global graph summary embeddings. Following its
setting for a large-scale graph, for each sampled subgraph,
we shuffle the graph to construct negative samples.

In addition, we also evaluate the two pre-training tasks in GPT-GNN
by using each one of them alone, that is, attribute generation—GPT-
GNN (Attr)—and edge generation—GPT-GNN (Edge).

4.2 Pre-Training and Fine-Tuning Setup
The goal of pre-training is to transfer knowledge learned from

numerous unlabeled nodes of a large graph to facilitate the down-
stream tasks with a few labels. Specifically, we first pre-train a GNN
and use the pre-trained model weights to initialize models for down-
stream tasks. We then fine-tune the models with the downstream
task specific decoder on the training (fine-tuning) set and evaluate
the performance on the test set.

Broadly, there are two different setups. The first one is to pre-
train and fine-tune on exactly the same graph. The second one is
relatively more practical, which is to pre-train on one graph and
fine-tune on unseen graphs of the same type as the pre-training
one. Specifically, we consider the following three graph transfer
settings between the pre-training and fine-tuning stages:
• Time Transfer, where we use data from different time spans
for pre-training and fine-tuning. For both OAG and Amazon,
we use data before 2014 for pre-training and data since 2014
for fine-tuning.
• Field Transfer, where we use data from different fields for
pre-training and evaluating. In OAG, we use papers in the
field of computer science (CS) for downstream fine-tuning
and use all papers in the remaining fields (e.g., Medicine) for
pre-training. In Amazon, we pre-train on products in Arts,
Crafts, and Sewing, and fine-tune on products in Fashion,
Beauty, and Luxury.
• Time + Field Transfer, where we use the graph of particular
fields before 2014 to pre-train the model and use the data
from other fields since 2014 for fine-tuning. Intuitively, this
combined transfer setting is more challenging than the trans-
fer of time or field alone. For example, we pre-train on the
OAG graph except CS field before 2014 and fine-tune on the
CS graph since 2014.

During fine-tuning, for both datasets, we choose nodes from 2014
to 2016 for training, 2017 for validation, and since 2018 for testing.
To meet the assumption that training data is usually scarce, we only
provide 10% of the labels for training (fine-tuning) by default, while
the ablation study over different data percentages is also conducted.



Downstream Dataset OAG Amazon

Evaluation Task Paper–Field Paper–Venue Author ND Fashion Beauty Luxury
No Pre-train .336±.149 .365±.122 .794±.105 .586±.074 .546±.071 .494±.067

Fi
el
d
Tr
an
sf
er

GAE .403±.114 .418±.093 .816±.084 .610±.070 .568±.066 .516±.071
GraphSAGE (unsp.) .368±.125 .401±.096 .803±.092 .597±.065 .554±.061 .509±.052
Graph Infomax .387±.112 .404±.097 .810±.084 .604±.063 .561±.063 .506±.074
GPT-GNN (Attr) .396±.118 .423±.105 .818±.086 .621±.053 .576±.056 .528±.061
GPT-GNN (Edge) .401±.109 .428±.096 .826±.093 .616±.060 .570±.059 .520±.047
GPT-GNN .407±.107 .432±.098 .831±.102 .625±.055 .577±.054 .531±.043

Ti
m
e
Tr
an
sf
er

GAE .384±.117 .412±.101 .812±.095 .603±.065 .562±.063 .510±.071
GraphSAGE (unsp.) .352±.121 .394±.105 .799±.093 .594±.067 .553±.069 .501±.064
Graph Infomax .369±.116 .398±.102 .805±.089 .599±.063 .558±.060 .503±.063
GPT-GNN (Attr) .382±.114 .414±.098 .811±.089 .614±.057 .573±.053 .522±.051
GPT-GNN (Edge) .392±.105 .421±.102 .821±.088 .608±.055 .567±.038 .513±.058
GPT-GNN .400±.108 .429±.101 .825±.093 .617±.059 .572±.059 .525±.057

Ti
m
e
+
Fi
el
d
Tr
an
sf
er GAE .371±.124 .403±.108 .806±.102 .596±.065 .554±.063 .505±.061

GraphSAGE (unsp.) .349±.130 .393±.118 .797±.097 .589±.071 .545±.068 .498±.064
Graph Infomax .360±.121 .391±.102 .800±.093 .591±.068 .550±.058 .501±.063
GPT-GNN (Attr) .364±.115 .409±.103 .809±.094 .608±.062 .569±.057 .517±.057
— (w/o node separation) .347±.128 .391±.102 .791±.108 .585±.068 .546±.062 .497±.062
GPT-GNN (Edge) .386±.116 .414±.104 .815±.105 .604±.058 .565±.057 .514±.047
— (w/o adaptive queue) .376±.121 .410±.115 .808±.104 .599±.068 .562±.065 .509±.062
GPT-GNN .393±.112 .420±.108 .818±.102 .610±.054 .572±.063 .521±.049

Table 1: Performance of different downstream tasks on OAG and Amazon by using different pre-training frameworks with
the heterogeneous graph transformer (HGT) [15] as the base model. 10% of labeled data is used for fine-tuning.

During pre-training, we randomly select a subset of the data as the
validation set.

4.3 Experimental Results
We summarize the performance of downstream tasks with dif-

ferent pre-training methods on OAG and Amazon in Table 1. As
discussed above, we setup three different transfer settings between
pre-training and fine-tuning stages: Field Transfer, Time Transfer,
and Field + Time Combined Transfer, as organized in three different
blocks in the Table.

Overall, the proposed GPT-GNN framework significantly en-
hances the performance for all downstream tasks on both datasets.
On average, GPT-GNN achieves relative performance gains of 13.3%
and 5.7% over the base model without pre-training on OAG and
Amazon, respectively. Moreover, it consistently outperforms other
pre-training frameworks, such as Graph Infomax, across different
downstream tasks for all three transfer settings on both datasets.
Different transfer settings. Observed from Table 1, the perfor-
mance gain lifted by pre-training under the field transfer is higher
than that under the time transfer, and the time + field combined
transfer is the most challenging setting as evident in the least per-
formance gain brought by pre-training. Nonetheless, under the
combined transfer, GPT-GNN still achieves 11.7% and 4.6% perfor-
mance gains on both datasets, respectively. Altogether, the results
suggest that the proposed generative pre-training strategy enables the

GNN model to capture the generic structural and semantic knowledge
of the input graph, which can be used to fine-tune on the unseen part
of the graph data.

Ablation studies on pre-training tasks. We analyze the effec-
tiveness of the two pre-training tasks in GPT-GNN—attribute gen-
eration and edge generation—by examining which of them is more
beneficial for the pre-training framework and, by extension, down-
stream tasks. In Table 1, we report the performance of GPT-GNN
by using attribute generation and edge generation alone, that is,
GPT-GNN (Attr) and GPT-GNN (Edge). On OAG, the average per-
formance gains by GPT-GNN (Attr) and GPT-GNN (Edge) are 7.4%
and 10.3%, respectively, suggesting that Edge Generation is a more
informative pre-training task than Attribute Generation in GPT-
GNN. However, we have an opposite observation for Amazon, on
which the performance improved by Attribute Generation is 5.2%
in contrast to the 4.1% improvement lifted by Edge Generation.
This suggests that the GPT-GNN framework benefits differently from
attribute and edge generations on different datasets. However, combin-
ing the two pre-training tasks together produces the best performance
on both cases.

We further compare the Edge Generation task against other
edge-based pre-training methods—GAE and GraphSage (unsp.)—in
Table 1. On OAG, the performance improvements brought by GPT-
GNN’s edge generation, GAE, and GraphSage over no pre-training
are 10.3%, 7.4%, and 4.0%, respectively. On Amazon, the gains are



Model HGT GCN GAT RGCN HAN

No Pre-train .336 .317 .308 .296 .322
GPT-GNN .407 .349 .362 .351 .384
Relative Gain 21.1% 10.1% 17.5% 18.6% 19.3%

Table 2: Compare the pre-training Gain with different GNN
architectures. Evaluate on OAG, Paper-Field Task, under
Combined Transfer setting with 10% training data.

5.2%, 3.1%, and 1.3%, respectively. From the comparisons, we have
the following observations. First, both GAE and GPT-GNN’s edge
generation offer better results than GraphSage on both datasets,
demonstrating that masking on edges is an effective strategy for
self-supervised graph representation learning. Without edge mask-
ing, the model simply retains a similar embedding for connected
nodes, as the label we would like to predict (whether two nodes
are linked) has already been encoded in the input graph structure.
Such information leakage will downgrade the edge prediction task
to a trivial problem. Second, the proposed Edge Generation task
consistently outperforms GAE. The main advantage of GPT-GNN’s
edge generation comes from that it learns to generate missing edges
autoregressively and thus can capture the dependencies between
the masked edges, which are discarded by GAE. In summary, the
results suggest that the proposed graph generation tasks can give
informative self-supervision for GNN pre-training.

Ablation studies on the base GNN. We investigate whether
the other GNN architectures can benefit from the proposed pre-
training framework. Therefore, in addition to HGT [15], we try
GCN [17], GAT [36], RGCN [28], and HAN [39] as the base model.
Specifically, we pre-train them on OAG and then use the paper-field
prediction task under the combined transfer setting with 10% of
training data for fine-tuning and testing. Model-independent hyper-
parameters, such as the hidden dimension size and optimization,
are set the same. The results are reported in in Table 2. We can
observe that 1) HGT achieves the best performance among all non
pre-trained GNN models; 2) GPT-GNN with HGT generates the
most promising results for the concerned downstream task; and 3)
more importantly, the proposed GPT-GNN pre-training framework can
enhance the downstream performance for all the GNN architectures.

Ablation studies on the node separation and adaptive queue.
Finally, we examine the effectiveness of the two design choices
of GPT-GNN, i.e., node separation and adaptive queue. The node
separation is designed for alleviating the information leakage prob-
lem for the Attribute Generation task. Without this component,
the attributes would appear in the input and thus the pre-training
method would only need to maintain the input features for output.
In other words, it cannot learn any knowledge of the input graph
that could be transferred to downstream tasks and thus affect the
results negatively. From Table 1, we can see that the attribute gener-
ation based pre-training model suffers from the removal of the node
separation component (w/o node separation), and in many cases,
its performance is even worse than the ones without pre-training.
This demonstrates the significance of this node separation design in
avoiding attribute information leakage.

Figure 3: Compare pre-training tasks with different training
data size. Evaluated by the paper–field prediction task on
OAG under the field transfer setting.

Downstream Dataset OAG (citation) Reddit

No Pre-train .281±.087 .873±.036
GAE .296±.095 .885±.039
GraphSAGE (unsp.) .287±.093 .880±.042
Graph Infomax .291±.086 .877±.034
GPT-GNN .309±.081 .896±.028

Table 3: Downstream performance on homogeneous graphs,
including the paper citation network in OAG and Reddit.

The adaptive queue is designed for alleviating the gap between
the sampled graphs and the full graph. Similarly, we conduct the
ablation study by removing it from the Edge Generation based
pre-training model and from Table 1, we witness the consistent
performance drops for all tasks—GPT-GNN (Edge) vs. (w/o adaptive
queue). This indicates that adding more negative samples by using
the adaptive queue is indeed helpful to the pre-training framework.

Training data size. In Figure 3, we examine whether the proposed
GPT-GNN method can generalize well with different training data
size during fine-tuning, i.e., from 10% to 100%. First, we can observe
that GPT-GNN and other pre-training frameworks consistently im-
prove the downstream task performance with more labeled training
data. Second, it is clear that GPT-GNN performs the best among
all pre-training tasks/frameworks. Finally, we can see that with
the pre-trained model, fine-tuning with only 10–20% of data (the
two leftmost blue circles) generates comparative performance to the
supervised learning with all 100% of training data (the rightmost
purple diamond), demonstrating the superiority of GNN pre-training,
especially when the label is scarce.

Results for homogeneous graphs. In addition to heterogeneous
graphs, we also test whether the GPT-GNN pre-training framework
can benefit downstream tasks on homogeneous graphs. Specifically,
we pre-train and fine-tune on two homogeneous graphs: 1) the
paper citation network extracted from the field of CS in OAG, on
which the topic of each paper is predicted; 2) the Reddit network
consisting of Reddit posts, on which the community of each post



is inferred. As there is only one type of nodes and edges in homo-
geneous graphs, we require one single set of edge and attribute
decoders for pre-training. HGT is used as the base pre-training
model by ignoring its heterogeneous components. The fine-tuned
results with 10% labeled data are presented in Table 3. We can
observe that the downstream tasks on both homogeneous graphs
can benefit from all pre-training frameworks, among which the
proposed GPT-GNN offers the largest performance gains.

5 CONCLUSION
In this work, we study the problem of graph neural network pre-

training. We present GPT-GNN—a generative GNN pre-training
framework. In GPT-GNN, we design the graph generation factoriza-
tion to guide the base GNN model to autoregressively reconstruct
both the attributes and structure of the input graph. Furthermore,
we propose to separate the attribute and edge generation nodes
to avoid information leakage. In addition, we introduce the adap-
tive node representation queue to mitigate the gap between the
likelihoods over the sampled graph and the full graph. The pre-
trained GNNs with fine-tuning over few labeled data can achieve
significant performance gains on various downstream tasks across
different datasets. Also, GPT-GNN is robust to different transfer
settings between pre-training and fine-tuning. Finally, we find that
fine-tuning the generative pre-trained GNN model with 10–20% of
labeled data offers comparative performance for downstream tasks
to the supervised GNN model with 100% of training data.
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A DATASET DETAILS
We mainly use Open Academic Graph (OAG) and Amazon Re-

view Recommendation Dataset (Amazon) for evaluation. Both are
widely used heterogeneous graph [30–32]. Here we introduce their
statistics, schema and how we prepare the attributes and tasks in
detail.

Open Academic Graph (OAG) [34, 38, 44] consists of five types of
nodes: ‘Paper’, ‘Author’, ‘Field’, ‘Venue’, and ‘Institute’, and 14 types
of edges between these nodes. The schema and meta relations are
illustrated in Figure 4(a). For example, the ‘Field’ nodes in the OAG
are categorized into six levels from L0 to L5, which are organized
with a hierarchical tree (We use ‘is_organized_in’ to represent this
hierarchy). Therefore, we differentiate the ‘Paper–Field’ edges in
the corresponding field levels. Besides, we differentiate the different
author orders (i.e., the first author, the last one, and others) and
venue types (i.e., journal, conference, and preprint) as well. Finally,
the ‘Self’ type corresponds to the self-loop connection, which is
widely added in GNN architectures. Despite ‘Self’ and ‘CoAuthor’
edge relationships, which are symmetric, all other edge types X
have a reverse edge type X−1.

For downstream tasks, we choose the following three tasks: the
prediction of Paper–Field (L2), Paper–Venue, and Author Disam-
biguation. In the first two tasks, we give a model a paper and want it
to predict the correct fields it belongs to or the venue it is published
at. Wemodel these three tasks as node classification problem, where
we use GNNs to get the contextual node representation of the paper
and use a softmax output layer to get its classification results. For
author disambiguation, we pick all the authors with the same name,
and the papers that link to one of these same-name authors. The
task is to conduct link prediction between papers and candidate
authors. After getting the paper and author node representations
from GNNs, we use a Neural Tensor Network to get the probability
of each author-paper pair to be linked.

For input attributes of heterogeneous graph, as we don’t assume
the attribute of each data type belongs to the same distribution, and
we are free to use the most appropriate attributes to represent each
type of node. For paper and author nodes, the node numbers are
extremely large. Therefore, traditional node embedding algorithms
are not suitable for extracting attributes for them. We, therefore,
resort to the paper titles for extracting attributes. For each paper,
we get its title text and use a pre-trained XLNet [40, 41] to get the
representation of each word in the title. We then average them
weighted by each word’s attention to get the title representation
for each paper. The initial attribute of each author is simply an av-
erage of his/her published papers’ embeddings. For field, venue and
institute nodes, the node numbers are small and we use the metap-
ath2vec model [6] to train their node embeddings by reflecting the
heterogeneous network structures.

Amazon Review Recommendation Dataset (Amazon) [23] consists
of three types of nodes, including reviews (ratings and text), users
and products, and some other meta-types of the product, including
color, size, style and quantity. The schema and meta relations are
illustrated in Figure 4(b). Compared to a general user-item bipartite
graph, this dataset have review in between, each is associated with
text information and a rating from 1 to 5. The reviews are also as-
sociated with those product meta-type descriptions. For simplicity,

we only consider these review-type link as ‘categorize_in’ type.
Thus, there are totally three types of relations in this graph.

For downstream task, we choose the rating classification for each
new review. Since the problem is a node-level multi-class classifica-
tion, we use GNNs to get the contextual node representation of the
review and use a softmax output layer to get 5-class prediction.

For input attributes of Amazon, we also use a pre-trained XLNet
to get each review embedding, and the attributes for all the other
nodes are simple an average of its associated review’s embeddings.

B OVERALL PIPELINE OF GPT-GNN
The overall pipeline of GPT-GNN is illustrated by Algorithm 1.

Given an attributed graph G, we each time sample a subgraph Ĝ
as training instance for generative pre-training. The first step is
to determine the node permutation order π . To support parallel
training, we want to conduct the forward pass for a single run and
get the representation of the whole graph, so that we can simul-
taneously calculate the loss for each node, instead of processing
each node recursively. Therefore, we remove all the edges from
nodes with higher order to those with lower order according to π ,
which means each node can only receive information from nodes
with lower order. In this way, they won’t leak the information to
the autoregressive generative objective, and thus we only need one
single round to get node embeddings of the whole graph, which
can directly be utilized to conduct generative pre-training.

Afterwards, we need to determine the edges to be masked out.
For each node, we get all its outward edges, randomly select a set of
edges to bemasked out. This corresponds to line 4. Next, we conduct
node separation and get contextualized node embeddings for the
whole graph in line 5, which will be utilized to calculate generative
loss. line 7-9. For both OAG and Amazon, the main nodes that
contain meaningful attributes are paper and review nodes, which
both have text feature as input. Thus, we only consider them for
Attribute Generation, with a 2-layer LSTM as decoder. Note that
in line 8, we prepare the negative samples by aggregating both the
unconnected nodes within this sampled graph and the previously
calculated embeddings stored in the adaptive queue Q . This can
mitigate the gap between optimizing over sampled graph with over
the whole graph. Finally, we optimize the model and update the
adaptaive queue in line 11-12. Afterwards, we can use the pre-
trained model as initialization, to fine-tune on other downstream
tasks.

C IMPLEMENTATION DETAILS AND
CONVERGENCE CURVES

We use a Tesla K80 to run both pre-training and downstream
tasks. For graph sampling, we follow the HGSampling [15, 45] to
sample subgraph over large-scale heterogeneous graph. For each
type of node, we sample 128 nodes per layer. We repeat sampling for
6 times for OAG and average sampled nodes in the sub-graph is 3561
nodes. We repeat for 8 times for Amazon, and average sampled
nodes is 1478. For each batch, we sample 32 graphs to conduct
generative pre-training. During GPU training, we conduct multi-
process sampling to prepare the pre-training data. Such CPU-GPU
cooperation can help us save the sampling time.

We here illustrate the convergence curves for pre-training and
fine-tuning. For pre-training, as illustrated in Figure 6, we show the



Figure4:TheschemaandmetarelationsofOpenAcademicGraphandAmazonReviewRecommendationDataset.
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Table4:Generatedpapertitlesamples.TheleftcolumnisgeneratedbyGPT-GNN,andtherightcolumnisthegroundtruth.
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Figure5:Fine-tuningconvergencecomparisonofGPT-GNNwithno-pretrain,underdiferenttrainingdatapercentage.

Figure6:Thepre-trainingconvergencecurveofGPT-GNN
onOAG.Ittookabout10hours(400epochs)toconverge.

pre-trainingvalidationerrorcurvewithrespecttotheepochand
time.Resultsshowthatthemodel’svalidationlosskeepdropping
insteadofjustindingatrivialsolutionveryfast.Thistosomeextent

showsthatthegenerativepre-trainingtaskishardenoughandcan
thuscanguidethemodeltoreallycapturetheintrinsicstructureof
thegraphdata.Ittookabout12hoursforGPT-GNNtoconverge.
Fordownstreamtasks,weshowtheconvergencecurveutilizingour
GPT-GNNwithno-pretrain,withdiferentdatapercentage.Asis
illustratedinFigure5,GPT-GNNcanalwaysgetamoregeneralized
modelthanno-pretrain,andismorerobusttoover-ittingsincea
goodinitializationfrompre-training.

D PAPERTITLEGENERATIONEXAMPLES

ForOAG,sinceourattributegenerationtaskisorientedonthe
papertitle,we’dliketoseehowwellourGPT-GNNcanlearnto
generatethetitle.Theresultsareshownintable4.Wecansee
thatthemodelcancapturethemainmeaningofeachpapertobe
predicted,onlybylookingatpartialneighborhoods(notethatwe
useAttributeGenerationNodeforthistask,whichreplacetheinput
attributeasasharevector).Forexample,fortheirstsentence,our
modelsuccessfullypredictthekeywordsforthispaper,including
‘personrecognition’,‘probabilistic’,etc.Thisshowsthatthegraph
itselfcontainsrichsemanticinformation,andexplainswhyapre-
trainedmodelcangeneralizewelltodownstreamtasks.
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