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Abstract

We report progress in GPU-accelerated molecular dynamics and free energy methods in Amber18. 

Of particular interest is the development of alchemical free energy algorithms, including free 

energy perturbation and thermodynamic integration methods with support for non-linear softcore 

potential and parameter interpolation transformation pathways. These methods can be used in 

conjunction with enhanced sampling techniques such as replica exchange, constant pH molecular 

dynamics and new 12-6-4 potentials for metal ions. Additional performance enhancements have 

been made that enable appreciable speed-up on GPUs relative to the previous software release.
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Introduction

Molecular simulation provides an extremely powerful tool for the interpretation of 

experimental data, the understanding of biomolecular systems, and the prediction of 

properties important for molecular design. As the scope and scale of applications increase, 

so must the compute capability of molecular simulation software. The last decade has seen 

rapid advances motivated by the performance enhancements offered by the latest molecular 

dynamics software written for specialized hardware. Perhaps the most affordable and 

impactful of these are platforms using graphics processing units (GPUs).1–7

The present application note reports on advances made in the latest release of the AMBER 

molecular simulation software suite (Amber18),8 and in particular, enhancements to the 

primary GPU-accelerated simulation engine (PMEMD). These advancements significantly 

improve the program’s execution of molecular simulations, and offer new, integrated 

features for calculating alchemical free energies9,10 including Thermodynamic Integration 

(TI),11–15 Free Energy Perturbation FEP)15–19 and Bennett’s acceptance ratio and its 

variants (BAR/MBAR),20–25 as well as enhanced sampling, constant pH simulation26,27 and 

use of new 12-6-4 potentials.28–30 Amber18 offers a broad solution for a wide range of free 

energy simulations, with expanded capability to compute forces in a hybrid environment of 

CPUs and GPUs, and establishes an add-on system for applying additional potential 

functions computed on the graphics processor without affecting optimizations of the main 

kernels. When run exclusively on GPU hardware, Amber18 shows consistent performance 

increases of 10% to 20% compared to Amber16 across Pascal (GTX-1080TI, Titan-XP, 

P100) and Volta architectures when running standard MD simulations, with more 

dependence on system size than architecture. Below we provide an overview of the software 

design, a description of new features, and performance benchmarks.

Software Design

Encapsulated free energy modules

The development of molecular simulation software designed for optimal performance on 

specialized hardware requires customization and careful redesign of the underlying 
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algorithmic implementation. In the case of the current GPU consumer market, single 

precision floating point performance outstrips that of double precision performance by a 

significant amount. In order to address this issue in AMBER, new precision models6,31 have 

been developed that leverage fixed point integer arithmetic to replace slow double precision 

arithmetic in certain key steps when higher precision is required, such as the accumulation 

of components of the force. Free energy simulations, due to the mixing/interpolation of 

hybrid Hamiltonians and the averaging of TI and FEP quantities, present new challenges 

with respect to precision compared with conventional MD simulation. The GPU enhanced 

features in Amber18 were designed to address these different precision requirements to 

ensure statistical and thermodynamically derived properties are indistinguishable from the 

CPU version of the code32 while maintaining or improving the level of performance of 

previous versions of AMBER for conventional MD simulations. To fulfill these goals, we 

utilized two architectural concepts of object-oriented programming: encapsulation and 

inheritance.33 The original AMBER GPU data structures are encapsulated into base C++ 

classes, containing all coordinates, forces, energy terms, all simulation parameters and 

settings. New free energy classes are derived from the base classes that contain the original 

GPU functionality and data structures for MD simulations. New derived free energy classes 

inherit all the properties and methods of existing MD classes. Through encapsulation and 

inheritance, free energy capability can be implemented so that: 1. there is little or no need to 

modify the original MD GPU codes except they are wrapped into base classes now, since 

new add-ons can be implemented in the derived free energy classes; 2. the new speci c free 

energy algorithms and associated data structures are transparent to the base classes such that 

modifying or optimizing the base classes will have minimal effects on the derived classes; 3. 

derived free energy classes can utilize different algorithms, different precision models, and 

even different force fields.

Such encapsulation and inheritance approach, on the other hand, could introduce additional 

computational overhead, compared to direct modification of MD GPU kernels so that similar 

computational tasks are executed within the same kernels. Consequently the reported 

approach here will be ideal for new modules where only small portions of calculations 

needed to be altered, such as TI; while direct modification of MD GPU kernels will be 

suitable for situations where algorithms changes are global, e.g., incorporation of polarizable 

force fields.

Extensions of new modules

The present software design can be easily extended to accommodate implementation of new 

methods or algorithms. For example, the 12-6-4 potential modules have been implemented 

using this framework by treating the extra r−4 terms through add-on modules with minimal, 

if any, modification of MD CPU codes and GPU kernels.

For most developers, the CPU code remains the most accessible means for prototyping new 

methods. In select cases, where complex potentials are applied to only a small number of 

atoms, the CPU may afford performance advantages for development code that have to be 

fully optimized. To serve these needs, AMBER18 has a new “atom shuttling” system, which 

extracts information on a pre-defined list of selected atoms and transfers it between the host 
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CPU memory and GPU device. In previous versions, all coordinates, forces, charges, and 

other data can be downloaded and uploaded between the host and device, at costs 

approaching 30% of the typical time step. When the majority of the system’s atoms will not 

influence the CPU computations, this is wasteful. The shuttle system accepts a pre-defined 

list of atoms and collects them into a buffer for a lighter communication requirement 

between the host and device. The cost of organizing the atoms into the list is minor, but the 

extra kernel calls to manage the list and the latency of initiating the transfer are 

considerations. In the limit of transferring very small numbers of atoms, the cost of the 

shuttle can be less than 1% of the total simulation time, but methods that require transferring 

the majority of atom data may be more efficient porting entire arrays with the methods in 

Amber16.

Features

The current Amber18 has a host of features available that work together to perform MD and 

free energy simulations (Table 1). A brief description of the most relevant features are 

provided below.

Direct implementation of alchemical free energy methods

Alchemical free energy simulations9,10 provide accurate and robust estimates of relative free 

energies from molecular dynamics simulations,10,15,34–38 but are computationally intensive, 

and are often limited by the availability of computing resources and/or required turn-around 

time. The limitations can render these methods impractical, particularly for industrial 

applications.39 GPU-accelerated alchemical free energy methods change this landscape, but 

have only recently emerged in a few simulation codes. The free energy methods 

implemented in the Amber18 GPU code build on the efficient AMBER GPU MD code base 

(pmemd.cuda), and include both thermodynamic integration and free energy perturbation 

classes.

Thermodynamic Integration (TI):11–15 The free energy change from state 0 to state 1, 

ΔA0→1, is approximately calculated by numerical integration of the derivative of the system 

potential energy U with respect to the target parameter λ:

Δ A0 1 = ∫
0

1 dU(λ, q )
dλ λ

dλ . (1)

Free Energy Perturbation (FEP):15–19 The free energy change between state 0 and 1, ΔA0→1 

is calculated by averaging the exponential of the potential energy differences sampled on the 

potential surface of state 0 (the Zwanzig equation16):

Δ A0 1 = β−1ln e
−β U1( q ) − U0( q )

0
= β−1ln e−βΔU( q )

0
(2)
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The quantities calculated from FEP can be output for post-analysis through Bennett’s 

acceptance ratio and its variants (BAR/MBAR).20–25

Both TI and FEP methods can be used for linear alchemical transformations, non-linear 

“parameter-interpolated” pathways40 and so-called “softcore”41–43 schemes for both van der 

Waals and electrostatic interactions. All above are available in the current Amber18 GPU 

release by utilizing the same input formats as the CPU version.

The GPU free energy implementation has been demonstrated to deliver speed-ups are 

generally significantly more than one order of magnitude when comparing a single GPU to a 

comparably priced single (multi-core) microprocessor (see Performance section for detailed 

benchmarks). The GPU free energy implementation code performs TI with linear alchemical 

transformations roughly at the speed of 70 % of running an MD simulation with the fast 

SPFP precision mode,31 similar to the ratios seen in the CPU counterpart.32 Overall, the free 

energy simulation speed-up relative to the CPU code is very similar to that for conventional 

MD simulation. As will be discussed in the next section, in certain instances the overhead 

(relative to conventional MD) for the linear alchemical free energy simulations can be 

greatly reduced by use of non-linear parameter-interpolated TI.40

Parameter-interpolated thermodynamic integration

Amber18 is also able to exploit the properties of a parameter-interpolated thermodynamic 

integration (PI-TI) method,40 which has recently been extended to support PME electro-

statics, to connect states by their molecular mechanical parameter values. This method has 

the practical advantage that no modification to the MD code is required to propagate the 

dynamics, and unlike with linear alchemical mixing, only one electrostatic evaluation is 

needed (e.g., single call to particle-mesh Ewald). In the case of Amber18, this enables all the 

performance benefits of GPU-acceleration to be realized, in addition to unlocking the full 

spectrum of features available within the MD software. The TI evaluation can be 

accomplished in a post-processing step by reanalyzing the statistically independent 

trajectory frames in parallel for high throughput. Additional tools to streamline the 

computational pipeline for free energy post-processing and analysis are forthcoming.

Replica-Exchange Molecular Dynamics

During the past two decades, the replica exchange methods44,45 have become popular in 

over-coming the multiple-minima problem by exchanging non-interacting replicas of the 

system at different conditions. The original replica exchange methods were applied on 

systems at several temperatures,44 and have been extended to various conditions, such as 

Hamiltonian,46 pH,47 and redox potentials. Amber18 is capable of performing temperature, 

Hamiltonian, and pH replica exchange simulations using GPU. Hamiltonian replica 

exchange can be con-figured in a flexible way, as long as the “force field” (or equivalently 

the prmtop file) is properly defined for each replica. Hence, the newly implemented free 

energy methods in Amber18 can be performed as Hamiltonian replica exchange so that 

different λ windows can exchange their conformations. Other types of Hamiltonian replica 

exchange simulations, such as Hamiltonian tempering or umbrella sampling, can be easily 

setup as well.
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Multiple dimension replica exchange simulations48–53 where two or more conditions are 

simulated at the same time, are supported as well. By utilizing the multi-dimensional replica 

exchange capability, many practical combinations are possible to enhance sampling: such as 

TI simulation combined with temperature or pH replica exchange.

The con guration of GPU’s in Amber18 replica exchange simulations is very flexible in 

order to fit various types of computational resources. Ideally for load balancing, the number 

of replicas should be an integer multiple (typically 1–6) of the number of available GPU’s. 

One GPU can run one or multiple replicas given sufficient GPU memory is available, 

although one can expect some slow-down in the cases of multiple tasks running concurrently 

on a single GPU. Our experience shows that a 11GB GTX 1080TI GPU can handle six 

instances of typical kinase systems (around 30,000 to 50,000 atoms) without losing 

efficiency. One scenario is that to run free energy simulations with replica exchange on one 

multiple GPU node, e.g., executing 12 λ-windows on a 4-GPU or 6-GPU node with each 

GPU handling 3 or 2 λ-windows. Such scenarios take advantage of extremely fast intra-node 

communication and enable efficient performance optimization on modern large scale GPU 

clusters/supercomputers such Summit at Oak Ridge National Laboratory. In principle, a 

single replica can also be run in parallel on multiple GPUs but this is strongly discouraged as 

Amber18 is not optimized for this.

Constant pH Molecular Dynamics

Conventional, all-atom molecular simulations consider ensembles constrained to have 

predetermined fixed protonation states that are not necessarily consistent with any pH value. 

Constant pH molecular dynamics (CpHMD) is a technique that enables sampling of different 

accessible protonation states (including different relevant tautomers) consistent with a bulk 

pH value.26,27 These methods have been applied to a wide array of biological problems, 

including prediction of pKa shifts in proteins and nucleic acids, pH-dependent 

conformational changes, assembly and protein-ligand, protein-protein and protein-nucleic 

acid binding events.54 These methods provide detailed information about the conditional 

probability of observing correlated protonation events that have biological implications. 

Very recently, a discrete protonation state constant pH molecular dynamics method has been 

implemented on GPUs, integrated with REMD methods (including along a pH dimension) 

and tested in AMBER.55 The method has been applied for the first time to the interpretation 

of activity-pH pro les in a mechanistic computational enzymology study of the archetype 

enzyme RNase A.56 The CpHMD method in Amber18 is compatible with enhanced 

sampling methods such as REMD, and is compatible with the new GPU-accelerated free 

energy framework.

The workflow of explicit Solvent CpHMD simulation has been described in detail 

elsewhere.55 Briefly, the method follows the general approach of Baptista and co-

workers26,27 that involves sampling of discreet protonation states using a Monte Carlo 

sampling procedure. Simulations are performed in explicit solvent under periodic boundary 

conditions using PME to generate ensembles. The CpHMD method utilizes an extended 

force field that contains parameters (typically charge vectors) associated with changes in 

protonation state and reference chemical potentials for each titratable site calibrated for a 
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selected GB model to obtain correct pKa values in solution. In the Monte Carlo decision to 

accept or reject a trial protonation state, explicit solvent (including any nonstructural ions) is 

stripped and replaced using the selected GB model under non-periodic boundary conditions. 

Additional considerations are made for multi-site titration involving titratable residues that 

are considered “neighbors”.55 If any protonation state change attempts are accepted, the 

explicit solvent is replaced, the solute is frozen, and MD is used to relax the solvent degrees 

of freedom for a short period of time. After relaxation is complete, the velocities of the 

solute atoms are restored to their prior values and standard dynamics resumes. Full details 

can be found in reference.55

12-6-4 Potentials for Metal Ions

The GPU version of Amber18 (pmemd.cuda) is capable of utilizing 12-6-4 potentials, 

developed by Li et. al.28 for metal ions in aqueous solution, and recently extended for Mg2+, 

Mn2+, Zn2+ and Cd2+ ions so as to have balanced interactions with nucleic acids.30 The 

12-6-4 potentials are derived from regular 12–6 potentials by adding r−4 terms, which has 

been proposed by Roux and Karplus.57,58

The 12–6 potential59 for non-bonded interactions is:

Ui j ri j = ϵi j
Ri j
ri j

12
− 2

Ri j
ri j

6
(3)

where the parameters Rij and ϵij are the combined radius and well depth for the pairwise 

interaction and rij is the distance between the particles. Equation (3) can be expressed 

equivalently as:

Ui j ri j =
Ai j

ri j
12 −

Bi j

ri j
6 (4)

where Ai j = ϵi jRi j
12 and Bi j = 2ϵi jRi j

6 .

The expanded 12-6-4 potential60 is then:

Ui j ri j = ϵi j
Ri j
ri j

12
− 2

Ri j
ri j

6
− 2κRi j

2 Ri j
ri j

4

=
Ai j

ri j
12 −

Bi j

ri j
6 −

Ci j

ri j
4

(5)

where Cij is equivalent to Bijκ, and κ is a scaling parameter with units of Å−2. The 

additional attractive term, 
Ci j

ri j
4 , implicitly accounts for polarization effects by mimicking the 
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charge-induced dipole interaction. The 12-6-4 potentials have showed a marked 

improvement over the 12–6 LJ nonbonded model.28,30

Future Plan

The Amber18 development roadmap will extend sampling capabilites for free energy 

simulations to facilitate advancement of drug discovery,61 including: implementation of 

Gibbs sampling scheme62 to improve the exchange rates in replica exchange simulations, the 

self-adjusted mixture sampling (SAMS)63 to optimize the simulation lengths for different 

lambda windows, and replica exchange with solute scaling (REST2),64 a more efficient 

version of replica exchange with solute tempering65 to stably and efficiently perform 

“effective” solute tempering replica exchange simulations.

Performance

Amber18 runs efficiently on GPU platforms for both MD and free energy simulations. 

Performance benchmarks for equilibrium MD are shown in Figure 1 and listed for selected 

GPUs in Table 2, including comparisons with Amber16. The figure works in a particle-

normalized metric, trillions of atom-time steps per day, which puts most systems on equal 

footing and shows performance improvements of up to 24%, without implying improper 

comparisons to other codes (the cutoffs used in these benchmarks are smaller than some 

other benchmarks, and other settings may not be comparable). Longer time steps, if safe, 

tend to improve overall throughput at a marginal increase in the cost of computing each step 

(requiring more frequent pair list updates). Small systems tend to perform less efficiently 

(small FFTs and pair list building kernels do not fully occupy the GPU). Virial computations 

are also costly, as seen for the Satellite Tobacco Mosaic Virus (STMV) system, the only one 

of this abbreviated list of benchmarks to include pressure regulation with a Berendsen 

barostat.

Using a GTX-1080Ti, still the most cost-effective GPU at the time of publication, the 23,558 

atom Dihydrofolate Reductase (DHFR) benchmark (4 fs time step, constant energy) runs at 

657 ns/day in Amber18 and 588 ns/day in Amber16. The same codes run the 90,906 atom 

blood clotting Factor IX system at 100 and 89 ns/day, respectively, with a 2 fs time step. 

Performance in thermodynamic integration free energy simulations for mutating ligands of 

the clotting Factor Xa system is shown in Figure 2. TI with linear alchemical mixing 

generally exacts a toll of 1/3 the speed that could be achieved in a conventional MD 

simulation. Additional pairwise computations between particles are present, but the 

secondary reciprocal space calculation is about 85% of the additional cost (this cost is 

eliminated in the PITI method40). The main performance improvements derive from: 1. 

innovative spline tabulation look-up and particle mapping kernels for faster PME direct and 

reciprocal space calculations, and 2. more efficient memory access for bonded and non-

bonded terms.

Faster PME direct and reciprocal space calculations.

Most CPU codes use a quadratic or cubic spline for the derivative of the complementary 

error function used in the PME direct space energy term. Rather than costly conversion of 
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floating point values into integer indexes for table look-ups, we take the IEEE-754 

representation of the 32-bit floating point number for the squared distance and use its high 

fourteen bits, isolated by interpreting it as an unsigned integer and shifting right 18 bits, as 

an integer index into a logarithmically coarsening look-up table. This approach uses a 

minimum of the precious streaming multiprocessor (SMP) cache, collects a huge number of 

arithmetic operations into a single cubic spline evaluation, and typically leads to a 6–8% 

speed-up. The workflow of the non-bonded kernel was further improved by eliminating 

_shared_ memory storage and dealing with all particle comparisons within the same warp 

via _shfl instructions. This permitted us to engage not just 768 but 1280 threads on each 

SMP.

PME reciprocal space.

We have made improvements to the kernel that maps particles onto the 3DFFT mesh by 

parallel computation of B-spline coefficients for all three dimensions (utilizing 90 out of 96 

threads in the block rather than less than 1/3 of them) and re-tuning the stencil for writing 

data onto the mesh to make better coalesced atomic transactions. This improves the 

throughput of the mapping kernel by more than 40%, and typically leads to a few percent 

speed-up overall.

More efficient memory access for bonded and non-bonded terms.

Rather than reach into global memory for the coordinates of each individual atom needed by 

any bonded term, we draw groups of topologically connected atoms at the start of the 

simulation and assign bond and angle terms to operate on the atoms of these groups. At each 

step of the simulation, the coordinates of each group are cached on the SMP and forces due 

to their bonded interactions are accumulated in _shared_ memory. Last, the results are 

dumped back to global via atomic transactions, reducing the global reads and writes due to 

bonded interactions more than ten-fold. The approach generalizes one described ten years 

ago for the Folding@Home client,66 where bond and angle computations were computed by 

the threads that had already downloaded the atoms for a dihedral computation. Our approach 

makes much larger groups of atoms (up to 128) and does not compute redundant 

interactions. However, the block-wide synchronization after reading coordinates and prior to 

writing results may leave threads idle. The modular programming that creates our networks 

of interactions facilitates combining or partitioning the GPU kernels to optimize register 

usage and thread occupancy.

We have also gained a considerable amount of improvement by trimming the precision 

model where low significant bits are wasted. Rather than convert every non-bonded force to 

64-bit integers immediately, we accumulate forces from 512 interactions (evaluated 

sequentially in sets of 16 by each of 32 threads in a warp) before converting the sums to 

integer and ultimately committing the result back to global memory. Because the tile scheme 

in our non-bonded kernel remains warp-synchronous, the sequence of floating-point 

operations that evaluates the force on each atom is identical regardless of the order the tile 

was called. In other words, each tile evaluation is immune from race conditions. Conversions 

to integer arithmetic always occur, as in Amber16, before combining the results of separate 

warps, as the coordination of different warps is not guaranteed. These optimizations 
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therefore maintain the numerical determinism of the code: a given GPU will produce the 

identical answers for a given system and input parameters.

Minimal computational load on CPU and GPU/CPU intercommunication.

As it does for MD, Amber18 performs free energy computations almost entirely on the GPU 

and requires very little communication between the CPU and the GPU. This results in a 

tremendous practical advantage over other implementations in that independent or loosely 

coupled simulations (e.g., different lambda windows of a TI or FEP, possibly with REMD) 

can be run efficiently in parallel on cost-effective nodes that contain multiple GPUs with a 

single (possibly low-end) CPU managing them all without loss of performance. This is a 

critical design feature that distinguishes Amber18 free energy simulations from other 

packages that may require multiple high end CPU cores to support each GPU for standard 

dynamics and free energy calculations. The result is an implementation of TI/FEP that is not 

only one of the fastest available but also the most cost effective when hardware costs are 

factored in.

Conclusion

In this application note, we report new features and performance benchmarks for the 

Amber18 software official release. The code is able to perform GPU-accelerated alchemical 

free energy perturbation and thermodynamic integration highly efficiently on a wide range 

of GPU hardware. The free energy perturbation simulations output metadata that can be 

analyzed using conventional or multistate Bennett’s acceptance ratio methods. Additionally, 

thermodynamic integration capability is enabled for linear alchemical transformations, and 

non-linear transformations including softcore potentials and parameter-interpolated TI 

methods recently extended for efficient use with particle mesh Ewald electrostatics. These 

free energy methods can be used in conjunction with a wide range of enhanced sampling 

methods, constant pH molecular dynamics, and new 12-6-4 potentials for metal ions. The 

Amber18 software package provides a rich set of high-performance GPU-accelerated 

features that enable a wide range of molecular simulation applications from computational 

molecular biophysics to drug discovery.
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Figure 1: 
Performance of Amber18 relative to Amber16 seen on multiple GPU architectures. 

Performance is given in a particle-normalized metric which emphasizes the number of inter 

actions that each card is able to compute in a given time. Performance in Amber16 is shown 

in solid color bars, and improvements with Amber18 in black outlined extensions. In a few 

cases, performance in Amber18 is lower than in Amber16, indicated by the extensions 

falling to the left of the y-axis. (Beta tests of an upcoming patch make Amber18 even faster, 

and consistently superior to Amber16.) System, ensemble, and time step are displayed on 

the right, while the system size (thousands of atoms) is given on the left. All systems were 

run with an 8 Å cutoff for real-space interactions and other default Amber parameters.
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Figure 2: 
Performance of Amber18 Thermodynamic Integration with linear alchemical mix ing on 

multiple GPU architectures relative to conventional MD. The color scheme for each GPU 

type is consistent with Figure 1, but the performance of TI is given by an open bar, while 

performance of the equivalent, “plain” MD system is given by a black-bordered solid 

extension. The test system is for the Factor Xa protein with the ligand mutation from L51a 

(62 atoms) to L51b (62 atoms). The system has total 41563 atoms and the whole ligand 

defined as the TI region.
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Table 1:

Comparison of free energy (FEP/TI) compatible features in Amber16 and Amber18 on CPUs and GPUs.

Free energy compatible feature Amber16 Amber18

Category Functionality CPU GPU CPU GPU

Ensemble NVE ✓ ✗ ✓ ✓

NVT ✓ ✗ ✓ ✓

NPT ✓ ✗ ✓ ✓

semi-iso P ✗ ✗ ✗ ✗

CpHMD ✓ ✗ ✓ ✓

Free Energy TI ✓ ✗ ✓ ✓

Analysis MBAR ✓ ✗ ✓ ✓

Enhanced H-REMD ✓ ✗ ✓ ✓

Sampling AMD ✓ ✗ ✓ ✓

SGLD ✓ ✗ ✓ ✗

GAMD ✓ ✗ ✓ ✓

Potentials 12-6-4 ✓ ✗ ✓ ✓

List of features that have compatibility with free energy (FEP/TI) methods in Amber16 and Amber18 on CPUs and GPUs. Red color indicates a 
feature not compatible with free energy methods (although it may be compatible with conventional MD). Green color indicates new free energy 
compatible feature in Amber18.
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Table 2:

Comparison of MD simulation rates in Amber16 and Amber18 on CPUs and GPUs.

Simulation Rate, ns/day

GTX-980 Ti GTX-1080 Ti Titan-X

System Atom Count Amber16 Amber18 Amber16 Amber18 Amber16 Amber18

DHFR, NVE, 4fs 24K 347 382 588 657 643 710

DHFR, NVE, 2fs 24K 181 209 306 345 338 374

Factor IX, NVE, 2fs 91K 52 64 85 100 93 113

Cellulose, NVE, 2fs 409K 12 14 19 21 21 23

STMV, NVE, 4fs 1067K 8 9 12 13 13 14

Simulation Rate, ns/day

GP100 V100 (Volta) Titan-V

System Atom Count Amber16 Amber18 Amber16 Amber18 Amber16 Amber18

DHFR, NVE, 4fs 24K 677 768 1020 1091 954 904

DHFR, NVE, 2fs 24K 353 404 532 577 497 477

Factor IX, NVE, 2fs 91K 114 137 217 238 189 194

Cellulose, NVE, 2fs 409K 25 29 50 49 43 41

STMV, NVE, 4fs 1067K 16 19 30 30 25 25

Timings for selected systems in Amber18 versus Amber16. The ensemble and time step are given in the left hand column. Other Amber default 
parameters included an 8 Å cutoff and ≤1 Å PME (3D-FFT) grid spacing.
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