
GPU Accelerated Blood Flow Computation using the

Lattice Boltzmann Method

Cosmin Niţă, Lucian Mihai Itu, Constantin Suciu

Department of Automation

Transilvania University of Braşov

Braşov, Romania

Constantin Suciu

Corporate Technology

Siemens

Braşov, Romania

Abstract— We propose a numerical implementation based on

a Graphics Processing Unit (GPU) for the acceleration of the

execution time of the Lattice Boltzmann Method (LBM). The

study focuses on the application of the LBM for patient-specific

blood flow computations, and hence, to obtain higher accuracy,

double precision computations are employed. The LBM specific

operations are grouped into two kernels, whereas only one of

them uses information from neighboring nodes. Since for blood

flow computations regularly only 1/5 or less of the nodes

represent fluid nodes, an indirect addressing scheme is used to

reduce the memory requirements. Three GPU cards are

evaluated with different 3D benchmark applications (Poisseuille

flow, lid-driven cavity flow and flow in an elbow shaped domain)

and the best performing card is used to compute blood flow in a

patient-specific aorta geometry with coarctation. The speed-up

over a multi-threaded CPU code is of 19.42x. The comparison

with a basic GPU based LBM implementation demonstrates the

importance of the optimization activities.

Keywords— Lattice Boltzmann Method, parallel computing,

GPU, CUDA, coarctation of the aorta

I. INTRODUCTION

In recent years, there has been considerable focus on
computational approaches for modeling the flow of blood in
the human cardiovascular system. When used in conjunction
with patient-specific anatomical models extracted from medical
images, such techniques provide important insights into the
structure and function of the cardiovascular system [1].

The Lattice Boltzmann Method (LBM) has been introduced
in the 80’s, and has developed into an alternative powerful
numerical solver for the Navier-Stokes (NS) equations for
modeling fluid flow. Specifically, LBM has been used
consistently in the last years in several blood flow applications
(e.g. coronaries [2], aneurysms [3], abdominal aorta [4]). The
LBM is a mesoscopic particle based method, which has its
origin in the Lattice Gas Automata. It uses a simplified kinetic
model of the essential physics of microscopic processes, such
that the macroscopic properties of the system are governed by a
certain set of equations. The equation of LBM is hyperbolic,
and can be solved explicitly and efficiently on parallel
computers [5]. With the increasing computational power of
Graphics Processing Units (GPU), parallel computing has
become available at a relatively small cost. With the advent of
CUDA (Compute Unified Device Architecture), several
researchers have identified the potential of GPUs to accelerate

Computational Fluid Dynamics (CFD) applications to
unprecedented levels [6].

Due to the high computational requirements, there has been
a lot of interest in exploring high performance computing
techniques for speeding up the LBM algorithms. Efficient
CUDA based implementations of the 3D LBM have been
proposed previously in the literature [7-10], which were
optimized for specific applications. Tölke et al. [10] obtained a
speed-up of around 100x over a sequential implementation on
the Intel Xeon CPU for the flow around a moving sphere.
Obrecht et al. [9] studied the flow in an urban environment and
obtained for a multi-GPU implementation a speed-up of 28x
compared to a multi-threaded CPU based implementation. All
these researches focused on single precision computations.
With the introduction of the Fermi and the Kepler architecture,
the performance of double precision computations on NVIDIA
GPU cards has increased substantially.

In this paper we introduce a parallel implementation of the
LBM designed for blood flow computations. To meet the high
accuracy requirements of blood flow applications,
computations are performed with double precision. Three
recently released GPUs have been considered and, to correctly
evaluate the speed-up potential, results are compared against
both single-core and multi-core CPU-based implementations.
The best performing GPU card is first determined using three
popular benchmarking applications, and then it is used for
computing blood flow in a patient-specific aorta geometry with
coarctation (CoA), containing the descending aorta and the
supra-aortic branches. CoA is a congenital cardiac defect
usually consisting of a discrete shelf-like narrowing of the
aortic media into the lumen of the aorta, occurring in 5 to 8%
of all patients with congenital heart disease [11]. The
narrowing can lead to a significant pressure drop, which affects
the health of the patient. Both the importance and the potential
of CFD based approaches for non-invasive diagnosis of CoA
patients have been recently emphasized in a challenge [12],
where the LBM produced good results.

The paper is organized as follows. In section two we first
briefly introduce the LBM used herein. Then we introduce the
numerical implementation, focusing on its optimized
parallelization on a GPU. Section three first presents detailed
results for the speed-up obtained with different GPUs for the
benchmarking applications, and then it displays the results
obtained with the best performing GPU card for the patient

Ka
Typewritten Text
978-1-4799-1365-7/13/$31.00 ©2013 IEEE

Fig. 1. The D3Q15 lattice structure, first number in the notation is the

space dimension, while the second one is the lattice links number.

specific CoA geometry. Finally, in section four, we draw the
conclusions.

II. METHODS

A. The Lattice Boltzmann Method

For studying the parallel implementation of the LBM, we
considered the single relaxation time version of the equation,
based on the Bhatnagar-Gross-Krook (BGK) approximation,
which assumes that the macroscopic quantities of the fluid are
not influenced by most of the molecular collisions:

()

() () ()()tftftf
t

tf
i

eq
ii

i ,,
τ
1

,
,

xxxc
x

−=∇+
∂

∂
, (1)

where fi represents the probability distribution function along
an axis ci, τ is a relaxation factor related to the fluid viscosity, x
represents the position and t is the time. The discretization in
space and time is performed with finite difference formulas.
This is usually done in two steps:

)),,(),((
τ
Δ

),()Δ,(tftf
t

tfttf i
eq

iii xxxx −+=+ (2a)

and

)Δ,()Δ,Δ(ttftttf iii +=++ xcx . (2b)

The first equation is known as the collision step, while the
second one represents the streaming step. f

eq
 is called the

equilibrium distribution and is given by the following formula:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−++=

2

2

2

2

2

1

2

1
1),(ρω

ss

k

s

k
i

eq

ccc
tf

uucuc
x , (3)

where ωi is a weighting scalar, cs is the lattice speed of sound,
ck is the direction vector, and u is the fluid velocity. ρ(x, t) is a
scalar field, commonly called density, which is related to the
macroscopic fluid pressure as follows:

 () ()
3

,ρ
,

t
tp

x
x = . (4)

Once all fi have been computed, the macroscopic quantities
(velocity and density) can be determined:

() ∑
=

=
n

i

ii tf
t

tx

0

),(
),(ρ

1
, xc

x
u , (5)

∑
=

=
n

i

i tft

0

),(),(ρ xx . (6)

The computational domain is similar to a regular grid used
for finite difference algorithms. For a more detailed description
of the Boltzmann equation and the collision operator we refer
the reader to [5]. The current study focuses on 3D flow
domains: we used the D3Q15 lattice structure, displayed in fig.
1 for a single grid node. The weighting factors are: ωi = 16/72
for i = 0, ωi = 8/72 for i = 1…6, and ωi = 1/72 for i = 7…14.

The boundary conditions (inlet, outlet and wall) are crucial
for any fluid flow computation. For the LBM, the macroscopic
quantities (flow rate/pressure) can not be directly imposed at

inlet and outlet. Instead, the known values of the macroscopic
quantities are used for computing the unknown distribution
functions near the boundary. For the inlet and outlet of the
domain we used Zou-He [13] boundary conditions with known
velocity. For the outlet we used homogeneous Neumann
boundary condition. The arterial geometry has complex
boundaries in patient-specific blood flow computations, and
hence, for improving the accuracy of the results, we used
advanced bounce-back boundary conditions based on
interpolations [14]. The solid walls are defined as an isosurface
of a scalar field, commonly known as the level-set function.

B. GPU based parallel implementation of the Lattice

Boltzmann Method

In the following we focus on the GPU based parallelization
of the above described LBM. The GPU is viewed as a compute
device which is able to run a very high number of threads in
parallel inside a kernel (a function, written in C language,
which is executed on the GPU and launched by the CPU). The
GPU contains several streaming multiprocessors, each of them
containing several cores. The GPU contains a certain amount
of global memory to/from which the CPU thread can
write/read, and which is accessible by all multiprocessors.
Furthermore, each multiprocessor also contains shared memory
and registers which are split between the thread blocks and the
threads, which run on the multiprocessor, respectively.

The LBM is both computationally expensive and memory
demanding [15], but its explicit nature and the data locality (the
computations for a single grid node require only the values of
the neighboring nodes) make it ideal for parallel
implementations. Each node can be computed at each time step
independently from other nodes. A first important difference
between the CPU and the GPU implementation of the LBM is
the memory arrangement. Regularly, on the CPU, a data
structure containing all the required floating-point values for a
grid node is defined, and then an array of this data structure is
created (the Array Of Structures approach – AOS). This
approach is not a viable solution on the GPU because the
global memory accesses would not be coalesced and would
drastically decrease the performance [16]. Instead of AOS, the
Structure Of Arrays (SOA) approach has been considered [15]:
a different array is allocated for each variable of a node,
leading to a total of 35 arrays, 15 for the density functions,
another 15 for swapping the new density functions with the old
ones after the streaming step, three for the velocity, one for the

Fig. 2. Memory access patterns: Array of Structures (top), Structure of
Arrays (bottom).

Fig. 3. LBM workflow.

density and one for the level-set function. The memory access
patterns for the AOS and SOA approaches are displayed in fig.
2 for the three velocity components. The workflow of the
GPU-based LBM implementation is displayed in fig. 3. All
computations are performed on the GPU. Therefore, host-
device memory copy operations are only required when storing
intermediate (transient or unsteady flows) or final results
(steady flows).

Two different kernels have been defined and are called at
each iteration. The operations in (2) – (6) have been associated
to the two kernels based on the necessity of accessing
information from the neighboring nodes. Kernel 1 first
computes the macroscopic quantities (velocity and density),
based on (5) and (6), by iterating through the 15 probability
distribution functions. Then it applies the Zou-He boundary
conditions at the inlet of the domain and it performs the
collision step: first the equilibrium distribution function is
computed using (3) and then the new probability distribution
functions are determined based on (2). The second kernel
focuses on the streaming step, the interpolated bounce-back
boundary condition and the outlet boundary condition. All
these operations require information from the neighboring
nodes. The operations of the second kernel are more complex
since the grid nodes located at the boundary require a different
treatment than the other nodes. This leads to different code
execution paths and therefore to reduced parallelism. However,
since relatively few grid nodes reside next to the boundary, this
aspect is not crucial for the overall performance. The workflow
of the streaming step is displayed in fig. 4 (for simplicity, the
treatment of the nodes of the outlet boundary is not displayed).
One can see that, if a node is surrounded in opposite directions
by solid nodes, the simple bounce back rule is applied instead
of the interpolated bounce back rule, which would lead to
numerical divergence. This case is encountered relatively often
in geometries with complex boundaries, especially around
sharp edges. For both kernels, one CUDA thread is mapped to
one node and since all arrays are one-dimensional, also the
execution configuration of the kernels is one-dimensional, both
at block and at grid level.

Due to the high accuracy requirements of blood flow
computations, and unlike previous researches, all computations
were performed with double precision. Because the arrays and
the execution configuration are one-dimensional, it is necessary

to map the three-dimensional coordinates inside the grid to a
global index used to access the data from the arrays:

 kNjNNii zzyg +⋅+⋅= . (7)

.

,

,

zzyg

z

zyg

zy

g

NjNNiik

N

NNii
j

NN

i
i

⋅−⋅−=

⋅−
=

=

 (8)

where i, j and k are the node coordinates in the 3D LBM grid.
Note that these values are approximated with the floor
function, Nx, Ny and Nz are the grid sizes in each direction and
ig is the global index of the node in the one-dimensional array.
Equations (7) and (8) are used inside the second kernel for
finding the global index of the neighbouring nodes.

The LBM is usually applied for a rectangular grid. For
blood flow computations, the rectangular grid is chosen so as
to include the arterial geometry of interest. In this case though,
the fluid nodes represent only 1/5 or less of the total number of
nodes. Hence, if the nature of the nodes (fluid/solid) is not
taken into account, around 80% of the allocated memory is not
used and around 80% of the threads do not perform any
computations. To avoid this problem, we used an indirect
addressing scheme, displayed in fig. 5. Memory is only

Fig. 5. Indirect addressing.

Fig. 4. The workflow of the second kernel in fig. 3.

allocated for the fluid nodes and an additional array (called
fluid index array) is introduced for mapping the global index
determined with (7) to the fluid nodes arrays (negative values
in the fluid index array correspond to solid nodes). The content
of the fluid index array is determined in the preprocessing stage
on the CPU and is required only during the streaming step.
Since for the operations performed inside the first kernel in fig.
3 no information from the neighboring nodes is required, the
execution configuration of the first kernel is set up so as to
generate a number of threads equal to the number of fluid
nodes. For the second kernel on the other side, the number of
threads in the execution configuration is set equal to the total
number of nodes, to avoid the necessity of a search operation in
the fluid index array.

III. RESULTS

To compare the performance of the CPU based
implementation of the LBM with the GPU based
implementation for double precision computations, we
considered three different NVIDIA GPU cards: GeForce GTX
460, GeForce GTX 650 and GeForce GTX 680 (the first one is
based on the Fermi architecture, while the other two are based
on the Kepler architecture). The CPU based implementation
was run on an eight-core i7 processor using both single and
multi-threaded code. Parallelization of the CPU code was
performed using OpenMP.

Three different 3D benchmark applications were first
considered for determining the best performing GPU card:
Poisseuille flow, lid-driven cavity flow and flow in an elbow
shaped domain. Different grid resolutions were considered and
table I displays the execution times for all test cases,
corresponding to one computation step.

The performance improvements are significant and
demonstrate that a GPU based implementation of the LBM is
superior to a multi-core CPU based implementation. The best
performance is obtained for the GTX 680 (see table I). The
speed-up is computed based on the multi-threaded CPU code.
The speed-up compared to the single-threaded CPU code varies
between 150x and 290x. Note that the performance of the GTX
650 card is on average around 2x lower than of the GTX 460.
This confirms the concerns raised for the first GPUs of the
Kepler architecture, the performance of which are in fact lower
than for the previously released cards of the 400 and 500
GeForce series (with the advantage of lower power
consumption).

Once the GTX680 was determined as best performing GPU
card for double-precision 3D computations, we used it to
compute blood flow in a patient-specific aorta model with
coarctation, which was recently used in a CFD challenge [12].
To obtain the correspondence between the lattice units and the
physical units, we used the method described in [17]. The
computations were initialized with the equilibrium distribution
function, and for the current research activity we focused on
steady-state computations, i.e. we imposed the average value of
the flow rate profile specified in the challenge. The grid size
was set to 92x156x428 (6142656 nodes), of which only
518969 represented fluid nodes (less than 10%). The total
number of computation steps to obtain convergence strongly
depends on the grid resolution, i.e. the time needed by the
pressure wave to propagate from one end to the other, an aspect
which is given by the lattice speed of sound. Fig. 6 displays the
computation results obtained after 10000 time steps (the
converged solution). Following the idea in [18], namely that
lower occupancy leads to better performance, we tested
different execution configurations. The execution times
obtained for different thread block configurations, for the entire
computation, are displayed in table II alongside the execution
time for the multi-threaded CPU code. As has been reported
previously [15], execution configurations with fewer threads
per block lead to better performance. The best performing
execution configuration is with 128 threads per block and the
speed-up compared to the execution time of the multi-threaded
CPU implementation is of 19.42x.

TABLE I. EXECUTION TIMES OF BENCHMARKING APPLICATIONS FOR ONE COMPUTATION STEP FOR DIFFERENT GRID CONFIGURATIONS.

Benchmark

case
Grid resolution

Single-

threaded

CPU code

[ms]

Multi-

threaded

CPU code

[ms]

GeForce GTX 680 GeForce GTX 650 GeForce GTX 460

Time [ms] Speed-Up Time [ms] Speed-Up Time [ms] Speed-Up

Poisseuille

flow

100x100x400 3924.8 608.38 13.7 44.41 45.30 13.43 21.00 28.97

50x50x200 484.3 81.39 1.9 42.84 6.00 13.57 3.00 27.13

25x25x100 61.01 11.24 0.30 37.47 0.80 14.05 0.50 22.48

Lid-driven
cavity flow

100x100x100 977.94 152.48 6.40 23.83 21.40 7.13 9.20 16.57

50x50x50 120.81 20.34 0.80 25.43 2.70 7.53 1.20 16.95

25x25x25 15.09 3.35 0.10 33.50 0.40 8.38 0.30 11.17

Elbow
200x200x50 1956.12 91.02 2.50 36.41 8.60 10.58 4.40 20.69

100x100x50 242.46 12.0 0.90 13.33 2.80 4.29 0.70 17.14

Fig. 6. Computation result (streamlines) for the patient-specific
coarctation geometry.

TABLE II. COMPARISON OF EXECUTION TIMES FOR DIFFERENT

EXECUTION CONFIGURATIONS

Configuration Execution time [s]

GPU - 64 threads/block 37.160

GPU - 128 threads/block 34.654

GPU - 256 threads/block 35.743

GPU - 512 threads/block 35.825

GPU - 1024 threads/block 39.989

CPU - multithreaded 673.028

Fig. 7. Comparison of basic vs optimized LBM GPU implementation.

The implementation and optimization aspects described in
the previous section were designed specifically for blood flow
computations. To evaluate the impact of these activities we
also performed the flow computations in the same model with a
basic version of the LBM GPU implementation. The basic
LBM GPU version did not use indirect addressing (memory

was allocated for all nodes, including the solid nodes), used
four kernels for the operations of the LBM at each iteration,
and executed all kernels with a total number of threads equal to
the total number of nodes. The results are displayed in fig. 7 for
different thread block configurations and show that the
optimization activities are crucial for the speed-up (with the
basic LBM GPU version, the speed-up is of only 4.41x
compared to the multi-threaded CPU code). The speed-up of
the optimized LBM GPU version compared to the basic LBM
GPU version is of 4.40x.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we introduced a GPU-based parallel
implementation of the Lattice Boltzmann Method, optimized
for patient-specific blood flow computations. Double precision
computations were employed for higher accuracy and three
different NVIDIA GPU cards were considered. Based on three
3D benchmarking applications, the GTX680 card was
determined as best performing GPU and was subsequently used
to compute blood flow in a aorta geometry with coarctation.

To our knowledge, this is the first work to evaluate the
potential of Kepler architecture GPU cards for accelerating the
execution of the LBM. Moreover, it is the first paper to
consider double precision computations for higher accuracy. A
detailed comparison with previous implementations [7-10] is
difficult to perform since generally the implementations are
optimized for specific activities and different GPUs have been
used in different studies. However, the overall results obtained
herein are remarkable: the speed-up over a single-threaded
CPU implementation varies between 150x and 290x, whereas
previously a speed-up of 100x was reported [10]. The speed-up
of the CoA geometry blood flow computation was of 19.42x

compared to a multi-threaded CPU implementation, whereas
previously a speed-up of 28x was reported, but for a multi-
GPU and not a single GPU implementation [9].

The optimization activities were designed for patient-
specific blood flow computations in general (not in particular
for the coarctation geometry), where the ratio of fluid nodes to
total number of nodes is usually around 1/5 or less. Hence we
used an indirect adressing scheme and allocated memory only
for the fluid nodes. Furthermore, the operations were grouped
into two kernels: the first one performs operations for which
information from neighboring nodes is not required, while the
second one uses information from neighboring nodes. This way
the number of kernels is reduced, and it was possible to use an
execution configuration with reduced number of threads for the
operations for which information from the neighboring nodes is
not required. As proposed in the CFD challenge [12], we only
considered rigid wall computations. If elastic arterial walls are
considered, then the fluid index array in fig. 5 has to be
recomputed at each time step since the classification of nodes
into fluid and solid nodes changes over time.

All LBM based results reported for [12] were obtained for
CPU based implementations. Although the LBM is faster than
the classic CFD approach, based on the Navier-Stokes
equations, the acceleration of the execution time remains a
crucial task for several reasons. First of all, when blood flow is
modelled in patient-specific geometries in a clinical setting,
results are required in a timely manner not only to potentially
treat the patient faster, but also to perform computations for
more patients in a certain amount of time. Furthermore, when
performing patient-specific computations, it is necessary to
match certain patient-specific characteristics, like pressure or
flow rates. Hence, the parameters of the model need be tuned,
and the computation needs to be run repeatedly for the same
geometry, thus increasing the total execution time for a single
patient [19].

Several future work activities have been identified. From a
computational point of view, the global memory accesses of
the second kernel can be further optimized, and a multi-GPU
based implementation will be considered for further decreasing
the execution time. From a modeling point of view, for more
severe coarctations than the one displayed in fig. 6, the
Reynolds number increases considerably and a Smagorinsky
sub-grid model needs to be employed [9].

ACKNOWLEDGMENT

This work is supported by the program Partnerships in

Priority Domains (PN II), financed by ANCS, CNDI -

UEFISCDI, under the project nr. 130/2012.

REFERENCES

[1] C.A. Taylor, and D.A. Steinman, “Image-based modeling of blood flow
and vessel wall dynamics: applications, methods and future directions,”
Annals of Biomedical Engineering, vol. 38, pp. 1188-1203, 2010.

[2] S. Melchionna, M. Bernaschi, S. Succi, E. Kaxiras, F.J. Rybicki,
Mitsouras D, et al., “Hydrokinetic approach to large-scale cardiovascular
blood flow,” Computer Physics Communications, vol. 181, pp. 462-72,
2010.

[3] J. Bernsdorf, and D. Wang, “Non-Newtonian blood flow simulation in
cerebral aneurysms,” Computers & Mathematics with Applications, vol.
58 pp. 1024-1029, 2009.

[4] A.M. Artoli, A.G. Hoekstra, and P.M.A. Sloot, “Mesoscopic simulations
of systolic flow in the human abdominal aorta”, Journal of
Biomechanics, vol. 39, pp. 873-874, 2006.

[5] S. Succi, The Lattice Boltzmann Equation - For Fluid Dynamics and
Beyond. New York: Oxford University Press, 2001.

[6] D. Kirk, and W.M. Hwu, Programming Massively Parallel Processors: A
Hands-on Approach. London: Elsevier, 2010.

[7] P. Bailey, J. Myre, S.D.C. Walsh, D.J. Lilja, and M.O. Saar,
“Accelerating lattice Boltzmann fluid flow simulations using graphics
processors,” IEEE International Conference on Parallel Processing,
Vienna, Austria, pp. 550-557, Sept. 2009.

[8] M. Bernaschi, M. Fatica, S. Melchionna, S. Succi, and E. Kaxiras, “A
flexible high-performance lattice Boltzmann GPU code for the
simulations of fluid flows in complex geometries,” Concurrency
Computation: Practice & Experience, vol. 22, pp. 1-14, 2010.

[9] C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux, “Towards
urban-scale flow simulations using the Lattice Boltzmann Method,”
Building Simulation Conference, Sydney, Australia, pp. 933-940, Nov.
2011.

[10] J. Tölke, and M. Krafczyk, “TeraFLOP computing on a desktop PC with
GPUs for 3D CFD,” International Journal of Computational Fluid
Dynamics, vol. 22, pp. 443-456, 2008.

[11] R.E. Ringel, and K. Jenkins, “Coarctation of the aorta stent trial (coast)”,
2007, http://clinicaltrials.gov/ct2/show/NCT00552812.

[12] ***, CFD Challenge: Simulation of Hemodynamics in a Patient-Specific
Aortic Coarctation Model, http://www.vascularmodel.org/miccai2012/.

[13] Q. Zou, and X. He, “On pressure and velocity boundary conditions for
the Lattice Boltzmann BGK model,” Physics of Fluids, vol. 9, pp. 1591-
1598, 1997.

[14] M. Bouzidi, M. Firdaouss, and P. Lallemand, “Momentum transfer of a
Boltzmann-Lattice fluid with boundaries,” Physics of Fluids, vol. 13, pp.
452-3459, 2001.

[15] M. Astorino, J. Becerra Sagredo, and A. Quarteroni, “A modular lattice
Boltzmann solver for GPU computing processors”, SeMA journal, vol.
59, pp. 53-78, 2012.

[16] NVIDIA Corporation: CUDA, Compute Unified Device Architecture
Best Practices Guide v5.0 (2013).

[17] J. Latt, “Hydrodynamic limit of lattice Boltzmann equations”, PhD
Thesis, Universite de Geneve, Geneve, Switzerland, 2007.

[18] V. Volkov, “Better performance at lower occupancy,” GPU Technology
Conference, San Jose, USA, 2010.

[19] D.R.Golbert, P.J. Blanco, A. Clausse, and R.A. Feijóo, “Tuning a
Lattice-Boltzmann model for applications in computational
hemodynamics,” Medical Engineering & Physics, vol. 34, pp. 339-349,
2012.

