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GPU Accelerated Discontinuous Galerkin Time Domain Algorithm
for Electromagnetic Problems of Electrically Large Objects

Lei Zhao1, 2, *, Geng Chen1, and Wenhua Yu1

Abstract—In this paper, an efficient time domain simulation algorithm is proposed to analyze the
electromagnetic scattering and radiation problems. The algorithm is based on discontinuous Galerkin
time domain (DGTD) method and parallelization acceleration technique using the graphics processing
units (GPU), which offers the capability for accelerating the computational electromagnetics analyses.
The bottlenecks using the GPU DGTD acceleration for electromagnetic analyses are investigated, and
potential strategies to alleviate the bottlenecks are proposed. We first discuss the efficient parallelization
strategies handling the local-element differentiation, surface integrals, RK time-integration assembly
on the GPU platforms, and then, we explore how to implement the DGTD method on the Compute
Unified Device Architecture (CUDA). The accuracy and performance of the DGTD method are analyzed
through illustrated benchmarks. We demonstrate that the DGTD method is better suitable for GPUs
to achieve significant speedup improvement over modern multi-core CPUs.

1. INTRODUCTION

During the last decades, finite element method (FEM), finite difference time domain (FDTD) and
method of moments (MoM) have been dominant in computational electromagnetic methods [1–6]. These
methods have their strengths and weaknesses when applied to solve electromagnetic problems. Recently,
discontinuous Galerkin time domain (DGTD) is possible to construct a novel time domain numerical
method [7–12], which has most of the FDTD advantages: spatially explicit algorithm, simplicity, easy
parallelization, easy porting to GPUs, memory and computational cost only growing linearly with the
number of elements, while it retains the most benefits from the FEM method such as adaptability of
the unstructured meshes and spatial high-order convergence, which enable us to deal with the problems
requiring precision variation over the entire domain or the solution lack of smoothness. The DGTD
method has met an increased interest in the purpose of simulating complex practical problems. Indeed,
the DGTD method can be seen as a crossover approach between the finite element time domain (FETD)
method [13] whose accuracy depends on the order of basis function and the finite volume time domain
(FVTD) method [14] whose neighboring cells are connected by numerical fluxes.

The parallelization technique of the DGTD method employs a widely used single program multiple
data (SPMD) strategy that combines a partitioning of the underlying mesh and a message passing
programming model [15]. Concerning the mesh partition, the compact nature of the DGTD method
naturally lends itself to an element-wise decomposition, and thus yields a minimal overlap interface
between neighboring subdomains. Such a kind of partition introduces a set of artificial interfaces that
simply consists in triangulated surfaces. For each pair of neighboring elements, such an interface is
duplicated in the topological definition of the concerned elements and the computation of numerical
fluxes for these artificial boundary faces is performed twice on the both sides.
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For more than three decades, the computer industry has witnessed an ever increasing drive
of performance improvement. Designing more capable microprocessors have evolved towards the
development of multi-core CPUs or multi-CPU workstations that effectively multiply the performance
with multiple cores on the same chip or multiple CPUs on the same motherboard if they are working
on one problem simultaneously. One other particularly noteworthy approach is the use of many-core
devices such as GPUs [16–20] or Intel PHI coprocessors (aka, many integrated core (MIC)) [5], which
accelerate computations orchestrated by a conventional CPU program. The PHI coprocessor is for the
first time introduced to the EM simulation in 2013 by Yu and his colleagues [21]. A recent paper [17]
discussed the adaptation of a multirate time stepping based DGTD method for solving the time-domain
Maxwell’s equations on a multiple GPU system.

In this paper, the GPU acceleration technique for the DGTD methods is developed based on the
CUDA platform [22]. The computational cost including memory usage, spatial discretization, simulation
time and accuracy is investigated, and various comparisons with the existing analytical and numerical
methods have been made for typical EM problems. The implementation of the DGTD method mainly
includes element local differentiation, flux extraction and flux lifting three parts, and we measure the
time consumption of local differentiation, flux extraction and flux lifting with the basis function order
increasing. It is evident from the numerical experiments that the GPU-based DGTD method is an
accurate, reliable and fast algorithm for most practical EM problems.

2. THEORY AND METHOD FOR DGTD

Maxwell’s equations are the general partial equations to describe the wave propagation and intersection
between wave and objects. Its differential form can be expressed as follows:

∂tD = ∇× H + J (1)
∂tB = −∇× E (2)

∇ · D = ρ (3)
∇ ·B = 0 (4)

where, E is the electric field, D the electric flux density, H the magnetic field, and B the magnetic flux
density. For the isotropic materials, they are related through the formula below:

D = ε0εrE and B = μrμ0H (5)

where ε0 and μ0 are the permittivity and permeability in free space, respectively, and εr and μr are the
relative permittivity and permeability, respectively. The current J is typically related to the electric
field E, through Ohms law, J = σE, where σ is the finite conductivity. In the source free region, Eqs. (1)
and (2) can be expressed as the conservation formulation.

Q∂tq + ∇ · F = 0 (6)

where Q =
[

εr 0
0 μr

]
, q =

[
E
H

]
, F =

[
F1

F2

F3

]T

, Fi =
[ −ei × H

ei × E

]
, and ei is the unitary vector

along the axis in the Cartesian coordinate system. Assuming that q̄ (r, t) is an approximation solution
of Eq. (6), since q (r, t) and q̄ (r, t) are not identical, the left hand side of Eq. (6) is not equal to zero
after q̄ (r, t) is used in Eq. (6), namely,

Q∂tq̄ (r, t) + ∇ · F (q̄ (r, t)) = res (r, t) (7)

The 3-D domain Ω is discretized into a set of tetrahedrons {Ωi|i = 1, 2, . . . , N}. Assume that the

approximation solution q̄ (r, t) =
[

EN

HN

]
can be expressed as a linear function Lk(x) inside the local

region k, namely:

qk
N (r, t) =

Np∑
i=1

q (ri, t)Li (r) (8)



Progress In Electromagnetics Research B, Vol. 67, 2016 139

where Np is the order of basis function and Lk(x) the basis function for the local region k. 3-D Lagrange
basis function is defined as follows:

Li (x) =
k+l+m≤p∑
k,l,m=0

ai
k,l,mxkylzm (9)

And then the total number of points can be expressed

Np =
(n + 1) (n + 2) (n + 3)

6
(10)

where, n is the number of Lagrange order. The Lagrange polynomial is selected to be basis function
because the field is equal to its coefficients in its Lagrange expansion. The grid point in the Lagrange
polynomial is selected to be on the Lagrange-Gauss-Labatto (LGL) points [23], as shown in Fig. 1.

 
(a) (b) (c) (d)

Figure 1. Relationship between the number of Lagrange function order and points in each element.
(a) 3-order polynomial and 10 points (2-D); (b) 4-order polynomial and 15 points (2-D); (c) 3-order
polynomial and 20 points (3-D); and (d) 4-order polynomial and 35 points (3-D).

We now use Galerkin’s method to calculate the weighted residual [7]. Assuming that the test
function is the same as the basis function Lk(r), projecting the residual on the right side of Eq. (7) onto
the test function Lk(r), and letting the projection to be zero, we have:∫

Ωk

res (r, t) Lk (x) dr = 0 (11)

Inserting the expression of residual res(r, t) into Eq. (11), we have:∫
Ωk

[Q∂tq̄ (r, t) + ∇ · F (q̄ (r, t))]Lk (r) dr = 0 (12)

Performing the spatial integration by parts, we have the weak coupling formulation:∫
Ωk

(Q∂tq̄Li (r) − F (q̄) · ∇Li (r)) dv = ∫
∂Ω

(n̂ ·F(q̄))Li(r)ds (13)

where, n̂ is the outward unitary vector of the DGTD element. Performing the integration by part for
Eq. (13), we have the strength coupling formulation as follows:∫

Ωk

(Q∂tq̄Li (r) −∇ · F (q̄) Li (r))dr =
∫

∂Ωk

n̂ · (F(q̄) − F∗(q̄))Li(r)ds (14)

In this paper, we only consider the strength coupling case in the DGTD implementation. Since there
are two points at the same position on the two sides of interface, we can use the first-order upwind flux
to approximate the right side of Eq. (14), and then we have:

n̂ · (F(q̄) − F∗(q̄)) =
1
2

⎡
⎢⎣

1
Y+ + Y− n̂× (Z+(H+

N − H−
N ) − n̂× (E+

N − E−
N ))

1
Z+ + Z− n̂× (−Y +(E+

N − E−
N ) − n̂× (H+

N − H−
N ))

⎤
⎥⎦ (15)
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where (E−
N ,H−

N ) refers to the local solution on the trace of element Ωk, (E+
N ,H+

N ) refers to the trace

of (EN ,HN ) along the shared face in the neighboring element. Z± =
√

μ±
r /ε±r is the local dielectric

impedance and Y± =
√

ε±r /μ±
r is the local dielectric admittance. The upwind scheme is conditionally

stable and has a better accuracy. Then, when the tetrahedral meshes are used we can obtain the
semi-discrete system of Maxwell’s equations, and the semi-discrete system can be expressed as:

∂tEN =
1
εr

(M)−1

(
S×HN +

4∑
n=1

(
Gsn

(
E+

N−E−
N

)−n̂
(
n̂·(E+

N−E−
N

))
+Z+n̂×(H+

N − H−
N

)
Z+ + Z−

))
(16)

∂tHN =
1
μr

(M)−1

(
S×EN +

4∑
n=1

(
Gsn

(
H+

N−H−
N

)−n̂
(
n̂·(H+

N−H−
N

))
+Y +n̂×(E+

N − E−
N

)
Y + + Y −

))
(17)

In which, the mass matrix is defined as:

Mi,j =
∫
Ωk

Li (r) Lj (r) dv (18)

S = (Sx, Sy, Sz)T is a stiffness matrix vector. Sζ , ζ = x, y, z are the stiffness matrices in the physical
space Ωk and are expressed as:

(Sζ)i,j =
∫
Ωk

Li (r) ∂ζLj (r) dv, ζ = x, y, z (19)

Gsn is a face mass matrix for the surface of tetrahedron, and can be expressed as:

(Gsn)i,j =
∫
sn

Li (r)Lj (r) ds, r ∈ sn (20)

Taking the source term s(t) into account, we write Eqs. (16) and (17) in the simplified format:

∂tq = Qq + s(t) (21)

where, Q is the operator in the semi-discrete system. Its more common expression can be in the following
form:

∂tq (r) = f (q (r) , t) (22)

There are many ways to solve the equation above. The accurate solution to DGTD update equations
requires using high-order polynomial. To reduce the memory usage in the DGTD method, we use the
five-stage and fourth-order accurate and Runge-Kutta method to solve the DGTD update equations [24].

q0 = q(tn) (23a)
Ri = aiRi−1 + Δtf(qi−1, tn + ciΔt) (23b)
qi = q + biRi (23c)
q(tn+1) = q4 (23d)

where, the subscript i is taken to be 1, 2, 3, 4, and 5, which means that the number of stages is 5. The
coefficients ai, bi, and ci define the properties (order of accuracy, stability contour) of the low storage
Runge-Kutta (LSRK) scheme. The time evolution of the electromagnetic fields is most conveniently
accomplished using low-storage Runge-Kutta method for a number of reasons. First, it is desirable
to accompany the higher-order accurate DG discretization in space with a higher-order accurate time
stepping scheme. Suitable LSRK schemes are available for up to fourth order. Secondly, given a total
number of N expansion coefficients, LSRK methods require a total of 2N values stored in two registers
q and R.

As an explicit method, the LSRK scheme is subject to the Courant-Friedrichs-Lewy condition (CFL
condition). As soon as the time step Δt exceeds a critical time step, the numerical solution is subject
to unphysical exponential growth. The critical time step, for which the numerical solution just does not
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grow exponentially, depends both on the spatial disretization, on the time stepping scheme and on the
physical model. Similar to the popular FDTD algorithm, the maximum time step for LSRK scheme is
governed by

Δtmax ≤ mesh width
v

(24)

where, v is the wave speed in dielectric medium. The smallest distance between nodes within an element
influences the DGTD time step. The higher the order and the more deformed an element is, the smaller
the maximum time step will be.

3. GPU ACCELERATION FOR DGTD METHOD

GPU has been popular with fast development of high performance computing techniques for a dozen
of years. Here we investigate the GPU acceleration technique for the DGTD method based the CUDA
platform [25]. GPU has evolved into a high performance computing due to its tremendous computational
power and very high memory bandwidth. The main concerns about GPU in the past years are
portable; however, CUDA as a general computation platform completely changes this situation. As
a C-like programming language with its own compiler and libraries, CUDA significantly makes the
GPU codes portable [26, 27]. A GPU consists of several texture processing clusters. Each cluster
consists of a large block of texture fetch units and several streaming multiprocessors, which comprises
eight computing units and two super functional units. Each multiprocessor has certain resources, for
example, special shared memory. It is not cache but programmers may use it. This shared memory
allows to exchange data between threads of a single block. All threads of a single block are always
executed by the same multiprocessor. Threads from different blocks cannot exchange data between
each other. Shared memory is often useful, except those cases when several threads access the same
memory bank. Multiprocessors can access video memory as well, but it involves high latencies. To
accelerate memory access and reduce the frequency of video memory calls, each multiprocessor has a
small amount of cache for constants and texture data.

In order to use GPU effectively, it is also important to use buffering to store data (registers,
shared memory, etc.) and minimize data exchange between CPU and GPU. When optimizing GPU
applications, it is critical to achieve an optimal balance between the size and number of blocks. More
threads in a block will reduce the effect of memory latencies but will also reduce the number of
available registers. NVIDIA recommends using blocks of 128 or 256 threads as a compromise value
to reach optimal latencies and number of registers. Two key optimization methods for the DGTD GPU
acceleration include: (1) using shared memory as much as possible, because it is much faster than global
video memory; (2) reading and writing from global memory must be coalesced, if possible. For this
purpose the special data types to read and write 32/64/128 bits in a single operation is important. If
it is difficult to coalesce reading operations, we may try to use texture lookups.

During the preprocessing, the local computation is converted to the matrix-vector-products. The
DGTD implementation on the GPU platforms comprises the kernels, differentiation, surface integrals,
and the Runge-Kutta integration. Some elementary matrices such as the differentiation matrix on the
reference element are stored in the texture memory because there are constants in memory and texture
memory has texture cache. Using texture memory presents some benefits compared to read from global
or constant memory. The basic procedure of the DGTD GPU acceleration is summarized in the steps
below:

(1) Load constant data including material information, mesh information, excitation, and output
parameters from the host to device memory. Bundle the constant data to the texture memory
to utilize the cache memory.

(2) Local curl operator:
• Load fields into shared memory.
• Synchronize with all the other threads of the block so that each thread can safely read shared

memory locations that were populated by different threads.
• Compute volume integral.

(3) Numerical flux and surface integrals:
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• Load fields into shared memory.
• Synchronize with all the other threads of the block so that each thread can safely read shared

memory locations that were populated by different threads.
• Calculate numerical flux and surface integrals.

(4) Field update of Runge-Kuttascheme:
• Update fields bytheLow storage Runge-Kutta scheme.
• Write the results back tothe device memory.

(5) Repeat (2) to (4).

3.1. Layout of Degree of Freedom

For the sake of convenience, we introduce the parameters used in the DGTD method. K is the number
of tetrahedra in the domain. Np is the number of degrees of freedoms (DOFs) in one element for each
field component for a given order of Lagrange polynomial. Mk is the number of tetrahedra in one block,
which depends on the interpolation order. Mk × Np is taken to be a multiple of 32. Nfp is the number
of DOFs on the face Fik for each field component for a given order of Lagrange polynomial.

The memory layout is extremely important, which must match the kernel load patterns in order
to achieve an efficient memory access. As show in Fig. 2, the pad memory (add some zeros to match
the memory layout pattern) is used to keep the size of memory to be the multiple of 128. There
are three strategies about the GPU performance optimization. The first one is maximal parallel
execution to achieve maximal utilization; the second one is optimizing memory usage to achieve maximal
memory throughout; and the third one is optimizing instructions usage to achieve maximal instruction
throughout. The first and second strategies affect the DGTD performance. The number of threads per
block should be a multiple of wrap size to avoid wasting computing resources.

Element 0 Element Mk

Pad

Pad

Pad

Pad

Pad

Figure 2. Global memory layout in the DGTD method.

3.2. Local-Element Curl Kernel

The differentiation kernel evaluates the curl operations, which is the product of three separate matrices
whose results are combined to find the x-, y-, and z-derivatives on the reference elements. Each
differentiation matrix has Np ×Np entries and multiplies a vector of Np entries of one field component.
Toward this goal, the derivatives will still have to apply the reference derivatives to global differentiation
coefficients for each element, there are total 3 × 3 coefficients to be loaded. One thread is normally
used to handle one point in an element. For example, if we set the Lagrange polynomial order to be 2,
there will be 10 DoFs of each field component. If using one element one block principle, there will be
22 threads wasted in a wrap. Because all the threads in one block are grouped to several wraps of 32
threads. So we should set the number of threads multiple of wrap size. Even the maximum threads in
a block have 1,024 threads, it is not a good idea to use all 1,024 threads in one block. From authors’
experience the threads per block can choose a number between 64 and 128.

The next strategy to improve performance is to use the share memory. Share memory is faster than
global memory, but each block has only 64 k. In the differentiation operator, the three differentiation
matrices need to be loaded, since the matrices are constants they can be stored in the share memory.
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And each field component is used Np times in the matrix-vector product. If we load them to the share
memory by coalescing access, we also store them in the share memory. The thread block is given by
Np × MK . The thread index in the first dimension tx reflects the number of elements in the block,
and the second is the number of DOFs per elements. For the maximum usage, the index ty equals to
number of the rows in Dx, Dy, and Dz. As a result, we launch a grid of [K]MK thread blocks, which
are indexed by bx. During initialization, Mk is determined by evaluating the minimum execution time
in the range Mk belong to the integer from 1 to 10. As K is a real number not multiple of Mk, we
should append some elements.

3.3. Surfaces Kernel

If one thread works on all the points on one tetrahedral surface and we do not fuse the flux in the
blocks, we have to compute numerical flux and surface integral using two kernels. This method results
in efficient usage of threads but there will be at least 6K × Nf × Nfp (6 indicates 6 field components
at each point) extra global memory to store the flux with extra memory latency. If fusing the flux in
one block, since there are Nf × Nfp = Np DOFs on one tetrahedral surface, it will cause thread waste.
If we fuse the flux temporarily in the share memory, this will significantly reduce memory usage. If
Nf × Nfp threads are used for one element, the total threads in one block is Mk × Nf × Nfp. The
dominant simulation time of this kernel is spent on the computation of the numerical flux and surface
integral.

3.4. Update Kernel in the Runge-Kutta Method

Compared to the local curl operator and flux calculation, the update kernel is relatively simple. It
requires only local information and 2 Runge-Kutta floating coefficients located in register. Therefore, it
is not necessary to use shared memory because the fields are used only once. The pseudo main routine
of the DGTD code on GPU platform is described in listing 1.

Listing 1 Implementation of the DGTD method on the GPU platform.

void MaxwellsKernel3d Grid2d(Mesh *mesh, float frka, float frkb, float fdt, int steps, int increment) {
//Grab data from device and initiate sends
MaxwellsMPISend3d(mesh);
BlocksPerGrid = mesh->K;
ThreadsPerBlock = p Np;
//Evaluate volume derivatives
MaxwellsGPU VOL Kernel3D MK Grid 2D<<<Blocks,

threads>>>(c rhsQ, c Q, c vgeo, mesh->K);
//Finalize sends and recvs, and transfer to device
//for GPU parallel processing.
MaxwellsMPIRecv3d(mesh, c partQ);
//Add plane excitation
Blocks = dim3(GridDim x, GridDim y);
threads = dim3(MKF, p Nfp * p Nfaces);
MaxwellsGPU SURF Kernel3D PlaneWave MK Grid 2d<<<Blocks,

threads>>>(mesh->pulse width, mesh->pulse td,
mesh->frequency, c Q, c rhsQ, c idM idP, mesh->time,
mesh->dt, c huygens, c PEC, mesh->K);

//Update Runge-Kutta Step
ThreadsPerBlock = 1024;
BlocksPerGrid = (Ntotal + ThreadsPerBlock −1) / ThreadsPerBlock;
Blocks = dim3(GridDim x, GridDim y);
MaxwellsGPU RK Kernel3D grid 2d res<<<Blocks,

ThreadsPerBlock>>>(Ntotal, c resQ, c rhsQ, c Q, frka, frkb, fdt);
if (mesh->use pml) { //for PML boundary

Blocks = dim3(GridDim x, GridDim y);
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threads = dim3(MK, p Np);
MaxwellsGPU RK Kernel3D grid 2d PML res<<<Blocks,

threads>>>(mesh->pml el id.size(), c resQ, c rhsQ, c Q,
c pml Q, c pml resQ, frka, frkb, fdt);

//Update intermediate variablesQ and P in the PML region
Blocks = dim3(GridDim x, GridDim y);
threads = dim3(MK, p Np);
MaxwellsGPU RK Kernel3D grid 2d PML Q<<<Blocks,

threads>>>(mesh->pml el id.size(), c resQ, c rhsQ, c Q,
c pml Q, c pml resQ, frka, frkb, fdt);

}
Ntotal = mesh->K * BSIZE * p Nfields;
ThreadsPerBlock = 1024;
BlocksPerGrid = (Ntotal + ThreadsPerBlock −1) / ThreadsPerBlock;
Blocks = dim3(GridDim x, GridDim y);
MaxwellsGPU RK Kernel3D grid 2d Q<<<Blocks,

ThreadsPerBlock>>>(Ntotal, c resQ, c rhsQ,
c Q, frka, frkb, fdt);

}

4. NUMERICAL RESULTS

For the PEC objects, we can apply the plane wave excitation on the PEC surface directly and use
the electric and magnetic surface currents to calculate the output parameters related to far zone fields.
However, for the dielectric objects, we use the total/scattering field method that introduces a Huygens’
surface (TF/SF surface) inside the computational domain in order to simply the plane wave excitation
and far field calculation. To avoid the field interpolation on the Huygens’ surface, we mesh the Huygens’
surface when we mesh the objects and the computational domain. It is worth to mention that the
Huygens’ surface can be an arbitrary shape and at least two cells from the objects. For example, we can
generate a conformal Huygens’ surface for a dielectric coating structure based on the outside shape to
simplify the computation. Generally speaking, there are several cells inside the white space, however,
we need to keep a safe distance for the complex structures to ensure the PML convergent.

4.1. Benchmark Tests

The first benchmark is the RCS (radar cross section) prediction of a dielectric sphere, whose radius
is 300 mm, and the relative permittivity is 4.0. A 4-layer UPML (uniaxial perfectly matched layer)
is used to truncate the DGTD mesh. The guideline of the meshing technique is same as that in the
frequency method, such as MoM and FEM. The minimum and maximum cell sizes are 24 mm and
100 mm, respectively, and the maximum cell size is inside the PML region. Total number of cells is
208,264 (not including the unknowns inside the PML region) and the total memory usage is 350 MB.
The time step size is 0.0045 ns; the total number of time steps is 29,783; and the simulation time is 57
minutes on a NVIDIA GTX780M GPU on the host DELL Allienware laptop (Intel Xeon i-7 4990MQ,
2.8 GHz and 16 GB DDR3 memory). The plane wave excitation is added on the TF/SF surface, whose
side length is 700 mm. The bistatic RCS of the dielectric sphere at 900 MHz is plotted in Fig. 3. For
the sake of comparison, we use different methods such as finite integral technique (FIT) [28], MoM [29]
and FEM [30] for the same problem, and the performance of each method is summarized in Table 1.
The degree of freedoms (DoF) in the Table is multiply of number of cells and number of points in one
element. The simulation time in the Table is on single core. In addition, we also include the simulation
using GPU for the DGTD method in Table 1.

Next, we use the DGTD method to simulate a PEC almond, as shown in Fig. 4(a), which is
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R=300 mm
εr=  4.0

Figure 3. RCS pattern of the dielectric sphere with a radius of 300 mm.

Table 1. Simulation time and memory usage for dielectric sphere using different methods.

Option FIT [28] MoM [29] FEM [30]
DGTD

[This work]

Min cell size (mm) 4 47 12 50

Max cell size (mm) 8 207 700 250

Number of elements

(×103)

4,574

(hexahedron)

16 (triangle)

151 (tetrahedron)

57

(tetrahedron)

111

(tetrahedron)

DoF (×103) 4,574 16 364 1,115

Δt (ns) 0.0077 N/A N/A 0.0057

Total time steps 13,128 N/A N/A 17,647

Memory (GB) 0.6 6.84 3.27 0.24

CPU Time (sec.) 2,026 (CPU) 691 (CPU) 916 (CPU)
782 (GPU)

15,163 (CPU)

combined from one half ellipsoid and one half elliptic. The expression of the one half ellipsoid is:

x = dt

y = 0.193333f

(√
1 −

(
t/0.416667

)2
)

cos (ϕ)

y = 0.06444d

(√
1 −

(
t/0.416667

)2
)

sin (ϕ)

And the expression of the one half elliptic is:

x = dt

y = 4.83345d

(√
1 −

(
t/2.08335

)2
)

cos (ϕ)

y = 0.06444d

(√
1 −

(
t/2.08335

)2
)

sin (ϕ)

The almond dimensions are 2, 499 (length) × 966 (width) × 330 (height) mm. The dimension of
computational domain is 3, 600 × 2, 100 × 1, 430, which is truncated by using one 4-layer UPML. The
total number of elements is 235,305, and the minimum and maximum cell sizes are 30 mm and 230 mm,
respectively. The mesh distribution on one cross section is shown in Fig. 4(b), and the TF/SF surface
that is used to calculate the RCS patterns is the border of fine and coarse meshes in Fig. 4(b). The
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(a) (b)

Figure 4. (a) Almond configuration. (b) Mesh distribution of the almond on one cross section. The
fine and coast meshes are located on the two sides of the interface of TF/SF.

Ez

Hy

Figure 5. RCS of the almond at 1GHz obtained by using the DGTD and MoM methods.

number of simulation time steps is 5,000, and the size of time step is 0.0053 ns on the NVIDIA GTX780M
GPU. The RCS patterns of almond are plotted in Fig. 5. From these two benchmark tests, we obviously
notice that the DGTD algorithm can give accurate and reliable results.

4.2. Performance Investigation

In this part, we investigate the performance of the DGTD method on the GPU platform. Here, the CPU
code written in C language is compiled with GCC 4.47 and optimization option “−O3.” To get an idea
about the GPU performance, we use one CPU core as the reference when we show the GPU performance
of the DGDT code. The test GPU platform includes a NVIDIA GeForce GTX780M mounted on the
host with an Intel Xeon Core i7 CPU 49002.7 GHz. The test example is an empty cubic cavity with a
side length of 2,000 mm.

For the sake of test, the polynomial order in the numerical simulations is taken to be 2, 3, 4, and
5, respectively. The polynomial order is the same for all the elements in the domain. The comparison
of GPU and one CPU core for the DGTD simulation is shown in Fig. 6, which shows that the main
computational kernel in the DGTD method is the volume and surface integrals. When the polynomial
order is 5, the maximum computational performance is about 820 Gflops/s, which is almost the peak
performance of the matrix-matrix calculation of CUBLAS on this GPU which is about 858.45 Gflops/s.
The speedup of GPU is plotted in Fig. 7, which show that 24–75 times speed up can be achieved as the
polynomial order increases.

4.3. Engineering Applications

The first application is an EM scattering problem from the PEC JAS-39 aircraft, as shown in Fig. 8(a).
The dimensions of aircraft are 13, 100 (length)×7, 050 (width)×3, 200 (height) mm. The computational
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Figure 6. (a) Performance comparison between GPU and CPU. (b) GPU performance of different
kernels in the DGTD method.

Figure 7. Speedup of GPU compared to one CPU core for the DGTD method.

 

Ez

Hy

(a) (b)

Figure 8. (a) JAS-39 Aircraft model and the incident plane wave in the −x-direction with the Ez

polarization. (b) Mesh distribution of the aircraft JAS-39 on one cross section. The fine and coast
meshes are located on the two sides of the interface of TF/SF.

domain is 17, 500× 10, 800× 5, 750 mm, which is truncated by UPML that has a thickness of 1,000 mm.
The total number of elements is 1,085 k, and the minimum and maximum cell sizes are 50 mm and
500 mm inside the PML region, respectively. The mesh distribution in one cross section is plotted in
Fig. 8(b). The plane wave is incident along the x-direction with the Ez polarization. The time step size
is 0.012 ns, and total simulation time is 57 minutes on the NVIDIA GTX780M GPU. The variation of
RCS with angle θ at 300 MHz obtained by using the DGTD and MoM methods is plotted in Fig. 9(a),
which shows good agreements in all directions. The surface distribution at 300 MHz on the aircraft is
plotted in Fig. 9(b).

Next application case is a helix antenna mounted on an infinitely thin circular PEC plate with a
radius of 10 mm. The cross section of PEC helix is 3 × 3 mm2, and the excitation is a voltage source
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(a) (b)

Figure 9. (a) 2-D RCS pattern of the JAS-39 aircraft at 300 MHz using the DGTD and MoM methods.
(b) Surface current distribution at 300 MHz on the JAS-39 aircraft.

Feeding gap

Helix antenna

Circular PEC ground

0.6 0.6 mm2x

(a) (b)

Figure 10. (a) Configuration of the helix antenna with a circular PEC ground (the radius is 10 mm).
(b) The structure around the feeding area.

(a) (b)

Figure 11. (a) Surface current distribution at 15 GHz. (b) 3-D directivity pattern at 9GHz.

located the gap between the PEC ground and helix, as shown in Fig. 10. The DGTD method is
employed to simulate the helix antenna, the total number of mesh elements is 115 k and the minimum
and maximum cell sizes are 1 mm on the helix and 7.8 mm near the first-order ABC. The TF/SF surface
is used to calculate the directivity pattern. We can use the surface currents to calculate the far field
parameters, however, the spherical TF/SF surface is used for the far field calculation. It is worthwhile
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Figure 12. S-parameter of the helix antenna obtained by using different methods.
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Figure 13. 3-D directivity patterns of the helix antenna at f = 9 GHz in the φ = 0◦ and 90◦. (a) plane
and (b) 90◦ plane.

mentioning that the TF/SF surface can be an arbitrary shape. The time step size is 1.43× 10−4 ns and
the total number of time steps is 37,000, which took 26 minutes on the NVIDIA GTX780M GPU. The
surface current at 15 GHz and the 3-D directivity pattern at 9GHz are plotted in Fig. 11. The variation
of S11 parameter with frequency is plotted in Fig. 12, and the results obtained by using FIT and FEM
methods are also plotted in the same figure for comparison. The directivity patterns in the two major
planes are plotted in Fig. 13 and the results obtained by using the FIT method is also plotted in the
figure for the comparison.

5. CONCLUSIONS

The DGTD method has been successfully used to solve Maxwell’s equations for a variety of EM problems
with its advantages of explicit upgrade scheme, high parallel efficiency, wideband characteristic, and non-
conformal mesh. Due to the unstructured tetrahedral meshes, the DGTD method has the advantages of
both the FDTD and FEM methods. Since the DGTD method is parallel in nature, the good performance
on the GPU platform has been demonstrated from the numerical results.
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