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Abstract— We propose a numerical implementation based on 

a Graphics Processing Unit (GPU) for the acceleration of the 

execution time of the Lattice Boltzmann Method (LBM). The 

study focuses on the application of the LBM for patient-specific 

blood flow computations, and hence, to obtain higher accuracy, 

double precision computations are employed. The LBM specific 

operations are grouped into two kernels, whereas only one of 

them uses information from neighboring nodes. Since for blood 

flow computations regularly only 1/5 or less of the nodes 

represent fluid nodes, an indirect addressing scheme is used to 

reduce the memory requirements. Three GPU cards are 

evaluated with different 3D benchmark applications (Poisseuille 

flow, lid-driven cavity flow and flow in an elbow shaped domain) 

and the best performing card is used to compute blood flow in a 

patient-specific aorta geometry with coarctation. The speed-up 

over a multi-threaded CPU code is of 19.42x. The comparison 

with a basic GPU based LBM implementation demonstrates the 

importance of the optimization activities. 

Keywords— Lattice Boltzmann Method, parallel computing, 

GPU, CUDA, coarctation of the aorta 

I.  INTRODUCTION 

In recent years, there has been considerable focus on 
computational approaches for modeling the flow of blood in 
the human cardiovascular system. When used in conjunction 
with patient-specific anatomical models extracted from medical 
images, such techniques provide important insights into the 
structure and function of the cardiovascular system [1]. 

The Lattice Boltzmann Method (LBM) has been introduced 
in the 80’s, and has developed into an alternative powerful 
numerical solver for the Navier-Stokes (NS) equations for 
modeling fluid flow. Specifically, LBM has been used 
consistently in the last years in several blood flow applications 
(e.g. coronaries [2], aneurysms [3], abdominal aorta [4]). The 
LBM is a mesoscopic particle based method, which has its 
origin in the Lattice Gas Automata. It uses a simplified kinetic 
model of the essential physics of microscopic processes, such 
that the macroscopic properties of the system are governed by a 
certain set of equations. The equation of LBM is hyperbolic, 
and can be solved explicitly and efficiently on parallel 
computers [5]. With the increasing computational power of 
Graphics Processing Units (GPU), parallel computing has 
become available at a relatively small cost. With the advent of 
CUDA (Compute Unified Device Architecture), several 
researchers have identified the potential of GPUs to accelerate 

Computational Fluid Dynamics (CFD) applications to 
unprecedented levels [6]. 

Due to the high computational requirements, there has been 
a lot of interest in exploring high performance computing 
techniques for speeding up the LBM algorithms. Efficient 
CUDA based implementations of the 3D LBM have been 
proposed previously in the literature [7-10], which were 
optimized for specific applications. Tölke et al. [10] obtained a 
speed-up of around 100x over a sequential implementation on 
the Intel Xeon CPU for the flow around a moving sphere. 
Obrecht et al. [9] studied the flow in an urban environment and 
obtained for a multi-GPU implementation a speed-up of 28x 
compared to a multi-threaded CPU based implementation. All 
these researches focused on single precision computations. 
With the introduction of the Fermi and the Kepler architecture, 
the performance of double precision computations on NVIDIA 
GPU cards has increased substantially. 

In this paper we introduce a parallel implementation of the 
LBM designed for blood flow computations. To meet the high 
accuracy requirements of blood flow applications, 
computations are performed with double precision. Three 
recently released GPUs have been considered and, to correctly 
evaluate the speed-up potential, results are compared against 
both single-core and multi-core CPU-based implementations. 
The best performing GPU card is first determined using three 
popular benchmarking applications, and then it is used for 
computing blood flow in a patient-specific aorta geometry with 
coarctation (CoA), containing the descending aorta and the 
supra-aortic branches. CoA is a congenital cardiac defect 
usually consisting of a discrete shelf-like narrowing of the 
aortic media into the lumen of the aorta, occurring in 5 to 8% 
of all patients with congenital heart disease [11]. The 
narrowing can lead to a significant pressure drop, which affects 
the health of the patient. Both the importance and the potential 
of CFD based approaches for non-invasive diagnosis of CoA 
patients have been recently emphasized in a challenge [12], 
where the LBM produced good results. 

The paper is organized as follows. In section two we first 
briefly introduce the LBM used herein. Then we introduce the 
numerical implementation, focusing on its optimized 
parallelization on a GPU. Section three first presents detailed 
results for the speed-up obtained with different GPUs for the 
benchmarking applications, and then it displays the results 
obtained with the best performing GPU card for the patient 
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Fig. 1. The D3Q15 lattice structure, first number in the notation is the 

space dimension, while the second one is the lattice links number. 

specific CoA geometry. Finally, in section four, we draw the 
conclusions. 

II. METHODS 

A. The Lattice Boltzmann Method 

For studying the parallel implementation of the LBM, we 
considered the single relaxation time version of the equation, 
based on the Bhatnagar-Gross-Krook (BGK) approximation, 
which assumes that the macroscopic quantities of the fluid are 
not influenced by most of the molecular collisions:  
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where fi represents the probability distribution function along 
an axis ci, τ is a relaxation factor related to the fluid viscosity, x 
represents the position and t is the time. The discretization in 
space and time is performed with finite difference formulas. 
This is usually done in two steps:  
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The first equation is known as the collision step, while the 
second one represents the streaming step. f

eq
 is called the 

equilibrium distribution and is given by the following formula: 
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where ωi is a weighting scalar, cs is the lattice speed of sound, 
ck is the direction vector, and u is the fluid velocity. ρ(x, t) is a 
scalar field, commonly called density, which is related to the 
macroscopic fluid pressure as follows: 
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Once all fi have been computed, the macroscopic quantities 
(velocity and density) can be determined: 
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The computational domain is similar to a regular grid used 
for finite difference algorithms. For a more detailed description 
of the Boltzmann equation and the collision operator we refer 
the reader to [5]. The current study focuses on 3D flow 
domains: we used the D3Q15 lattice structure, displayed in fig. 
1 for a single grid node. The weighting factors are: ωi = 16/72 
for i = 0, ωi = 8/72 for i = 1…6, and ωi = 1/72 for i = 7…14. 

The boundary conditions (inlet, outlet and wall) are crucial 
for any fluid flow computation. For the LBM, the macroscopic 
quantities (flow rate/pressure) can not be directly imposed at 

inlet and outlet. Instead, the known values of the macroscopic 
quantities are used for computing the unknown distribution 
functions near the boundary. For the inlet and outlet of the 
domain we used Zou-He [13] boundary conditions with known 
velocity. For the outlet we used homogeneous Neumann 
boundary condition. The arterial geometry has complex 
boundaries in patient-specific blood flow computations, and 
hence, for improving the accuracy of the results, we used 
advanced bounce-back boundary conditions based on 
interpolations [14]. The solid walls are defined as an isosurface 
of a scalar field, commonly known as the level-set function.  

B. GPU based parallel implementation of the Lattice 

Boltzmann Method 

In the following we focus on the GPU based parallelization 
of the above described LBM. The GPU is viewed as a compute 
device which is able to run a very high number of threads in 
parallel inside a kernel (a function, written in C language, 
which is executed on the GPU and launched by the CPU). The 
GPU contains several streaming multiprocessors, each of them 
containing several cores. The GPU contains a certain amount 
of global memory to/from which the CPU thread can 
write/read, and which is accessible by all multiprocessors. 
Furthermore, each multiprocessor also contains shared memory 
and registers which are split between the thread blocks and the 
threads, which run on the multiprocessor, respectively. 

The LBM is both computationally expensive and memory 
demanding [15], but its explicit nature and the data locality (the 
computations for a single grid node require only the values of 
the neighboring nodes) make it ideal for parallel 
implementations. Each node can be computed at each time step 
independently from other nodes. A first important difference 
between the CPU and the GPU implementation of the LBM is 
the memory arrangement. Regularly, on the CPU, a data 
structure containing all the required floating-point values for a 
grid node is defined, and then an array of this data structure is 
created (the Array Of Structures approach – AOS). This 
approach is not a viable solution on the GPU because the 
global memory accesses would not be coalesced and would 
drastically decrease the performance [16]. Instead of AOS, the 
Structure Of Arrays (SOA) approach has been considered [15]: 
a different array is allocated for each variable of a node, 
leading to a total of 35 arrays, 15 for the density functions, 
another 15 for swapping the new density functions with the old 
ones after the streaming step, three for the velocity, one for the 



 

Fig. 2. Memory access patterns: Array of Structures (top), Structure of 
Arrays (bottom). 

 

Fig. 3. LBM workflow. 

density and one for the level-set function. The memory access 
patterns for the AOS and SOA approaches are displayed in fig. 
2 for the three velocity components. The workflow of the 
GPU-based LBM implementation is displayed in fig. 3. All 
computations are performed on the GPU. Therefore, host-
device memory copy operations are only required when storing 
intermediate (transient or unsteady flows) or final results 
(steady flows). 

Two different kernels have been defined and are called at 
each iteration. The operations in (2) – (6) have been associated 
to the two kernels based on the necessity of accessing 
information from the neighboring nodes. Kernel 1 first 
computes the macroscopic quantities (velocity and density), 
based on (5) and (6), by iterating through the 15 probability 
distribution functions. Then it applies the Zou-He boundary 
conditions at the inlet of the domain and it performs the 
collision step: first the equilibrium distribution function is 
computed using (3) and then the new probability distribution 
functions are determined based on (2). The second kernel 
focuses on the streaming step, the interpolated bounce-back 
boundary condition and the outlet boundary condition. All 
these operations require information from the neighboring 
nodes. The operations of the second kernel are more complex 
since the grid nodes located at the boundary require a different 
treatment than the other nodes. This leads to different code 
execution paths and therefore to reduced parallelism. However, 
since relatively few grid nodes reside next to the boundary, this 
aspect is not crucial for the overall performance. The workflow 
of the streaming step is displayed in fig. 4 (for simplicity, the 
treatment of the nodes of the outlet boundary is not displayed). 
One can see that, if a node is surrounded in opposite directions 
by solid nodes, the simple bounce back rule is applied instead 
of the interpolated bounce back rule, which would lead to 
numerical divergence. This case is encountered relatively often 
in geometries with complex boundaries, especially around 
sharp edges. For both kernels, one CUDA thread is mapped to 
one node and since all arrays are one-dimensional, also the 
execution configuration of the kernels is one-dimensional, both 
at block and at grid level.  

Due to the high accuracy requirements of blood flow 
computations, and unlike previous researches, all computations 
were performed with double precision. Because the arrays and 
the execution configuration are one-dimensional, it is necessary 

to map the three-dimensional coordinates inside the grid to a 
global index used to access the data from the arrays: 
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where i, j and k are the node coordinates in the 3D LBM grid. 
Note that these values are approximated with the floor 
function, Nx, Ny and Nz are the grid sizes in each direction and 
ig is the global index of the node in the one-dimensional array. 
Equations (7) and (8) are used inside the second kernel for 
finding the global index of the neighbouring nodes. 

The LBM is usually applied for a rectangular grid. For 
blood flow computations, the rectangular grid is chosen so as 
to include the arterial geometry of interest. In this case though, 
the fluid nodes represent only 1/5 or less of the total number of 
nodes. Hence, if the nature of the nodes (fluid/solid) is not 
taken into account, around 80% of the allocated memory is not 
used and around 80% of the threads do not perform any 
computations. To avoid this problem, we used an indirect 
addressing scheme, displayed in fig. 5. Memory is only 



 

Fig. 5. Indirect addressing. 

 

Fig. 4. The workflow of the second kernel in fig. 3. 

allocated for the fluid nodes and an additional array (called 
fluid index array) is introduced for mapping the global index 
determined with (7) to the fluid nodes arrays (negative values 
in the fluid index array correspond to solid nodes). The content 
of the fluid index array is determined in the preprocessing stage 
on the CPU and is required only during the streaming step. 
Since for the operations performed inside the first kernel in fig. 
3 no information from the neighboring nodes is required, the 
execution configuration of the first kernel is set up so as to 
generate a number of threads equal to the number of fluid 
nodes. For the second kernel on the other side, the number of 
threads in the execution configuration is set equal to the total 
number of nodes, to avoid the necessity of a search operation in 
the fluid index array. 

III. RESULTS 

To compare the performance of the CPU based 
implementation of the LBM with the GPU based 
implementation for double precision computations, we 
considered three different NVIDIA GPU cards: GeForce GTX 
460, GeForce GTX 650 and GeForce GTX 680 (the first one is 
based on the Fermi architecture, while the other two are based 
on the Kepler architecture). The CPU based implementation 
was run on an eight-core i7 processor using both single and 
multi-threaded code. Parallelization of the CPU code was 
performed using OpenMP.  

Three different 3D benchmark applications were first 
considered for determining the best performing GPU card: 
Poisseuille flow, lid-driven cavity flow and flow in an elbow 
shaped domain. Different grid resolutions were considered and 
table I displays the execution times for all test cases, 
corresponding to one computation step. 

The performance improvements are significant and 
demonstrate that a GPU based implementation of the LBM is 
superior to a multi-core CPU based implementation. The best 
performance is obtained for the GTX 680 (see table I). The 
speed-up is computed based on the multi-threaded CPU code. 
The speed-up compared to the single-threaded CPU code varies 
between 150x and 290x. Note that the performance of the GTX 
650 card is on average around 2x lower than of the GTX 460. 
This confirms the concerns raised for the first GPUs of the 
Kepler architecture, the performance of which are in fact lower 
than for the previously released cards of the 400 and 500 
GeForce series (with the advantage of lower power 
consumption). 

Once the GTX680 was determined as best performing GPU 
card for double-precision 3D computations, we used it to 
compute blood flow in a patient-specific aorta model with 
coarctation, which was recently used in a CFD challenge [12]. 
To obtain the correspondence between the lattice units and the 
physical units, we used the method described in [17]. The 
computations were initialized with the equilibrium distribution 
function, and for the current research activity we focused on 
steady-state computations, i.e. we imposed the average value of 
the flow rate profile specified in the challenge. The grid size 
was set to 92x156x428 (6142656 nodes), of which only 
518969 represented fluid nodes (less than 10%). The total 
number of computation steps to obtain convergence strongly 
depends on the grid resolution, i.e. the time needed by the 
pressure wave to propagate from one end to the other, an aspect 
which is given by the lattice speed of sound. Fig. 6 displays the 
computation results obtained after 10000 time steps (the 
converged solution). Following the idea in [18], namely that 
lower occupancy leads to better performance, we tested 
different execution configurations. The execution times 
obtained for different thread block configurations, for the entire 
computation, are displayed in table II alongside the execution 
time for the multi-threaded CPU code. As has been reported 
previously [15], execution configurations with fewer threads 
per block lead to better performance. The best performing 
execution configuration is with 128 threads per block and the 
speed-up compared to the execution time of the multi-threaded 
CPU implementation is of 19.42x. 



TABLE I. EXECUTION TIMES OF BENCHMARKING APPLICATIONS FOR ONE COMPUTATION STEP FOR DIFFERENT GRID CONFIGURATIONS. 

Benchmark 

case 
Grid resolution 

Single-

threaded 

CPU code 

[ms] 

Multi-

threaded 

CPU code 

[ms] 

GeForce GTX 680 GeForce GTX 650 GeForce GTX 460 

Time [ms] Speed-Up Time [ms] Speed-Up Time [ms] Speed-Up 

Poisseuille 

flow 

100x100x400 3924.8 608.38 13.7 44.41 45.30 13.43 21.00 28.97 

50x50x200 484.3 81.39 1.9 42.84 6.00 13.57 3.00 27.13 

25x25x100 61.01 11.24 0.30 37.47 0.80 14.05 0.50 22.48 

Lid-driven 
cavity flow 

100x100x100 977.94 152.48 6.40 23.83 21.40 7.13 9.20 16.57 

50x50x50 120.81 20.34 0.80 25.43 2.70 7.53 1.20 16.95 

25x25x25 15.09 3.35 0.10 33.50 0.40 8.38 0.30 11.17 

Elbow 
200x200x50 1956.12 91.02 2.50 36.41 8.60 10.58 4.40 20.69 

100x100x50 242.46 12.0 0.90 13.33 2.80 4.29 0.70 17.14

 

Fig. 6. Computation result (streamlines) for the patient-specific 
coarctation geometry. 

TABLE II. COMPARISON OF EXECUTION TIMES FOR DIFFERENT 

EXECUTION CONFIGURATIONS 

Configuration Execution time [s] 

GPU - 64 threads/block 37.160 

GPU - 128 threads/block 34.654 

GPU - 256 threads/block 35.743 

GPU - 512 threads/block 35.825 

GPU - 1024 threads/block 39.989 

CPU - multithreaded 673.028 

 

Fig. 7. Comparison of basic vs optimized LBM GPU implementation. 

The implementation and optimization aspects described in 
the previous section were designed specifically for blood flow 
computations. To evaluate the impact of these activities we 
also performed the flow computations in the same model with a 
basic version of the LBM GPU implementation. The basic 
LBM GPU version did not use indirect addressing (memory 

was allocated for all nodes, including the solid nodes), used 
four kernels for the operations of the LBM at each iteration, 
and executed all kernels with a total number of threads equal to 
the total number of nodes. The results are displayed in fig. 7 for 
different thread block configurations and show that the 
optimization activities are crucial for the speed-up (with the 
basic LBM GPU version, the speed-up is of only 4.41x 
compared to the multi-threaded CPU code). The speed-up of 
the optimized LBM GPU version compared to the basic LBM 
GPU version is of 4.40x. 

IV. DISCUSSION AND CONCLUSIONS 

In this paper, we introduced a GPU-based parallel 
implementation of the Lattice Boltzmann Method, optimized 
for patient-specific blood flow computations. Double precision 
computations were employed for higher accuracy and three 
different NVIDIA GPU cards were considered. Based on three 
3D benchmarking applications, the GTX680 card was 
determined as best performing GPU and was subsequently used 
to compute blood flow in a aorta geometry with coarctation. 

To our knowledge, this is the first work to evaluate the 
potential of Kepler architecture GPU cards for accelerating the 
execution of the LBM. Moreover, it is the first paper to 
consider double precision computations for higher accuracy. A 
detailed comparison with previous implementations [7-10] is 
difficult to perform since generally the implementations are 
optimized for specific activities and different GPUs have been 
used in different studies. However, the overall results obtained 
herein are remarkable: the speed-up over a single-threaded 
CPU implementation varies between 150x and 290x, whereas 
previously a speed-up of 100x was reported [10]. The speed-up 
of the CoA geometry blood flow computation was of 19.42x 



compared to a multi-threaded CPU implementation, whereas 
previously a speed-up of 28x was reported, but for a multi-
GPU and not a single GPU implementation [9]. 

The optimization activities were designed for patient-
specific blood flow computations in general (not in particular 
for the coarctation geometry), where the ratio of fluid nodes to 
total number of nodes is usually around 1/5 or less. Hence we 
used an indirect adressing scheme and allocated memory only 
for the fluid nodes. Furthermore, the operations were grouped 
into two kernels: the first one performs operations for which 
information from neighboring nodes is not required, while the 
second one uses information from neighboring nodes. This way 
the number of kernels is reduced, and it was possible to use an 
execution configuration with reduced number of threads for the 
operations for which information from the neighboring nodes is 
not required. As proposed in the CFD challenge [12], we only 
considered rigid wall computations. If elastic arterial walls are 
considered, then the fluid index array in fig. 5 has to be 
recomputed at each time step since the classification of nodes 
into fluid and solid nodes changes over time. 

All LBM based results reported for [12] were obtained for 
CPU based implementations. Although the LBM is faster than 
the classic CFD approach, based on the Navier-Stokes 
equations, the acceleration of the execution time remains a 
crucial task for several reasons. First of all, when blood flow is 
modelled in patient-specific geometries in a clinical setting, 
results are required in a timely manner not only to potentially 
treat the patient faster, but also to perform computations for 
more patients in a certain amount of time. Furthermore, when 
performing patient-specific computations, it is necessary to 
match certain patient-specific characteristics, like pressure or 
flow rates. Hence, the parameters of the model need be tuned, 
and the computation needs to be run repeatedly for the same 
geometry, thus increasing the total execution time for a single 
patient [19]. 

Several future work activities have been identified. From a 
computational point of view, the global memory accesses of 
the second kernel can be further optimized, and a multi-GPU 
based implementation will be considered for further decreasing 
the execution time. From a modeling point of view, for more 
severe coarctations than the one displayed in fig. 6, the 
Reynolds number increases considerably and a Smagorinsky 
sub-grid model needs to be employed [9]. 
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