
GPU-accelerated Database Systems:
Survey and Open Challenges?

Sebastian Breß1, Max Heimel2, Norbert Siegmund3, Ladjel Bellatreche4,
Gunter Saake1

1 University of Magdeburg
{sebastian.bress,gunter.saake}@ovgu.de

2 Technische Universität Berlin
max.heimel@tu-berlin.de

3 University of Passau
siegmunn@fim.uni-passau.de

4 LIAS/ISAE-ENSMA, Futuroscope, France
bellatreche@ensma.fr

Abstract. The vast amount of processing power and memory band-
width provided by modern graphics cards make them an interesting
platform for data-intensive applications. Unsurprisingly, the database
research community identified GPUs as effective co-processors for data
processing several years ago. In the past years, there were many ap-
proaches to make use of GPUs at different levels of a database system.
In this paper, we explore the design space of GPU-accelerated database
management systems. Based on this survey, we present key properties,
important trade-offs and typical challenges of GPU-aware database ar-
chitectures, and identify major open challenges. Additionally, we sur-
vey existing GPU-accelerated DBMSs and classify their architectural
properties. Then, we summarize typical optimizations implemented in
GPU-accelerated DBMSs. Finally, we propose a reference architecture,
indicating how GPU acceleration can be integrated in existing DBMSs.

1 Introduction

Over the last few years, the traditional performance drivers of modern processors
– frequency and parallelism – started to hit physical limits. One reason for this
is that modern processors are constrained to a certain amount of power they
may consume (i.e., the power wall [12]) and further increasing frequency and
parallelism would make them overly power hungry. Therefore, hardware ven-
dors are forced to create processors that are optimized for a certain application
field. These developments result in a highly heterogeneous hardware landscape,
which is expected to become even more diverse in the future [12]. In order to
keep up with the performance requirements of the modern information society,
tommorow’s database systems will need to exploit and embrace this increased
heterogeneity.

? This paper is a substantially extended version of an earlier work [17].



II

In this article, we take a closer look at how today’s database engines manage
heterogeneous environments, demonstrated by systems that support Graphics
Processing Units (GPUs). The GPU is the pioneer of modern co-processors, and
– in the last decade – it matured from a highly specialized processing device
to a fully programmable, powerful co-processor. This development inspired the
database research community to investigate methods for accelerating database
systems via GPU co-processing. Several research papers and performance stud-
ies demonstrate the potential of this approach [7, 21, 29, 32, 48, 49] – and the
technology has also found its way into commercial products (e.g., Jedox [1] or
ParStream [2]).

Using graphics cards to accelerate data processing is tricky and has several
pitfalls: First, for effective GPU co-processing, the transfer bottleneck between
CPU and GPU has to either be reduced or concealed via clever data placement
or caching strategies. Second, when integrating GPU co-processing into a real-
world Database Management System (DBMS), the challenge arises that DBMS
internals – such as data structures, query processing and optimization – are
traditionally optimized for CPUs. While there is ongoing research on building
GPU-aware database systems [22], no unified GPU-aware DBMS architecture
has emerged so far.

In this paper, we want to make the community aware of the lack of a unified
GPU-aware architecture and derive – based on a literature survey – a reduced
design space for such an architecture. In particular, we make the following con-
tributions:

1. We traverse the design space for a GPU-aware database architecture based
on results of prior work.

2. We derive research questions that should be investigated by the community
to develop GPU-aware database architectures.

Furthermore, as a substantial extension to a previous version of this paper [17],
we conducted an in-depth literature survey of eight GPU-accelerated database
management systems to validate and refine our theoretical discussions. This
complements our findings in proposing a reference architecture. In detail, we
make the following additional contributions:

1. We discuss eight GPU-accelerated DBMSs (GDBMSs) to review the state-
of-the-art, collect prominent findings, and complement our discussion on a
GPU-aware DBMS architecture.

2. We create a classification of required architectural properties of GDBMSs.
3. We summarize optimizations implemented by the surveyed systems and de-

rive a general set of optimizations that a GDBMS should implement.
4. We propose a reference architecture for GDBMSs. This architecture provides

insights on how to integrate GPU acceleration in main-memory DBMSs.
5. We identify new open challenges compared to our earlier work [17].

We find that GDBMSs should be in-memory column stores, should use the block-
at-a-time processing model and exploit all available processing devices for query



III

processing by using a GPU-aware query optimizer. Thus, main memory DBMSs
are similar to GPU-accelerated DBMSs, and most in-memory, column-oriented
DBMSs can be extended to efficiently support co-processing on GPUs.

The paper is structured as follows: In Section 2, we provide necessary back-
ground information about GPUs and discuss related work. We explore the design
space for GPU-accelerated DBMSs w.r.t. functional and non-functional proper-
ties in Section 3. In Section 4, we survey a representative set of GPU-accelerated
DBMSs, classify their architectural properties, summarize possible optimizations
to speed up query processing, and propose a reference architecture for GDBMSs.
Finally, we identify open challenges for GDBMSs in Section 5 and summarize
our findings in Section 6.

2 Preliminary Considerations

In this section, we provide a brief overview over the architecture of graphics
cards, the applied programming model, and related work.

2.1 Graphics Card Architecture

Figure 1 shows the architecture of a modern computer system with a graphics
card. The figure shows the architecture of a graphics card from the Tesla archi-
tecture of NVIDIA. While specific details might be different for other vendors,
the general concepts are found in all modern graphic cards. The graphics card
– henceforth also called the device – is connected to the host system via the
PCIExpress bus. All data transfer between host and device has to pass through
this comparably low-bandwidth bus.

The graphics card itself contains one or more GPUs and a few gigabytes
of device memory.5 Typically, host and device do not share the same address
space, meaning that neither the GPU can directly access the main memory nor
the CPU can directly access the device memory.

The GPU itself consists of a few multiprocessors, which can be seen as very
wide SIMD processing elements. Each multiprocessor packages several scalar pro-
cessors with a few kilobytes of high-bandwidth, on-chip shared memory, cache,
and an interface to the device memory.

2.2 Programming a GPU

Programs that run on a graphics card are written in the so-called kernel pro-
gramming model. Programs in this model consist of host code and kernels. The
host code manages the graphics card, initializing data transfer and scheduling
program execution on the device. A kernel is a simplistic program that forms the
basic unit of parallelism in the kernel programming model. Kernels are scheduled
concurrently on several scalar processors in a SIMD fashion: Each kernel invo-
cation - henceforth called thread - executes the same code on its own share of
5 Typically around 2-4 GB on mainstream cards and up to 16GB on high-end devices.



IV

M
e

m
o

ry
BC

o
n

tr
o

lle
r

In
st

ru
ct

io
n

BD
e

co
d

e
r

192BScalarBProcessors

OnEChipBSharedBMemory

64kB

1BTB0s

15BM
ulti

pro
ce

ss
ors

288BGB0s

GPU

DeviceBMemory
16BGB

GDDR5

GraphicsBCardHostBSystem

CPU

MainBMemory
~32BGB
DDR3

~16BGB0s

x16B
PCIExpress

B3.7BBus

3x
17.57BGB0s

CoreB1 CoreB2

CoreB3 CoreB4

... ...

...

M
e

m
o

ry
BC

o
n

tr
o

lle
r

In
st

ru
ct

io
n

BD
e

co
d

e
r

Fig. 1. Overview: Exemplary architecture of a system with a graphics card.

the input. All threads that run on the same multiprocessor are logically grouped
into a workgroup.

One of the most important performance factors in GPU programming is to
avoid data transfers between host and device: All data has to pass across the
PCIexpress bus, which is the bottleneck of the architecture. Data transfer to
the device might therefore consume all time savings from running a problem
on the GPU. This becomes especially evident for I/O-bound algorithms: Since
accessing the main memory is roughly two to three times faster than sending
data across the PCIexpress bus, the CPU will usually have finished execution
before the data has even arrived on the device.

Graphics cards achieve high performance through massive parallelism. This
means, that a problem should be easy to parallelize to gain most from running
on the GPU. Another performance pitfall in GPU programming is caused by
divergent code paths. Since each multiprocessor only has a single instruction
decoder, all scalar processors execute the same instruction at a time. If some
threads in a workgroup diverge, for example due to data-dependent conditionals,
the multiprocessor has to serialize the code paths, leading to performance losses.
While this problem has been somewhat alleviated in the latest generation of
graphics cards, it is still recommended to avoid complex control structures in
kernels where possible.

Currently, two major frameworks are used for programming GPUs to acceler-
ate database systems, namely the Compute Unified Device Architecture (CUDA)
and the Open Compute Language (OpenCL). Both frameworks implement the
kernel programming model and provide API’s that allow the host CPU to man-
age computations on the GPU and data transfers between CPU and GPU. In
contrast to CUDA, which supports NVIDIA GPUs only, OpenCL can run on a
wide variety of devices from multiple vendors [24]. However, CUDA offers ad-
vanced features such as allocation of device memory inside a running kernel or
Uniform Virtual Addressing (UVA), a technique where CPUs and GPUs share



V

the same virtual address space and the CUDA driver transfers data between
CPU and GPU transparently to the application [45].6

2.3 Related Work

To the best of our knowledge, there is no survey summarizing the state-of-
the-art of GPU-accelerated DBMSs. The only survey we are aware of is from
Owens and others, which discusses the state-of-the-art in GPGPU computing
[46]. They cover a wide area of research, mainly GPGPU techniques (e.g., stream
operations, data structures, and data queries) and GPGPU applications (e.g.,
databases and data mining, physically-based simulation, and signal and image
processing). In contrast to Owens, we focus on recent trends in GPU-accelerated
data management to derive a GPU-aware database architecture and open re-
search questions.

3 Exploring the Design Space of a GPU-aware DBMS
Architecture

In this section, we explore the design space of a GPU-accelerated database man-
agement system from two points of views: Non-functional properties (e.g., perfor-
mance and portability) and functional properties (e.g., transaction management
and processing model). Note that while we focus on relational systems, most of
our discussions apply to other data models as well.

3.1 Non-Functional Properties

In the following, we discuss non-functional properties for which DBMSs are typ-
ically optimized for, namely performance and portability, and the introduced
problems when supporting GPUs. Tsirogiannis and others found that in most
cases, the configuration performing best is also the most energy efficient con-
figuration due to the large up-front power consumption in modern servers [59].
Therefore, we will not discuss energy efficiency separately, as energy efficiency
is already covered by the performance property.

Performance. Since the GPU is a specialized processor, it is faster on cer-
tain tasks (e.g., numerical computations) than CPUs, whereas CPUs outperform
GPUs for tasks that are hard to parallelize or that involve complex control flow
instructions. He and others observed that joins are 2–7 times faster on the GPU,
whereas selections are 2–4 times slower, due to the required data transfers [30].
The same conclusion was made by Gregg and others, who showed that a GPU

6 We are aware that this features are included in OpenCL 2.0 but no OpenCL frame-
work supports this features yet.



VI

algorithm is not neccesarily faster than its CPU counterpart, due to the expen-
sive data transfers [27]. One major point for achieving good performance in a
GDBMS is therefore to avoid data transfers where possible.

Another problem is how to select the optimal processing device for a given
operation. For instance: While the GPU is well suited for easily parallelizable op-
erations (e.g., predicate evaluation, arithmetic operations), the CPU is the vastly
better fit when it comes to operations that require complex control structures
or significant inter-thread communications (e.g., hash table creation or complex
user-defined functions). Selecting the optimal device for a given operation is a
non-trivial operation, and – due to the large parameter space (e.g., Breß and
others [14] or He and others [29]) – applying simple heuristics is typically insuf-
ficient. Breß and others argue that there are four major factors that need to be
considered for such a decision (1) the operation to execute, (2) the features of
the input data (e.g., data size, data type, operation selectivity, data skew), (3)
the computational power and capabilities of the processing devices (e.g., num-
ber of cores, memory bandwidth, clock rate), and (4) the load on the processing
device (e.g., even if an operation is typically faster on the GPU, one should use
the CPU when the GPU is overloaded) [14]. Therefore, we argue that a complex
decision model, that incorporates these four factors, is needed to decide on an
optimal operator placement.

Portability. Modern DBMSs are tailored towards CPUs and apply traditional
compiler techniques to achieve portability across the different CPU architec-
tures (e.g., x86, ARM, Power). By using GPUs – or generally, heterogeneous co-
processors – this picture changes, as CPU code cannot be automatically ported
to run efficiently on a GPU. Also, certain GPU toolkits – such as CUDA – bind
the DBMS vendor to a certain GPU manufacturer.

Furthermore, processing devices themselves are becoming more and more
heterogeneous [55]. In order to achieve optimal performance, each device typi-
cally needs its own optimized version of the database operators [19]. However,
this means that supporting all combinations of potential devices yields an ex-
ponential increase in required code paths, leading to a significant increase in
development and maintenance costs.

There are two possibilities to achieve portability also for GPUs: First, we
can implement all operators for all vendor-specific toolkits. While this has the
advantage that special features of a vendor’s product can be used to achieve high
performance, it leads to high implementation effort and development costs. Ex-
amples for such systems are GPUQP [29] or CoGaDB [13], a column-oriented and
GPU-accelerated DBMS. Second, we can implement the operators in a generic
framework, such as OpenCL, and let the hardware vendor provide the optimal
mapping to the given GPU. While this approach saves implementation effort and
simplifies maintenance, it also suffers from performance degradation compared
to hand- tuned implementations frameworks. To the best of our knowledge, the
only system belonging to the second class is Ocelot [34], which extends MonetDB
with OpenCL-based operators.



VII

Summary. From the discussion, it is clearly visible that GPU acceleration
complicates the process of optimizing GDBMSs for non-functional properties
such as performance and portability. Thus, we need to take special care to achieve
comparable applicability with respect to traditional DBMSs.

3.2 Functional Properties

We now discuss the design space for a relational GDBMS with respect to func-
tional properties. We consider the following design decisions: (1) main-memory
vs. disk-based system, (2) row-oriented vs. column-oriented storage, (3) pro-
cessing models (tuple-at-a-time model vs. operator-at-a-time), (4) GPU-only vs.
hybrid device database, (5) GPU buffer management (column-wise or page-wise
buffer), (6) query optimization for hybrid systems, and (7) consistency and trans-
action processing (lock-based vs. lock free protocols).

Main-Memory vs. Hard-Disk-Based System. He and others demonstrated
that GPU-acceleration cannot achieve significant speedups if the data has to be
fetched from disk, because of the IO bottleneck, which dominates execution
costs [29]. Since the GPU improves performance only once the data has arrived
in main memory, time savings will be small compared to the total query runtime.
Hence, a GPU-aware database architecture should make heavy use of in-memory
technology.

Row-Stores vs. Column Stores. Ghodsnia compares row and column stores
with respect to their suitability for GPU-accelerated query processing [25]. Gh-
odsnia concluded that a column store is more suitable than a row store, because
a column store (1) allows for coalesced memory access on the GPU, (2) achieves
higher compression rates (an important property considering the current mem-
ory limitations of GPUs), and (3) reduces the volume of data that needs to be
transfered. For example, in case of a column store, only those columns needed for
data processing have to be transferred between processing devices. In contrast,
in a row-store, either the full relation has to be transferred or a projection has to
reduce the relation to the data needed to process a query. Both approaches are
more expensive than storing the data column wise. Bakkum and others came to
the same conclusion [6]. Furthermore, given that we already concluded that a
GPU-aware DBMS should be an in-memory database system, and that current
research provides an overwhelming evidence in favor of columnar storage for in-
memory systems [10]. We therefore conclude that a GPU-aware DBMS should
use columnar storage.

Processing Model. There are basically two alternative processing models that
are used in modern DBMS: the tuple-at-a-time model [26] and operator-at-a-
time bulk processing [42]. Tuple-at-a-time processing has the advantage that
intermediate results are very small, but has the disadvantage that it introduces



VIII

a higher per tuple processing overhead as well as a high cache miss rate. In
contrast, operator-at-a-time processing leads to cache friendly memory access
patterns, making effective usage of the memory hierarchy. However, the major
drawback is the increased memory requirement, since intermediate results are
materialized [42].

Tuple-at-a-time approaches usually apply the so-called iterator model, which
applies virtual function calls to pass tuples through the required operators [26].
Since graphics cards lack support for virtual function calls – and are notoriously
bad at runing the complex control logic that would be neccesary to emulate them
– this model is unsuited for a GDBMS. Furthermore, we identified in prior work
that tuple-wise processing is not possible on the GPU, due to lacking support
for inter-kernel communication [15]. We therefore argue that a GDBMS should
utilize an operator-at-a-time model.

In order to avoid the IO overhead of this model, multiple authors have sug-
gested a hybrid strategy that uses dynamic code compilation to merge multiple
logical operators, or even express the whole query in a single, runtime-generated
operator [20, 44, 60]. Using this strategy, it is not necessary to materialize inter-
mediate results in the GPU’s device memory: Tuples are passed between opera-
tors in registers, or via shared memory. This approach is therefore an additional
potential execution model for a GDBMS.

Database in GPU RAM vs. Hybrid Device Database. Ghodsnia pro-
posed to keep the complete database resident in GPU RAM [25]. This approach
has the advantage of vastly reducing data transfers between host and device.
Also, since the GPU RAM has a bandwidth that is roughly 16 times higher than
the PCIe Bus (3.0), this approach is very likely to significantly increase perfor-
mance. It also simplifies transaction management, since data does not need to
be kept consistent between CPU and GPU.

However, the approach has some obvious shortcomings: First, the GPU RAM
(up to ≈16 GB) is rather limited compared to CPU RAM (up to ≈2 TB),
meaning that either only small data sets can be processed, or that data must
be partitioned across multiple GPUs. Second, a pure GPU database cannot
exploit full inter-device parallelism, because the CPU does not any perform data
processing. Since CPU and GPU both have their corresponding sweet-spots for
different applications (cf. 3.1), this is a major shortcoming that significantly
degrades performance in several scenarios.

Since these problems outweigh the benefits, we conclude that a GDBMS
should make use of all available storage and not constrain itself to GPU RAM.
While this complicates data processing, and requires a data-placement strategy7,
we still expect the hybrid to be faster than a pure CPU- or GPU-resident system.
The performance benefit of using both CPU and GPU for processing was already

7 Some potential strategies include keeping the hot set of the data resident on the
graphics card, or using the limited graphics card memory as a low-resolution data
storage to quickly filter out non-matching data items [47].



IX

observed for hybrid query processing approaches (e.g., He and others [29] and
Breß and others [18]).

Effective GPU Buffer Management. The buffer-management problem in a
CPU/GPU system is similar to the one encountered in traditional disk-based or
in-memory systems. That is, we want to process data in a faster, and smaller
memory space (GPU RAM), whereas the data is stored in a larger and slower
memory space (CPU RAM). The novelty in this problem is, that – in contrast
to traditional systems – data can be processed in both memory spaces. In other
words: We can transfer data, but we do not have to! This optionality opens up
some interesting research questions, that have not been covered in traditional
database research.

Data structures and data encoding are often highly optimized for the special
properties of a processing device to maximize performance. Hence, different kinds
of processing devices use an encoding optimized for the respective device. For
example, a CPU encoding has to support effective caching to reduce the memory
access cost [41], whereas a GPU encoding has to ensure coalesced memory access
of threads to achieve maximal performance [45]. This usually requires trans-
coding data before or after the data transfer, which is an additional overhead
that can break performance.

Another interesting design decision is the granularity that should be used
for managing the GPU RAM: pages, whole columns, or whole tables? Since we
already concluded that a GPU-accelerated database should be columnar, this
basically boils down to comparing page-wise vs. column-based caching. Page-
wise caching has the advantage that it is an established approach, and is used
by almost every DBMS, which eases integration into existing systems. However,
a possible disadvantage is that – depending on the page size –, the PCIe bus
may be underutilized during data transfers. Since it is more efficient to transfer
few large data sets than many little datasets (with the same total data volume)
[45], it could be more beneficial to cache and manage whole columns.

Query Placement and Optimization. Given that a GPU-aware DBMS has
to manage multiple processing devices, a major problem is to automatically
decide which parts of the query should be executed on which device. This decision
depends on multiple factors, including the operation, the size & shape of the
input data, processing power and computational characteristics of CPU and
GPU as well as the optimization criterion. For instance: Optimizing for response
time requires to split a query in parts, so that CPU and GPU can process parts
of the query in parallel. However, workloads that require a high throughput,
need different heuristics. Furthermore, given that we can freely choose between
multiple different processing devices with different energy characteristics, non-
traditional optimization criteria such as energy-consumption, or cost-per-tuple
become interesting in the scope of GPU-aware DBMSs.

He and others were the first to address hybrid CPU/GPU query optimiza-
tion [29]. They used a Selinger-style optimizer to create initial query plans and



X

then used heuristics and an analytical cost-model to split a workload between
CPU and GPU. In our previous work, we proposed a framework that can per-
form cost-based operation-wise scheduling and cost-based optimization of hybrid
CPU/GPU query plans, which is designed to be used with operator-at-a-time
bulk processing [15]. Przymus and others developed a query planner that is ca-
pable of optimizing for two goals simultaneously (e.g., query response time and
energy consumption) [51]. Heimel and others suggest using GPUs to acceler-
ate query optimization instead of query processing. This approach could help to
tackle the additional computational complexity of query optimization in a hybrid
system [33]. It should be noted that there is some similarity to the problem of
query optimization in the scope of distributed and federated DBMSs [39]. How-
ever, there are several characteristics that differentiate distributed from hybrid
CPU/GPU query processing:

1. In a distributed system, nodes are autonomous. This is in contrast to hybrid
CPU/GPU systems, because the CPU has to explicitly send commands to
the co-processors.

2. In a distributed system, there is no global state. By contrast, in hybrid
CPU/GPU systems the CPU knows which co-processor performs a certain
operation on a specific dataset.

3. The nodes in a distributed system are loosely coupled, meaning that a node
may loose network connectivity to the other nodes or might crash. In a hybrid
CPU/GPU system, nodes are tightly bound. That is, no network outages are
possible due to a high bandwidth bus connection, and a GPU does not go
down due to a local software error.

We conclude that traditional approaches for a distributed system do not take
into account specifics of hybrid CPU/GPU systems. Therefore, tailor-made co-
processing approaches are likely to outperform approaches from distributed or
federated query-processing.

Consistency and Transaction Processing. Keeping data consistent in a
distributed database is a widely studied problem. But, research on transaction
management on the GPU is almost non-existent. The only work we are aware of
is by He and others [31] and indicates that a locking-based strategy significantly
breaks the performance of GPUs [31]. They developed a lock-free protocol to
ensure conflict serializability of parallel transactions on GPUs. However, to the
best of our knowledge, there is no work that explicitly addresses transaction
management in a GDBMS. It is therefore to be investigated how the performance
characteristics of established protocols of distributed systems compare to tailor-
made transaction protocols.

Essentially, there are three ways of maintaining consistency between CPU
and GPU: (1) Each data item could be kept strictly in one place (e.g., using
horizontal or vertical partioning). In this case, we would not require any repli-
cation management and would have to solve a modified allocation problem. (2)
We can use established replication mechanisms, such as read one write all or
primary copy. (3) The system can perform updates always on one processing



XI

device (e.g., the CPU) and periodically synchronize these changes to the other
devices.

Dimension Values

D
e
s
ig

n
 D

im
e
n

s
io

n
s

Storage System

Storage Model

Processing Model

Query Processing

Transaction Support

Portability

Disk-based Storage

Row-oriented Storage

Tuple at a time

Single Device Processing

TXN Support

Hardware-oblivious DBMS

In-Memory Storage

Column-oriented Storage

Operator at a time

Cross Device Processing

No TXN Support

Hardware-aware DBMS

Ideal Design

Fig. 2. Design space of GPU-aware DBMSs

3.3 Summary

We summarize the results of our theoretical discussion in Figure 2. A GPU-aware
database system should reside in-memory and use columnar storage. As pro-
cessing model, it should implement operator-at-a-time bulk processing model,
potentially enhanced by dynamic code compilation. The system should make
use of all available (co-)processors in the system (including the CPU!) by hav-
ing a locality-aware query optimizer, which distributes the workload across all
available processing resources. In case the GPU-aware DBMS needs transaction
support, it should use an optimistic transaction protocol, such as the timestamp
protocol. Finally, in order to reduce implementation overhead, the ideal GDBMS
would be hardware-oblivious, meaning all hardware-specific adaption is handled
transparently by the system itself.

While this theoretical discussion already gave us a good idea of how the
reference architecture for a GDBMS should look like, we will now take a closer
look at existing GDBMSs to refine our results.

4 A Survey of GPU-accelerated DBMSs

In this section, we refine our theoretical discussion of the GDBMS design space
from Section 3 by conducting a survey on existing GPU-accelerated database sys-
tems. First, we describe our research methodology. Second, we discuss the archi-
tectural properties of all systems that meet our survey selection criteria. Third,



XII

we classify the systems according to our design criteria (cf. Section 3). Based on
our classification, we then discuss further optimization techniques used in the
surveyed systems. Then, we derive a reference architecture for GPU-accelerated
DBMSs based on our results. Finally, we will use this reference architecture
for GDBMSs to identify a set of extensions that is required to extend existing
main-memory DBMSs to support efficient GPU co-processing.

4.1 Research Methodology

In this section, we state the research questions that drive our survey. Then, we
describe the selection criteria to find suitable DBMS architectures in the field
of GPU-acceleration. Afterwards, we discuss the properties we focus on in our
survey. This properties will be used as base for our classification.

Research Questions

RQ1: Are there recurring architectural properties among the surveyed systems?

RQ2: Are there application-specific classes of architectural properties?

RQ3: Can we infer a reference architecture for GPU-accelerated DBMSs based
on existing GPU-accelerated DBMSs?

RQ4: How can we extend existing main-memory DBMSs to efficiently support
data processing on GPUs?

Selection Criteria. Since this survey should cover relational GDBMS, we only
consider systems that are capable of using the GPU for most relational oper-
ations. That is, we disregard stand-alone approaches for accelerating a certain
relational operator (e.g., He and others [30, 32]), special co-processing techniques
(e.g., Pirk and others [49]), or other – non data-processing related – applications
for GPUs in database systems [33]. Furthermore, we will not discuss systems us-
ing other data models than the relational model, such as graph databases (e.g.,
Medusa from Zhong and He [64, 65]) or MapReduce (e.g., Mars from He and oth-
ers [28]). Also, given that publications, such as research papers or whitepapers,
often lack important architectural informations, we strongly preferred systems
that made their source code publicly available. This allowed us to analyze the
source code in order to correctly classify the system.

Comparison Properties. According to the design decisions discussed in Sec-
tion 3, we present for each GDBMS the storage system, the storage and process-
ing model, query placement and query optimization, and support for transaction
processing. The information for this comparison is taken either directly from ana-
lyzing the source code – if available –, or from reading through published articles
about the system. If a properties is not applicable for a system, we mark it as
not applicable and focus on unique features instead.



XIII

4.2 GPU-accelerated DBMS

Based on the discussed selection criteria, we identified the following eight aca-
demic8 systems that are relevant for our survey:

System Institute Year Open Source Ref.

CoGaDB Universität Magdeburg 2013 yes [13, 18]

GPUDB Ohio State University 2013 yes [62]

GPUQP
Hong Kong University

of Science and Technology 2007 yes [29]

GPUTx
Nanyang Technological

University 2011 no [31]

MapD
Massachusetts Institute

of Technology 2013 no [43]

Ocelot Technische Universität Berlin 2013 yes [34]

OmniDB
Nanyang Technological

University 2013 yes [63]

Virginian NEC Laboratories America 2012 yes [6]

In Figure 3, we illustrate the chronological order in which the first publica-
tions for each system were published.It is clearly visible that most systems were
developed very recently and only few systems are based on older systems. Hence,
we expect little influence on the concrete DBMS architecture between each other
and hence, a strong external validity of our results.

Year of first publica�on

2007 201320122011201020092008

GPUQP

Is based on
CoGaDB

GPUDB

MapD

Ocelot

OmniDB

Virginian
GPUTx

Fig. 3. Time line of surveyed systems.



XIV

SQLvFrontend

LogicalvOptimizer

Hybrid Query Processing Engine

HybridvCPU/GPUvQueryvOptimizer

ProcessingvDevicevAllocationvand

AlgorithmvSelection

ExecutionvTimevEstimator

ExecutionvEngine

ParallelvRelationalvOperators

In-MemoryvColumnvStore

GPUvBuffervManager

Feedback

Estimations

Scheduling

Decisions

Register

Operators

Fig. 4. The architecture of CoGaDB, taken from [16]
.

CoGaDB

Breß and others developed a column-oriented GPU-accelerated DBMS (Co-
GaDB9) [13, 18]. CoGaDB focuses on GPU-aware query optimization to achieve
efficient co-processor utilization during query processing.

Storage System: CoGaDB persists data on disk, but loads the complete database
into main memory on startup. If the database is larger than the main memory,
CoGaDB relies on the operating system’s virtual memory management to swap
the least recently used memory pages on disk.

Storage Model: CoGaDB stores data in data structures optimized for in-memory
databases. Hence, it stores the data column-wise and compresses VARCHAR
columns using dictionary encoding [9]. Furthermore, the data has the same for-
mat when stored in the CPU’s or the GPU’s memory.

8 Note that we deliberately excluded commercial systems such as Jedox [1] or
Parstream [2], because they are neither available as open source nor have publi-
cations available that provide full architectural details.

9 Source code available at: http://wwwiti.cs.uni-magdeburg.de/iti_db/research/
gpu/cogadb/.



XV

Processing Model: CoGaDB uses the operator-at-a-time bulk processing model
to make efficient use of the memory hierarchy. This is the basis for efficient query
processing using all processing resources.

Query Placement & Optimization: CoGaDB uses the Hybrid Query Processing
Engine (HyPE) as physical optimizer [13]. HyPE optimizes physical query plans
to increase inter-device parallelism by keeping track of the load condition on all
(co-)processors (e.g., the CPU or the GPU).

Transactions: Not supported.

GPUDB

SQL SQLyParser Optimizer

Codeygenerator

CUDAydrive

OpenCLydrive

CUDAyOperators

OpenCLyOperatorsyforyCPU

OpenCLyOperatorsyforyGPU
Query Execution Engine

Column-orientedyStorage

HostyMemory

CPU CPU

GPUyMemory

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

Fig. 5. GPUDB: Query engine architecture, taken from [62]

In order to study the performance behaviour of OLAP queries on GPUs,
Yuan and others developed GPUDB10 [62].

Storage System: GPUDB keeps the database in the CPU’s main memory to avoid
the hard-disk bottleneck. Yuan and others identified a crucial optimization for
main-memory DBMS with respect to GPU accelerated execution: In case data is
stored in pinned host memory, query execution times can significantly improve
(i.e., Yuan and others observed speedups up to 6.5x for certain queries of the
Star Schema Benchmark (SSB) [52]).

10 Source code available at: https://code.google.com/p/gpudb/.



XVI

Storage Model: GPUDB stores the data column-wise because GPUDB is opti-
mized for warehousing workloads. Additionally, GPUDB supports common com-
pression techniques (run length encoding, bit encoding, and dictionary encoding)
to decrease the impact of the PCIe bottleneck and to accelerate data processing.

Processing Model: GPUDB uses a block-oriented processing model: Blocks are
kept in GPU RAM until they are completely processed. This processing model
is also known as vectorized processing [54]. Thus, the PCIe bottleneck can be
further reduced by overlapping data transfers with computation. For certain
queries, Yuan and others observed speedups up to 2.5x compared to no overlap-
ping of processing and data transfers.

GPUDB compiles queries to driver programs. A driver program executes a
query by calling pre-implemented GPU operators. Hence, GPUDB executes all
queries on the GPU and the CPU performs only dispatcher and post processing
tasks (i.e., the CPU is used less than 10 % of the time during processing SSB
queries [62]).

Query Placement & Optimization: GPUDB has no support for executing queries
on the CPU and GPU in parallel.

Transactions: Not supported.

GPUQP

Storage

(Rela�ons, Indeces)

Data parallel 

primi�ves (e.g., map)

Access methods 

(scan, B+ tree)

Operators (join,

selec�on, sort, ...)

Fig. 6. Execution engine of GPUQP, taken from [29]

He and others developed GPUQP11, a relational query processing system,
which stores data in-memory and uses the GPU to accelerate query processing
[29]. In GPUQP, each relational operator can be executed on the CPU or the
GPU.

11 Source code available at: http://www.cse.ust.hk/gpuqp/.



XVII

Storage System: GPUQP supports in-memory and disk-based processing. Ap-
parently, GPUQP also attempts to keep data cached in GPU memory. Unfor-
tunately, the authors do not provide any details about the used data placement
strategy.

Storage Model: Furthermore, GPUQP makes use of columnar storage and query
processing, which fits the hardware capabilities of modern CPUs and GPUs.

Processing Model: GPUQP’s basic processing strategy is operator-at-a-time bulk
processing. However, GPUQP is also capable of partitioning data for one opera-
tor and execute the operator on the CPU and the GPU concurrently. Neverthe-
less, the impact on the overall performance is small [29].

Query Placement & Optimization: GPUQP combines a Selinger-style optimizer
[58] with an analytical cost model to select the cheapest query plan. For each
operator, GPUQP allocates either the CPU, the GPU, or both processors (parti-
tioned execution). The query optimizer splits a query plan to multiple sub-plans
containing at most ten operators. For each sub-query, all possible plans are
created and the cheapest sub-plan is selected. Finally, GPUQP combines the
sub-plans to a final physical query plan.

He and others focus on optimizing single queries and do not discuss multi-
query optimization. Furthermore, load-aware query scheduling is not considered
and there is no discussion of scenarios with multiple GPUs.

Transactions: Not supported.

GPUTx

In order to investigate relational transaction processing on graphics cards, He
and others developed GPUTx, a transaction processing engine that runs on the
GPU [31].

Storage System & Model: GPUTx keeps all OLTP data inside the GPU’s mem-
ory to minimize the impact of the PCIe bottleneck. It also applies a columnar
data layout to fit the characteristics of modern GPUs.

Processing Model: The processing model is not built on relational operators as
in GPUQP. Instead, GPUTx executes pre-compiled stored procedures, which
are grouped into one GPU kernel. Incoming transactions are grouped in bulks,
which are sets of transactions that are executed in parallel on the GPU.

Query Placement & Optimization: Since GPUTx performs the complete data
processing on the GPU, query placement approaches are not needed.



XVIII

Transactions: GPUTx is the only system in our survey – and that we are aware
of – that supports running transactions on a GPU. It implements three basic
transaction protocols: Two-phase locking, partition-based execution and k -set-
based execution. The major finding of GPUTx is that locking-based protocols
do not work well on GPUs. Instead, lock-free protocols such as partition-based
execution or k-set should be used.

MapD

Mostak develops MapD, which is a data processing and visualization engine,
combining traditional query processing capabilities of DBMSs with advanced
analytic and visualization functionality [43]. One application scenario is the visu-
alization of twitter messages on a road map12, in which the geographical position
of tweets is shown and visualized as heat map.

Storage System: The data processing component of MapD is a relational DBMS,
which can handle data volumes that do not fit the main memory. MapD also
tries to keep as much data in-memory as possible to avoid disk accesses.

Storage Model: MapD stores data in a columnar layout, and further partitions
columns into chunks. A chunk is the basic unit of MapD’s memory manager.
The basic processing model of MapD is processing one operator-at-a-time. Due
to the partitioning of data into chunks, it is also possible to process on a per-
chunk basis. Hence, MapD is capable of applying block-oriented processing.

Processing Model: MapD processes queries by compiling a query to executable
code for the CPU and GPU.

Query Placement & Optimization: The optimizer tries to split a query plan in
parts, and processes each part on the most suitable processing device (e.g., text
search using an index on the CPU and table scans on the GPU). MapD does
not assume that an input data set fits in GPU RAM, and it applies a streaming
mechanism for data processing.

Transactions: Not supported.

Ocelot

Heimel and others develop Ocelot13, which is an OpenCL extension of MonetDB,
enabling operator execution on any OpenCL capable device, including CPUs and
GPUs [34].

12 http://mapd.csail.mit.edu/tweetmap/
13 Source code available at: http://goo.gl/GHeUv.



XIX

MonetDBwSQLwFrontend

MonetDBwOptimizerwandwExecutionwLayer

MonetDBwParallelization

MonetDBwOperators

MonetDBwStoragewLayerwandwDatawLayout

OpenCLwContext

Management
QuerywRewriter

MemorywManager

Operators

MALwBinding

OpenCL

Ocelot

ContextwManagement

HostwCodeKernel

Fig. 7. The architecture of Ocelot, taken from [34]

Storage System: Ocelot’s storage system is built on top of the in-memory model
of MonetDB. Input data is automatically transferred from MonetDB to the GPU
when needed by an operator. In order to avoid expensive transfers, operator
results are typically kept on the GPU. They are only returned at the end of a
query, or if the device memory is too filled to fulfill requests. Additionally, Ocelot
implements a device cache to keep relevant input data available on the GPU.

Storage Model: Ocelot/MonetDB stores data column-wise in Binary Association
Tables (BATs). Each BAT consists of two columns: One (optional) head storing
object identifiers, and one (mandatory) tail storing the actual values.

Processing Model: Ocelot inherits the operator-at-a-time bulk processing model
of MonetDB, but extends it by introducing lazy evaluation and making heavy
use of the OpenCL event model to forward operator dependency information to
the GPU. This allows the OpenCL driver to automatically interleave and reorder
operations, e.g., to hide transfer latencies by overlapping the transfer with the
execution of a previous operator.

Query Placement & Optimization: In MonetDB, each query plan is represented
in the MonetDB Assembly Language (MAL) [35]. Ocelot reuses this infrastruc-
tures and adds a new query optimizer, which rewrites MAL plans by replacing
data processing MAL instructions of vanilla MonetDB with the highly parallel
OpenCL MAL instructions of Ocelot.

Query Placement & Optimization: Ocelot does not support cross-device pro-
cessing, meaning it executes the complete workload either on the CPU or on the
GPU.

Transactions: Not supported.



XX

OmniDB

Execution engine Scheduler Other components

qKernel

Query

CPU 
Adapter

GPU 
Adapter

CPU-CPU 
Adapter

APU
Adapter

CPU GPU CPU-GPU APU

Cost model

...

Fig. 8. OmniDB: Kernel adapter design, taken from [63]

Zhang and others developed OmniDB14, a GDBMS aiming for good code
maintainability while exploiting all hardware resources for query processing [63].
The basic idea is to create a hardware oblivious database kernel (qkernel), which
accesses the hardware via adaptors. Each adapter implements a common set of
operators decoupling the hardware from the database kernel.

Storage System & Model: OmniDB is based on GPUQP, and hence, has similar
architectural properties to GPUQP. OmniDB keeps data in-memory in a column-
oriented data layout.

Processing Model: OmniDB schedules and processes work units, which can vary
in granularity (e.g., a work unit can be a query, an operator, or a chunk of
tuples). Although it is not explicitly mentioned in the paper [63], the fact that
OmniDB can process also chunks of tuples is a strong indicator that it supports
block-oriented processing.

Query Placement & Optimization: Regarding query placement and optimiza-
tion, OmniDB chooses the processing device with highest throughput for a work
unit. To avoid overloading a single device, OmniDB’s scheduler ensures that the
workload on one processing device may not exceed a certain percentage of the
average workload on all processing devices. The cost model relies on the adapters
to provide cost functions for the underlying processing devices.

Transactions: Not supported.

14 Source code available at: https://code.google.com/p/omnidb-paralleldbonapu/.



XXI

Virginian

Bakkum and others develop Virginian15, which is a GPU-accelerated DBMS
keeping data in main memory and supporting filter and aggregation operations
on all processing devices [6].

Storage System: Virginian uses no traditional caching of operators, but uniform
virtual addressing (UVA). This technique allows a GPU kernel to directly access
data stored in pinned host memory. The accessed data is transferred over the
bus transparently to the device and efficiently overlaps computation and data
transfers.

Storage Model: Virgnian implements a data structure called tablet, which stores
fixed size values column oriented. Additionally, tables can handle variable sized
data types such as strings, which are stored in a dedicated section inside the
tablet. Thus, Virginian supports strings on the GPU. This is a major difference
to other GDBMSs, which apply dictionary compression on strings first and work
only on compressed values in the GPU RAM.

Processing Model: Virginian uses operator-at-a-time processing as basic query-
processing model. It implements an alternative processing scheme. While most
systems call a sequence of highly parallel primitives requiring one new kernel
invocation per primitive, Virginian uses the opcode model, which combines all
primitives in a single kernel. This avoids writing data back to global memory and
reading it again in the next kernel ultimately resulting in block-wise processing
on the GPU.

Query Placement & Optimization: Virginian can either process queries on the
CPU or on the GPU. Thus, there is no mechanism splitting up the workload
between CPU and GPU processing devices and hence, no hybrid query optimizer
is available.

Transactions: Not supported.

4.3 Classification

We now classify the surveyed systems according to the architectural properties
discussed in Section 3.

Storage System: For all eight systems, it is clearly visible that they are de-
signed with main-memory databases in mind, keeping a large fraction of the
database in the CPU’s main memory. GPUQP and MapD also support disk-
based data. However, since fetching data from disk is very expensive compared
to transferring data over the PCIe bus [29], MapD and GPUQP also keep as
much data as possible in main memory. Therefore, we mark all systems as main-
memory storage and GPUQP and MapD additionally as disk-based storage.

15 Source code available at: https://github.com/bakks/virginian.



XXII

Storage Model: All systems store their data in a columnar layout, there is
no system using row-oriented storage. One exception is Virginian, which stores
data mainly column-oriented, but also kepps complete rows inside a tablet data
structure. This representation is similar to PAX, which stores rows on one page,
but stores all records column-wise inside a page [3].

Storage System Storage Model
DBMS Main-Memory Storage Disk-based Storage Column Store Row Store

CoGaDB X × X ×
GPUDB X × X ×
GPUQP X X X ×
GPUTx X × X ×
MapD X X X ×
Ocelot X × X ×
OmniDB X × X ×
Virginian X × X ×

Table 1. Classification of Storage System and Storage Model – Legend: X– Supported,
× – Not Supported, ◦ – Not Applicable

Processing Model: The processing model varies between the surveyed sys-
tems. The first observation is that no system uses a traditional tuple-at-a-time
volcano model [26], as was hypothesized in Section 3. Most systems support
operator-at-a-time bulk processing [42]. The only exception is GPUTx, which
does not support OLAP workloads, because it is an optimized OLTP engine.
Hence, we mark the processing model for GPUTx as not applicable. GPUDB,
MapD, OmniDB, and Virginian have basic capabilities for block-oriented pro-
cessing. Additionally, GPUDB and MapD apply a compilation-based query pro-
cessing strategy.16 Virginian does not support query compilation. Instead, it uses
a single GPU kernel that implements a virtual machine, which calls other GPU
kernels (the primitives) in the context of the same kernel, efficiently saving the
overhead of reading and writing the result from the GPU’s main memory.

Query Placement and Optimization: We identify two major groups of sys-
tems: The first group performs nearly all data processing on one processing
device (GPUDB, GPUTx, Ocelot, Virginian), whereas the second group is ca-
pable of splitting the workload in parts, which are then processed in parallel on
the CPU and the GPU (CoGaDB, GPUQP, MapD, OmniDB). We mark systems
in the first group as systems that support only single-device processing (SDP),
whereas systems of the second group are capable of using multiple devices and

16 Note that both systems still apply a block-oriented processing model. This is due to
the nature of compilation-based strategies, as discussed in Section 3.



XXIII

Processing Model
DBMS Operator-at-a-Time Block-at-a-Time Just-in-Time Compilation

CoGaDB X × ×
GPUDB X X X
GPUQP X × ×
GPUTx ◦ ◦ ◦
MapD X X X
Ocelot X × ×
OmniDB X X ×
Virginian X X ×

Table 2. Classification of Processing Model – Legend: X– Supported, × – Not Sup-
ported, ◦ – Not Applicable

thereby allowing cross-device processing (CDP). Note that a system supporting
CDP is also capable of executing the complete workload on one processing device
(SDP). The hybrid query optimization approaches of CoGaDB, GPUQP, MapD,
and OmniDB are mostly greedy strategies or other simple heuristics. It is still an
open question how to efficiently trade off between inter-processor parallelization
and costly data transfers to achieve optimal performance. For instance: So far,
there are no query optimization approaches for machines having multiple GPUs.

Query Processing
DBMS Single-Device Processing Cross-Device Processing

CoGaDB X X
GPUDB X ×
GPUQP X X
GPUTx X ×
MapD X X
Ocelot X ×
OmniDB X X
Virginian X ×

Table 3. Classification of Query Processing – Legend: X– Supported, × – Not Sup-
ported, ◦ – Not Applicable

Transaction Processing: Apart from GPUTx, none of the surveyed GDBMSs
support transactions. GPUTx keeps data strictly in the GPU’s RAM, and needs
to transfer only incoming transactions to the GPU and the result back to the
CPU. Since GPUTx achieved a 4-10 times higher throughput than a comparable
CPU-based OLTP engine, there is a need for further research in the area of trans-
action processing in GDBMSs so that OLTP systems can also benefit from GPU
acceleration. Apparently, online analytical processing and online transactional



XXIV

processing can be significantly accelerated by using GPU acceleration. However,
it is not yet clear which workload type is more suitable for which processing
device type. Furthermore, the efficient combination of OLTP/OLAP workloads
is still an active research field (e.g., Kemper and Neumann [38]). Thus, it is
an open question whether and under which circumstances GPU-acceleration is
beneficial for such hybrid OLTP/OLAP workloads.

Portability: The only GDBMSs having a portable, hardware-oblivious database
architecture are Ocelot and OmniDB. All other systems are either tailored to a
vendor specific programming framework or have no technique to hide the details
of the device-specific operators in the architecture. Ocelot’s approach has the
advantage that only a single set of parallel database operators has to be imple-
mented, which can then be mapped to all processing devices supporting OpenCL
(e.g., CPUs, GPUs, or Xeon Phis). By contrast, OmniDB uses an adapter in-
terface, in which each adapter provides a set of operators and cost functions for
a certain processing-device type. It is unclear, which approach will lead to the
best performance/maintainability ratio, and how large the performance loss is
compared to a hardware-aware system. However, if portability can be achieved
with only a small performance degradation, it would substantially benefit the
maintainability and applicability of GDBMSs [63]. Hence, the trend towards
hardware-oblivious DBMSs is likely to continue.

Portability
DBMS Transaction Support Hardware Aware Hardware Oblivious

CoGaDB × X ×
GPUDB × X ×
GPUQP × X ×
GPUTx X X ×
MapD × X ×
Ocelot × × X
OmniDB × × X
Virginian × X ×

Table 4. Classification of Transaction Support and Portability – Legend: X– Sup-
ported, × – Not Supported, ◦ – Not Applicable

4.4 Potential Optimizations for GDBMSs

We will now discuss and summarize potential optimizations, which a GDBMS
may implement to make full use of the underlying hardware in a hybrid CPU/GPU
system. Additionally, we briefly discuss existing approaches for each optimiza-
tion. As already discussed, data transfers have the highest impact on GDBMS
performance. Hence, every optimization avoiding or minimizing the impact of



XXV

data transfers are mandatory. We refer to these optimizations as cross-device
optimizations. Based on our surveyed systems, we could identify the following
cross-device optimizations:

Efficient Data Placement Strategy: There are two possibilities to manage
the GPU RAM. The first possibility is an explicit management of data on
GPUs using a buffer-management algorithm. The second possibility is using
mechanisms such as Unified Virtual Addressing (UVA), which enables a GPU
kernel to directly access the main memory. Kaldewey and others observed a
significant performance gain (3-8x) using UVA for Hash Joins on the GPU
compared to the CPU [37]. Furthermore, data has not to be kept consistent
between CPU and GPU, because there is no ”real” copy in the GPU RAM.
However, this advantage can also be a disadvantage, because caching data
in the GPU RAM can avoid the data transfer from the CPU to the GPU.

GPU-aware Query Optimizer: A GDBMS should make use of all processing
devices to maximize performance. Therefore, it should offload operations to
the GPU. However, offloading single operations of a query plan does not
necessarily accelerate performance. Hence, a GPU-aware optimizer has to
identify sub plans of a query plan, which it can process on the CPU or the
GPU [29]. Furthermore, the resulting plan should minimize the number of
copy operations [15]. Since optimizers are typically cost based, a GDBMS
needs for each GPU operator a cost model. The most common approach is to
use analytical models (e.g., Manegold and others for the CPU [40] and He and
others for the GPU [29]). However, with the increasing hardware complexity,
machine-learning-based models become increasingly popular [14].

Data Compression: The data placement and query optimization techniques
attempt to avoid data transfers as much as possible. To reduce overhead
in case a GDBMS has to perform data transfers, the data volume can be
reduced by compression techniques. Thus, compression can significantly de-
crease processing costs [62]. Fang and others discussed an approach, which
combines different lightweight compression techniques to compress data at
the GPU [23]. They developed a planner for cascading compression tech-
niques, which decides on a suitable subset and order of available compression
techniques. Przymus and Kaczmarski focused on compression for time-series
databases on the GPU [50]. Andrzejewski and Wrembel discussed compres-
sion of bitmap indexes on the GPU [4].

Overlap of Data Transfer and Processing: The second way to accelerate
processing, in case a data transfer needs to performed, is overlapping the
execution of a GPU operator with a data transfer operation [6, 62]. This
optimization keeps all hardware components busy, and basically narrows
down the performance of the system to the PCIe bus bandwidth.

Pinned Host Memory: The third way to accelerate query processing in case
we have to perform a copy operation is keeping data in pinned host memory.
This optimization saves one indirection, because the DMA controller can
transmit data directly to the device [62]. Otherwise, data has to be copied
in pinned memory first, introducing additional latency in data transmission.



XXVI

However, using pinned host memory has the drawback that the amount of
available pinned host memory is much smaller than the amount of unpinned
memory (i.e., memory that can be paged to disk by the virtual memory
manager) [56]. Therefore, a GDBMS has to decide which data it should keep
in pinned host memory. It is still an open issue how much memory should be
spent on a pinned host memory buffer for faster data transfers to the GPU.

Figure 9 illustrates the identified cross-device optimizations and the relationships
between them.

Cross-Device Op�miza�ons

Avoid data 
transfers

Reduce cost of
data transfers

Data placement 
strategies

GPU-aware
op�mizer

Compression Overlap transfer 
with processing

Use pinned
host memory

Fig. 9. Cross-device optimizations

The second class of optimizations we identified, targets the efficiency of op-
erator execution on a single processing device. We refer to this class of optimiza-
tions as device-dependent optimizations. Since we focus on GPU-aware systems,
we only discuss optimizations for GPUs. Based on the surveyed systems, we
summarize the following GPU-dependent optimizations:

Block-oriented Query Processing: A GDBMS can avoid the overhead of
writing results of an operator back to a processing device’s main memory by
processing data on a per block basis rather than on a per operator basis. The
idea is to process data already stored in the cache (CPU) or shared memory
(GPU), which saves memory bandwidth and significantly increases perfor-
mance of query processing [11, 62]. Additionally, block-oriented processing
is a necessary prerequisite for overlapping processing and data transfer for
single operations and allows for a more fine grained workload distribution on
available processing devices [63]. Note that traditional pipelining of blocks
between GPU operators is not possible, because inter-kernel communication
is undefined [15]. While launching a new kernel for each block is likely to be
expensive, query compilation and kernel fusion are promising ways to allow
block-oriented processing on the GPU as well.

Compilation-based Query Processing: Compiling queries to executable code
is a common optimization in main-memory DBMSs [20, 44, 60]. As already
discussed, query compilation allows for block-oriented processing on GPUs
as well and achieves a significant speedup compared to primitive-based query
processing (e.g., operator-at-a-time processing [29]). However, query compi-
lation introduces additional overhead, because compiling a query to exe-



XXVII

cutable code typically is more expensive than building a physical query ex-
ecution plan. Yuan and others overcome this shortcoming by pre-compiling
operators. Thus, they only need to compile the query plan itself to a driver
program [62]. A similar approach called kernel weaver is used by Wu and
others [61]. They combine CUDA kernels for relational primitives into one
kernel. This has the advantage that the optimization scope is larger and the
compiler can perform more optimizations. However, the disadvantage is the
increased compilation time. Rauhe and others introduce in their approach
two processing phases: compute and accumulate. In the compute phase, a
number of threads are assigned to a partition of the input data and each
thread performs all operations of a query on one tuple and then, continues
with the next tuple, until the thread processed its partition. In the accumu-
late phase, the intermediate results are combined to the final result [53].

All-in-one Kernel: A promising alternative to compilation-based approaches
is to combine all relational primitives in one kernel [6]. Thus, a relational
query has to be translated to a sequence of op codes. An op code identifies the
next primitive to be executed. Therefore, it is basically an on-GPU virtual
machine, which saves the initial overhead of query compilation. However, the
drawback is a limited optimization scope compared to kernel weaver [61].

Portability: Until now, we mainly discussed performance optimizations. How-
ever, each of the discussed optimizations are mainly implemented device
dependent. This increases the overall complexity of a GDBMS. The problem
gets even more complex with new processing device types such as acceler-
ated processing units or the Intel Xeon Phi. Heimel and others implemented
a hardware oblivious DBMS kernel in OpenCL and still achieved a signif-
icant acceleration of query processing [34]. Zhang and others implemented
q-kernel, a hardware-oblivious database kernel using device adapters to the
underlying processing devices [63]. It is still not clear which part of a kernel
should be hardware oblivious and which part should be hardware aware.
For the parts that have to be hardware aware, modern software engineering
methods such as software product lines can be used to manage the GDBMS’s
complexity [19].

Figure 10 illustrates the identified device-dependent optimizations and the
relationships between them.

Processing Models

Block at a time Operator at a time

Query Compilation All in one kernel Parallel Primitives

Fig. 10. Device-dependent optimizations: Efficient processing models



XXVIII

4.5 A Reference Architecture for a GPU-accelerated DBMSs

Based on our in-depth survey of existing GDBMSs, we now derive a reference
architecture for GDBMSs. After careful consideration of all surveyed systems,
we decided to use the GPUQP [29]/OmniDB [63] architecture as basis for our
reference architecture, because they already include a major part of the common
properties of the surveyed systems. We illustrate the reference architecture in
Figure 11.

Physical Optimizer

SQL and Logical 
Optimization

In-memory storage 
(columnar, compressed)

Data parallel 
primitives (e.g., map)

Data Placement 
Strategy

Access methods

Cost Model

CPU/GPU Scheduler
Hybrid Query 

Optimizer

Relational Operators

Fetch input data and 
copy to device memory

Implemented on top of

Process input data

Calls primitives

Hybrid query plan calls
relational operators 

Existent in traditional 
main-memory DBMSs

Main-memory DBMSs 
extension for GDBMSs

New component in 
GPU-accelerated DBMSs

Logical query plan 

Fig. 11. Layered architecture of GDBMSs

We will describe the query-evaluation process in a top-down view. On the
upper levels of the query stack, a GPU-accelerated DMBS is virtually identical
to a “traditional” DBMS. It includes functionality for integrity control, parsing
SQL queries, and performing logical optimizations on queries. Major differences
between main-memory DBMSs and GDBMSs emerge in the physical optimizer.
While classical systems choose the most suitable access structure and algorithm
to operate on the access structure, a GPU-accelerated DBMS has to additionally
decide for each operator on a processing device. For this task, a GDBMS needs
refined17 cost models that also predict the cost for GPU and CPU operations.
Based on these estimates, a scheduler can allocate the cheapest processing device.

17 Since these models need to be able to estimate comparable operator runtimes across
different devices, we and others [13] argue that dynamic cost models, which ap-



XXIX

Furthermore, a query should make use of multiple processing devices to speed
up execution. Hence, the physical optimizer has to optimize hybrid CPU/GPU
query plans, which significantly increases the optimization space.

Relational operations are implemented in the next layer. These operators typ-
ically use access structures to process data. In GDBMSs, access structures have
to be reimplemented on GPUs to achieve a high efficiency. However, depending
on the processing device chosen by the CPU/GPU scheduler, different access
structures are available. This is an additional dependency the query optimizer
needs to take into account.

Then, a set of parallel primitives can be applied to an access structure to
process a query. In this component, the massive parallelism of CPUs and GPUs
is fully used to speed up query processing. However, a GPU operator can only
work on data stored in GPU memory. Hence, all access structures are built on
top of a data-placement component, that caches data on a certain processing
device, depending on the access patterns of the workload (e.g., certain columns
for column scans or certain nodes of tree indexes [8, 57]). Note that the data-
placement strategy is the most performance critical component in a GDBMS
due to the major performance impact of data transfers.

The backbone of a GDBMS is a typical in-memory storage, which frequently
stores data in a column-oriented format.18 Compression techniques are not only
beneficial in keeping the major part of a database in-memory, compression also
reduces the impact of the PCIe bottleneck.

4.6 Summary: Extension points for Main-Memory DBMSs

In summary, we can extend most main-memory DBMSs supporting column-
oriented data layout and bulk processing to be GPU-accelerated DBMSs. We
identify the following extension points: Cost models, CPU/GPU scheduler, hy-
brid query optimizer, access structures and algorithms for the GPU, and a data
placement strategy.

Cost Models: For each processor, we need to estimate the execution time of an
operator. This can be either done by analytical cost models (e.g., Manegold
and others for CPUs [40] and He and others for GPUs [29]) or learning-based
approaches (e.g., Breß and others [14] or Ilić and Sousa [36]).

CPU/GPU Scheduler: Based on the cost models, a scheduler needs to allo-
cate processing devices for a set of operators (e.g., CHPS from Ilić and Sousa,
HyPE from Breß and others [14], or StarPU from Augonnet and others [5]).

ply techniques from Machine Learning to adapt to the current hardware, are likely
required here.

18 We are aware that some in-memory DBMSs can also store data row-oriented, such
as HyPer [38]. However, in GDBMSs, row-oriented storage either increases the data
volume to be transfered or requires a projection operation before the transfer. A row-
oriented layout also makes it difficult to achieve optimal memory access patterns on
a GPU.



XXX

Hybrid Query Optimizer: The query optimizer needs to consider the data
transfer bottleneck and memory requirements of operators to create a suit-
able physical execution plan. Thus, the optimizer should make use of cost
models, a CPU/GPU scheduler, and heuristics minimizing the time penalty
of data transfers (e.g., HyPE from Breß and others [14]).

Access structures and algorithms for the GPU: In order to support GPU-
acceleration, a DBMS needs to implement access structures on the GPU (e.g.,
columns or B+-trees) and operators that work on them. Here, the most ap-
proaches were developed [7, 21, 29, 32, 48, 49].

Data Placement Strategy: A DBMS needs to keep track of which data is
stored on the GPU, and which access structure needs to be transferred to
GPU memory [29]. Aside from a manual memory management, it is also
possible to use techniques such as UVA and let the GPU driver handle the
data transfers transparently to the DBMS [62]. However, this may result in
less efficiency because a manual memory management can exploit knowledge
about the DBMS and the workload.

Implementing these extensions is a necessary precondition for a DBMS to sup-
port GPU co-processing efficiently.

5 Open Challenges and Research Questions

In this section, we identify open challenges for GPU-accelerated DBMSs. We
differentiate between two major classes of challenges, namely the IO bottleneck,
which includes disk IO as well as data transfers between CPU and GPU, and
query optimization.

5.1 IO Bottleneck

In a GDBMS, there are two major IO bottlenecks. The first is the classical disk
IO, and the second bottleneck is the PCIe bus. As for the latter bottleneck, we
can differ between avoiding and reducing the impact of the bottleneck.

Disk-IO Bottleneck: GPU-accelerated operators are of little use for disk-based
database systems, where most time is spent on disk I/O. Since the GPU im-
proves performance only once the data is in main memory, time savings will
be small compared to the total query runtime. Furthermore, disk-resident
databases are typically very large, making it harder to find an optimal data
placement strategy. However, database systems can benefit from GPUs even
in scenarios where not the complete database fits into main memory. As long
as the hot data fits into main memory, GPUs can accelerate data processing.
It is still an open problem to which degree a database has to fit into the
CPU’s main memory, so GPU acceleration pays off.

Data Placement Strategy: GPU-accelerated databases try to keep relational
data cached on the device to avoid data transfer. Since device memory is
limited, this is often only possible for a subset of the data. Deciding which



XXXI

part of the data should be offloaded to the GPU – finding a data placement
strategy – is a difficult problem that currently remains unsolved.

Reducing PCIe Bus Bottleneck: Data transfers can be significantly accel-
erated by keeping data in pinned host memory. However, the amount of
available pinned memory is much more limited compared to the amount of
available virtual memory. Therefore, a GDBMS has to decide which data to
keep in pinned memory. Since data is typically cached in GPU memory, a
GDBMS needs a multi-level caching technique, which is yet to be found.

5.2 Query Optimization

In GDBMSs, query processing and optimization have to cope with new chal-
lenges. We identify as major open challenges a generic cost model, an increased
complexity of query optimization due to the larger optimization space, insuffi-
cient support for using multi-processing devices for query-compilation approaches,
and accelerating different workload types.

Generic Cost Model: From the query-optimization perspective, a GDBMS
needs a cost model to perform cost-based optimization. In this area, two
basic cost-model classes have emerged. The first class consists of analytical
cost models and the second class makes use of machine-learning approaches
to learn cost models for some training data. While analytical cost models
excel in computational efficiency, learning-based strategies need no knowl-
edge about the underlying hardware and can adapt to changing data. It is
still open which kind of cost model is optimal for GDBMSs.

Increased Complexity of Query Optimization: Having the option of run-
ning operations on a GPU increases the complexity of query optimization:
The plan search space is significantly larger and a cost function that com-
pares run-times across architectures is required. While there has been prior
work in this direction [14, 15, 29], GPU-aware query optimization remains an
open challenge.

Query Compilation for Multiple Devices: With the upcoming trend of query
compilation, the basic problem of processing-device allocation remains the
same as in traditional query optimization. However, as of now, the available
compilation approaches only compile complete queries for either the CPU or
the GPU. It is still an open challenge how to compile queries to code that
uses more than one processing device concurrently.

Considering different Workload Types: OLTP as well as OLAP workloads
can be significantly accelerated using GPUs. Furthermore, it became com-
mon to have a mix of both workload types in a single system. It remains open,
which workload types are more suited for which processing-device type and
how to efficiently schedule OLTP and OLAP queries on the CPU and the
GPU.



XXXII

6 Conclusion and Future Directions

The performance of modern processors is no longer bound primarily by transistor
density but by a fixed energy budget, the power wall [12]. Whereas CPUs often
spend additional chip space on more cache capacity, other processors spend most
of their chip space on light-weight cores, which omit heavy control logic and are
thus, more energy efficient. Therefore, future machines will likely consist of a
set of heterogeneous processors, having CPUs and specialized co-processors such
as GPUs, Multiple Integrated Cores (MICs), or FPGAs. Hence, the question
of using co-processors in databases is not why but how we can do this most
efficiently.

The pioneer of modern co-processors is the GPU, and many prototypes of
GPU-accelerated DBMSs have emerged over the past seven years implementing
new co-processing approaches and proposing new system architectures. We ar-
gue that we need to take into account tomorrows hardware in today’s design
decisions. Therefore, in this paper, we theoretically explored the design space
of GPU-aware database systems. In summary, we argue that a GDBMS should
be an in-memory, column-oriented DBMS using the block-at-a-time processing
model, possibly extended by a just-in-time-compilation component. The system
should have a query optimizer that is aware of co-processors and data-locality,
and is able to distribute a workload across all available (co-)processors.

We validated these findings by surveying the implementation details of eight
existing GDBMSs and classifying them along the mentioned dimensions. Addi-
tionally, we summarized common optimizations implemented in GDBMSs and
inferred a reference architecture for GDBMSs, which may act as a starting point
in integrating GPU-acceleration in popular main-memory DBMSs. Finally, we
identified potential open challenges for further development of GDBMSs.

Our results are not limited to GPUs, but should also be applicable to other
co-processors. The existing techniques can be applied to virtually all massively
parallel processors having dedicated high-bandwidth memory with limited stor-
age capacity.

Acknowledgements We thank Tobias Lauer from Jedox AG and the anonymous

reviewers of the GPUs in Databases Workshop for their helpful feedback on the work-

shop version of this paper [17]. We thank Jens Teubner from TU Dortmund University,

Michael Saecker from ParStream GmbH, and the anonymous reviewers of the TLDKS

journal for their helpful comments on the journal version of this paper.

References

1. Palo GPU accelerator. White Paper, 2010.
2. Parstream – turning data into knowledge. White Paper, November 2010.
3. A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis. Weaving relations for

cache performance. In VLDB, pages 169–180. Morgan Kaufmann Publishers Inc.,
2001.



XXXIII

4. W. Andrzejewski and R. Wrembel. GPU-WAH: Applying GPUs to compressing
bitmap indexes with word aligned hybrid. In DEXA, pages 315–329. Springer,
2010.

5. C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU: A Unified
Platform for Task Scheduling on Heterogeneous Multicore Architectures. Concur-
rency and Computation: Practice & Experience, 23(2):187–198, 2011.

6. P. Bakkum and S. Chakradhar. Efficient data management for GPU databases.
2012. http://pbbakkum.com/virginian/paper.pdf.

7. P. Bakkum and K. Skadron. Accelerating SQL database operations on a GPU with
CUDA. In GPGPU, pages 94–103. ACM, 2010.

8. F. Beier, T. Kilias, and K.-U. Sattler. GiST scan acceleration using coprocessors.
In DaMoN, pages 63–69. ACM, 2012.

9. C. Binnig, S. Hildenbrand, and F. Färber. Dictionary-based order-preserving string
compression for main memory column stores. In SIGMOD, pages 283–296. ACM,
2009.

10. P. A. Boncz, M. L. Kersten, and S. Manegold. Breaking the memory wall in
MonetDB. Commun. ACM, 51(12):77–85, 2008.

11. P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-pipelining query
execution. In CIDR, pages 225–237, 2005.

12. S. Borkar and A. A. Chien. The future of microprocessors. Communications of the
ACM, 54(5):67–77, 2011.

13. S. Breß. Why it is time for a HyPE: A hybrid query processing engine for efficient
GPU coprocessing in dbms. The VLDB PhD workshop, PVLDB, 6(12):1398–1403,
2013.

14. S. Breß, F. Beier, H. Rauhe, K.-U. Sattler, E. Schallehn, and G. Saake. Effi-
cient co-processor utilization in database query processing. Information Systems,
38(8):1084–1096, 2013.

15. S. Breß, I. Geist, E. Schallehn, M. Mory, and G. Saake. A framework for cost based
optimization of hybrid CPU/GPU query plans in database systems. Control and
Cybernetics, 41(4):715–742, 2012.

16. S. Breß, R. Haberkorn, and S. Ladewig. CoGaDB reference manual,
2014. http://wwwiti.cs.uni-magdeburg.de/iti_db/research/gpu/cogadb/0.

3/doc/refman.pdf.
17. S. Breß, M. Heimel, N. Siegmund, L. Bellatreche, and G. Saake. Exploring the

design space of a GPU-aware database architecture. In ADBIS workshop on GPUs
In Databases (GID), pages 225–234. Springer, 2013.

18. S. Breß, N. Siegmund, L. Bellatreche, and G. Saake. An operator-stream-based
scheduling engine for effective GPU coprocessing. In ADBIS, pages 288–301.
Springer, 2013.

19. D. Broneske, S. Breß, M. Heimel, and G. Saake. Toward hardware-sensitive
database operations. In EDBT, pages 229–234. OpenProceedings.org, 2014.

20. J. Dees and P. Sanders. Efficient many-core query execution in main memory
column-stores. In ICDE, pages 350–361. IEEE, 2013.

21. G. Diamos, H. Wu, A. Lele, J. Wang, and S. Yalamanchili. Efficient Relational
Algebra Algorithms and Data Structures for GPU. Technical report, Center for
Experimental Research in Computer Systems (CERS), 2012.

22. R. Fang, B. He, M. Lu, K. Yang, N. K. Govindaraju, Q. Luo, and P. V. Sander.
GPUQP: Query co-processing using graphics processors. In SIGMOD, pages 1061–
1063. ACM, 2007.

23. W. Fang, B. He, and Q. Luo. Database compression on graphics processors.
PVLDB, 3:670–680, September 2010.



XXXIV

24. B. R. Gaster, L. Howes, D. Kaeli, P. Mistry, and D. Schaa. Heterogeneous Com-
puting With Opencl. Elsevier Science & Technology, 2012.

25. P. Ghodsnia. An in-GPU-memory column-oriented database for processing ana-
lytical workloads. In The VLDB PhD Workshop. VLDB Endowment, 2012.

26. G. Graefe. Encapsulation of parallelism in the volcano query processing system.
In SIGMOD, pages 102–111. ACM, 1990.

27. C. Gregg and K. Hazelwood. Where is the data? why you cannot debate CPU vs.
GPU performance without the answer. In ISPASS, pages 134–144. IEEE, 2011.

28. B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars: A mapreduce
framework on graphics processors. In PACT, pages 260–269. ACM, 2008.

29. B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V. Sander.
Relational query co-processing on graphics processors. In ACM Trans. Database
Syst., volume 34. ACM, 2009.

30. B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and P. Sander. Relational
joins on graphics processors. In SIGMOD, pages 511–524. ACM, 2008.

31. B. He and J. X. Yu. High-Throughput Transaction Executions on Graphics Pro-
cessors. PVLDB, 4(5):314–325, 2011.

32. J. He, M. Lu, and B. He. Revisiting co-processing for hash joins on the coupled
CPU-GPU architecture. PVLDB, 6(10):889–900, 2013.

33. M. Heimel and V. Markl. A first step towards GPU-assisted query optimization.
In ADMS. VLDB Endowment, 2012.

34. M. Heimel, M. Saecker, H. Pirk, S. Manegold, and V. Markl. Hardware-oblivious
parallelism for in-memory column-stores. PVLDB, 6(9):709–720, 2013.

35. S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S. Mullender, and M. L. Kersten.
MonetDB: Two decades of research in column-oriented database architectures.
IEEE Data Eng. Bull., 35(1):40–45, 2012.

36. A. Ilić and L. Sousa. CHPS: An environment for collaborative execution on het-
erogeneous desktop systems. International Journal of Networking and Computing,
1(1):96–113, 2011.

37. T. Kaldewey, G. Lohman, R. Mueller, and P. Volk. GPU join processing revisited.
In DaMoN, pages 55–62. ACM, 2012.

38. A. Kemper and T. Neumann. HyPer: A hybrid OLTP&OLAP main memory
database system based on virtual memory snapshots. In ICDE, pages 195–206.
IEEE, 2011.

39. D. Kossmann. The state of the art in distributed query processing. ACM Com-
puting Surveys, 32(4):422–469, 2000.

40. S. Manegold, P. Boncz, and M. L. Kersten. Generic database cost models for
hierarchical memory systems. In PVLDB, pages 191–202. VLDB Endowment,
2002.

41. S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing database architecture
for the new bottleneck: Memory access. The VLDB Journal, 9(3):231–246, 2000.

42. S. Manegold, M. L. Kersten, and P. Boncz. Database architecture evolution: Mam-
mals flourished long before dinosaurs became extinct. PVLDB, 2(2):1648–1653,
2009.

43. T. Mostak. An overview of MapD (massively parallel database). White Paper,
Massachusetts Institute of Technology, April 2013. http://geops.csail.mit.edu/
docs/mapd_overview.pdf.

44. T. Neumann. Efficiently compiling efficient query plans for modern hardware.
PVLDB, 4(9):539–550, 2011.



XXXV

45. NVIDIA. NVIDIA CUDA C programming guide. http://docs.nvidia.com/cuda/
pdf/CUDA_C_Programming_Guide.pdf, 2014. pp. 31–36, 40, 213-216, Version 6.0,
[Online; accessed 21-Apr-2014].

46. J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A. E. Lefohn, and
T. J. Purcell. A survey of general-purpose computation on graphics hardware.
Computer Graphics Forum, 26(1):80–113, 2007.

47. H. Pirk. Efficient cross-device query processing. In The VLDB PhD Workshop.
VLDB Endowment, 2012.

48. H. Pirk, S. Manegold, and M. Kersten. Accelerating foreign-key joins using asym-
metric memory channels. In ADMS, pages 585–597. VLDB Endowment, 2011.

49. H. Pirk, S. Manegold, and M. Kersten. Waste not... efficient co-processing of
relational data. In ICDE. IEEE, 2014.

50. P. Przymus and K. Kaczmarski. Dynamic compression strategy for time series
database using GPU. In ADBIS, pages 235–244. Springer, 2013.

51. P. Przymus, K. Kaczmarski, and K. Stencel. A bi-objective optimization framework
for heterogeneous CPU/GPU query plans. In CS&P, pages 342–354. CEUR-WS,
2013.

52. T. Rabl, M. Poess, H.-A. Jacobsen, P. O’Neil, and E. O’Neil. Variations of the
star schema benchmark to test the effects of data skew on query performance. In
ICPE, pages 361–372. ACM, 2013.

53. H. Rauhe, J. Dees, K.-U. Sattler, and F. Faerber. Multi-level parallel query exe-
cution framework for CPU and GPU. In ADBIS, pages 330–343. Springer, 2013.

54. B. Răducanu, P. Boncz, and M. Zukowski. Micro adaptivity in vectorwise. In
SIGMOD, pages 1231–1242. ACM, 2013.

55. M. Saecker and V. Markl. Big data analytics on modern hardware architectures:
A technology survey. In eBISS, pages 125–149. Springer, 2012.

56. J. Sanders and E. Kandrot. CUDA by Example: An Introduction to General-
Purpose GPU Programming. Addison-Wesley Professional, 1st edition, 2010.

57. M. Schäler, A. Grebhahn, R. Schröter, S. Schulze, V. Köppen, and G. Saake.
QuEval: Beyond high-dimensional indexing à la carte. PVLDB, 6(14):1654–1665,
2013.

58. P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.
Access path selection in a relational database management system. In SIGMOD,
pages 23–34. ACM, 1979.

59. D. Tsirogiannis, S. Harizopoulos, and M. A. Shah. Analyzing the energy efficiency
of a database server. In SIGMOD, pages 231–242. ACM, 2010.

60. S. D. Viglas. Just-in-time compilation for SQL query processing. PVLDB,
6(11):1190–1191, 2013.

61. H. Wu, G. Diamos, S. Cadambi, and S. Yalamanchili. Kernel weaver: Automatically
fusing database primitives for efficient GPU computation. In MICRO, pages 107–
118. IEEE, 2012.

62. Y. Yuan, R. Lee, and X. Zhang. The yin and yang of processing data warehousing
queries on GPU devices. PVLDB, 6(10):817–828, 2013.

63. S. Zhang, J. He, B. He, and M. Lu. OmniDB: Towards portable and efficient query
processing on parallel CPU/GPU architectures. PVLDB, 6(12):1374–1377, 2013.

64. J. Zhong and B. He. Medusa: Simplified graph processing on gpus. IEEE Trans-
actions on Parallel and Distributed Systems, 99:1–14, 2013.

65. J. Zhong and B. He. Parallel graph processing on graphics processors made easy.
PVLDB, 6(12):1270–1273, 2013.


