GPU accelerated image registration
in two and three dimensions

A. Ko6hn, J. Drexl, F. Ritter, M. Konig, and H. O. Peitgen

MeVis - Center for Medical Diagnostic Systems and Visualization
Universitat Bremen

Abstract. Medical image registration tasks of large volume datasets,
especially in the non-rigid case, often put a heavy burden on computing
resources. GPUs are a promising new approach to address computa-
tional intensive image processing tasks. We investigate recently intro-
duced GPU hardware features that accelerate 2D and 3D rigid and non-
rigid registration tasks. Our implementation is entirely GPU based.

1 Introduction

Strzodka et al. [1] describe an implementation of a 2D non-rigid registration
algorithm on a graphics processor (GPU) using DirectX 9 compatible hardware.
They use the regularized gradient flow (RGF) algorithm originally introduced
by Clarenz et al. [2]. RGF is a fast state-of-the-art registration algorithm set
in the framework of variational calculus, regularization theory, and determinis-
tic annealing (multiscale) optimization methods, similar to the ”velocity-based
diffusion registration” of Fischer and Modersitzki [3].

We explore the extension of RGF to 3D on a GPU. Furthermore, we also
provide 2D /3D rigid registration.

In contrast to the work of Hastreiter and Soza [4] who used the trilinear
interpolation capabilities of graphics hardware to accelerate the deformation
of the moving volume but otherwise left the computation on the CPU, our
implementation is entirely GPU-based.

We provide performance benchmarks for our implementations and compare
them to available CPU based implementations.

2 The Algorithms

Image registration is the problem of finding a coordinate transformation @ to
align a template image fr to a reference image fg, so that fr ~ fr o ®. We
focus on the sum-of-squares difference (SSD) metric:

B =5 [fal@) = fr(@@)Pde = min (1)

=:e(x)

with 2 = [0;1]¢, d as the image dimension [2].

Rigid Registration with the SSD criterion: Let &(x,p) be a coordinate
transform parameterised by the vector p. The gradient descent algorithm to
compute an optimal p* for (1) can be written as a differential equation:

p=-VE, p(0)=po ()

with the gradient of E with respect to p given by:
VE = / () IV fr(B(z, p))da 3)
Q

and J as the Jacobian: J;; = %@ of the coordinate transform.

For rigid registration, @ is a linear rigid transformation (3D: three translations
and three rotations). In our code we employ an explicit formula for the compu-
tation of the Jacobian, as we found that using finite difference approximations
can lead to convergence problems.

Nonlinear Registration via RGF: In this case we deal with a free-form
deformation parameterised by a displacement field u(z): &(z) = = + u(z).

The ”Gradient Flow” is the Gateaux-Derivative of E with respect to u:
E'lu] = —e(x)V fr(z + u(z))
The RGF algorithm consists in updating the smoothed gradient flow:
= —BE'u], u(0) = ug (4)

to find an optimal u*, with a d-dimensional linear smoothing operator B. The
smoothing (i.e. regularization) is necessary to bring a certain amount of ”coher-
ence” into the free-form deformation .

Time-Discretization and Annealing: The time discretization of the differ-
ential equations is done by using the explicit Euler rule [2]. The step size of the
explicit Euler step is determined by employing the well-known Armijo rule [2].
A deterministic annealing strategy is used to avoid local minima. The strategy
works on a Gaussian image pyramid of fr and fr, the pyramid scale plays the
role of the annealing temperature [2].

Choosing the smoothing operator B in RGF: Following a suggestion of
Clarenz [2], we regularize the gradient flow with a Gaussian filter instead of using
a multigrid smoother [1]. The main advantage of a multigrid smoother is that
more global deformations can get corrected. But this is also achieved by using
a multiscale approach, which justifies the use of a simple filtering instead of the
comparably expensive multigrid smoother. A similar approach can be found in
[5].

3 GPU implementation issues

3.1 General outline

The GPU Programming is done entirely in the OpenGL GPU language GLSL.
We used a GeForce 6800 PCI-E 256MB(GPU1) and a GeForce 6800 GT AGP
256MB (GPU2) board for the benchmarks.

Render to texture: A particular problem arises when attempting to imple-
ment image processing algorithms that employ iteration over images. To pass
result images from one iteration step as the input to the next iteration step one
employs a technique called ”render to texture”. We use the new Framebuffer
Objects (part of the OpenGL 2.0 specification). In [1] so-called Pbuffers have
been used for this purpose. According to benchmarkings done by us, Framebuffer
objects are 10-20 times faster than Pbuffers.

3.2 Rigid registration

Warping: For the rigid case, we use hardware accelerated image warping of the
moving image fr (via the OpenGL texture matrix) with activated linear inter-
polation.

Voxel accumulation in 3D: To compute spatial discretized versions of E
or a component of the gradient vector VE, the GPU has to accumulate the
voxels of a volume into a scalar value. We want to take maximal advantage of
GPU parallelism and hardware acceleration in the 3D case. We have investigated
three methods for this problem and compared them for the task of computing
E. The basic idea of all methods is again a pyramidal scheme and employing the
linear interpolation hardware of the GPU (Figure 1). Method C also exploits the
blending capabilities of graphics hardware, which enable one to linear combine
the already written pixel/voxel with the new computed one. Method C is fur-
ther improved by sampling multiple slices in one pass (method C2). This saves
rendering passes and utilizes the graphics pipeline more efficiently. See Table
1 for a comparison of the voxel accumulation methods. The results show that
method C is the best choice. Comparing the results of the two GPUs, one can
also observe that method C scales the best when using faster hardware.

method memory RT switches time GPU1 time GPU2
A 18 mb (16+2) 255 130.79 ms 343.36 ms
B 160 kb (1284-32) 1024 52.16 ms 42.6 ms
C1 160 kb 8 23.73 ms 12.29 ms
C2 160 kb 8 18.14 ms 9.84 ms

Table 1. comparison of voxel accumulation methods (256*256*128 fpl6 texture with
1 channel)

Fig. 1. Voxel accumulation methods

Method A: 3D buffer Method B: 2D buffer
for each slice of the 3D texture:

£

-

=~

-

-

P

=

successively average 8 neighbouring texels via linear interpolation successively average 4 neighbouring texels via linear interpolation
until each dimension is reduced to 1 texel until each dimension is reduced to 1 texel and do this for each slice

Method C: 2D buffer with blending

— LT — o

NANNAAN

render all slices to a temporary 2D texture with blending switched on,
then reduce texture to 1 texel as described above

Using Multiple Render Target (MRT): Since there is currently no support
to render to a slice of a 3D texture, one has to use an expensive workaround
by rendering to a 2D texture and copying the contents back to the 3D texture.
One can avoid this for the rigid case by computing VFE in one pass. But since
dim(VE) = 6, and a texture can only hold four components, we would have to
compute VF in two passes, wasting computational resources. Instead, employing
the MRT feature of current GPUs allows rendering to four textures in one pass.

3.3 Non-rigid registration

The displacement field w is represented as a 2D respectively 3D texture in GPU
memory, but on a coarser resolution than the images. Since the regularization
removes higher spatial frequencies from the displacement field this results in
virtually no loss of information regarding the Nyquist Theorem. The required
upsampling during the transformation of the moving image fr is done by hard-
ware using linear interpolation. Update of the displacement field is performed
by an explicit Euler step in the differential equation (4). To implement this on
the GPU, we again employ blending u := u + nu, with stepsize 1 determined by
Armijo’s rule. To evaluate the metric, we use the same approach as described
above for the rigid case.

4 Results

We presented some methods to significantly improve performance for rigid and
non-rigid registration algorithms using state-of-the-art graphics hardware. Table
2 shows some results. Please note that the GPU timings for the 3D non-rigid
case contains expensive copy operations, hence we provided estimated timings
without taking them into account (in brackets). We compared our approach with
a simplex (Nelder-Mead) based and a steepest descent based algorithm for the
rigid case. The later uses finite differences to calculate the gradient. We provided

Table 2. Results of our registration implementations

rigid non-rigid

2D 3D 2D 3D
resolution 256%256 256%256%128 256%256 256%256%128
iterations T 76 67 16
GPU time 105 ms 5.24 s 200 ms 62.5 s (9.2 s)
t/iter 1.36 ms 69 ms 2.98 ms 3.9 s (575 ms)
iterations 47 / 58 219 / 36 42 -
CPU time 656 ms / 6.1's 180 s / 260 s 4.21 s -
t/iter 14 ms / 105 ms 822ms / 7.2s 100 ms -

CPU: Pentium 4 3.4 GHz 2GB RAM - GPU: GeForce 6800 PCI-E 256MB

both timings; the first belongs to the simplex based registration. We only had
CPU code for the 2D non-rigid case.

5 Discussion

GPU based image registration achieves a significant speedup for the 2D case and
the 3D rigid case. For 2D rigid we obtained a speed advantage of factor 10 for
the GPU per iteration, and a speed advantage of factor 12 for 3D rigid. This
allows us to register a 256x256x128 voxels volume in approx. 5 seconds. Our 3D
non-rigid registration however is not as fast as one would expect. The reason
for this is a memory copy bottleneck: Current NVIDIA and ATT drivers don’t
support rendering to a slice of a 3D volume so we have to render to a 2D texture
and copy the results back to the 3D texture. This amounts to 80%-90% of the
total computation time. Therefore, a huge speedup can be expected with the
introduction of future drivers that support the render-to-3D-slice interface.

Acknowledgments

We’d like to thank Dr. Robert Strzodka (Stanford University, Computer Science)
for sharing his ideas with us, and Tobias Bohler (MeVis) for the 2D RGF CPU

code.

References

1. Strzodka, R., Droske, M., Rumpf, M.: Image registration by a regularized gradient
flow - a streaming implementation in dx9 graphics hardware. Computing (2004)

2. Clarenz, U., Droske, M., Rumpf, M.: Towards fast non-rigid registration in inverse

problems, image analysis and medical imaging. AMS Special Session Interaction of

Inverse Problems and Image Analysis 313 (2002) 67-84

Modersitzki, J.: 11. In: Diffusion registration. Oxford University press (2005) 153

4. Soza, G., Bauer, M., Hastreiter, P., Nimsky, C., Greiner, G.: Non-rigid registration
with use of hardware-based 3d bézier functions. MICCALI (2002) 549-556

5. Stefanescu, R., Pennec, X., Ayache, N.: Grid-enabled non-rigid registration of med-
ical images. Parallel Processing Letters 14 (2004) 197-216

@

