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Abstract— For humanoid robots to fully realize their biped
potential in a three-dimensional world and step over, around
or onto obstacles such as stairs, appropriate and efficient
approaches to execution, planning and perception are required.
To this end, we have accelerated a robust model-based three-
dimensional tracking system by programmable graphics hard-
ware to operate online at frame-rate during locomotion of a
humanoid robot. The tracker recovers the full 6 degree-of-
freedom pose of viewable objects relative to the robot. Leverag-
ing the computational resources of the GPU for perception has
enabled us to increase our tracker’s robustness to the significant
camera displacement and camera shake typically encountered
during humanoid navigation. We have combined our approach
with a footstep planner and a controller capable of adaptively
adjusting the height of swing leg trajectories. The resulting
integrated perception-planning-action system has allowed an
HRP-2 humanoid robot to successfully and rapidly localize,
approach and climb stairs, as well as to avoid obstacles during
walking.

I. INTRODUCTION

Research developments in humanoid robotics have led to
a series of legged robots that exhibit impressive locomotion
skills in cluttered, three-dimensional, inclined or uneven
terrain. Lest they be treated as mere planar mobile robots,
however, the unique walking abilities of humanoids need to
be taken into account during all stages of autonomous nav-
igation, from sensing through planning to execution. In the
case of perception, this presents several concrete challenges.
Approaches to robot localization and environment mapping
must deliver accurate results to comply with the small error
tolerances imposed by the walking controller if the robot
is to successfully step onto surfaces or avoid obstacles.
Moreover, rapid scene changes, large camera displacement
and camera shakiness occur naturally with quickly moving
highly articulated humanoids, and must be handled by the
sensor system. Also, unlike for wheeled robots, pausing
movement for deliberation or to gather sensor readings is
usually not an option—perception must operate in real-time.
Unfortunately, the complexity of vision processing often
implies that these requirements cannot all be met at once
with the computational resources available.

Graphics Processing Units (GPUs) have of late gained
considerable popularity as cheap, powerful and pro-
grammable general purpose processors outside their original
application domain. With recent models able to sustain over
150 GFLOPS and due to their highly parallel architecture,
GPUs make very suitable implementation platforms for per-
ception algorithms.

Fig. 1. The HRP-2 humanoid autonomously climbing a set of stairs.
Environment mapping and robot localization is accomplished online
using our GPU-accelerated 3D tracker (tracker view inset).

In this paper, we present a GPU implementation of a
model-based 3D tracking algorithm which we have applied
specifically to the problem of humanoid locomotion outlined
above. We believe that mandating the existence of even a
simple 3D model for objects of interest is not an unrea-
sonable requirement considering the well structured indoor
operating environments currently typical for humanoids. Our
system employs a successful prior algorithm to robustly fit
a series of control nodes initialized from the visible model
edges of a given object to edge features extracted from the
video stream, yielding the full 6DOF pose of the object
relative to the camera. The model is then reprojected using
the recovered pose, and the fitting process repeated for the
next frame. The recovered pose, together with the robot
kinematics, allows us to accurately localize the robot with
respect to the object and to generate height-based maps of
the robot environment. These can then be used to plan a
sequence of footsteps that, when executed, allow the robot
to circumnavigate obstacles and climb stairs with a speed,
flexibility and success rate not achieved before.

The remainder of this paper is organized as follows. We
review some related research in Section II. The detailed op-
eration of our tracking system and its implementation on the
GPU is presented in Section III and Section IV, respectively.
In Section V, we describe how the output of the tracker
is used to localize the robot and to generate environment
maps for robot navigation. The height-based planning and
execution components of our robot implementation are the
subject of Section VI. Section VII presents experimental re-
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sults for our tracking system and its application to humanoid
locomotion. Finally, we summarize in Section VIII, discuss
current limitations and outline future work.

II. RELATED WORK

A large body of work exists relating to model-based 3D
object tracking and associated visual servoing approaches.
For a more complete overview, please refer to Lepetit &
Fua’s excellent survey [1]. Early work by Gennery [2] first
focused on tracking objects of known 3D structure, with
Lowe [3], [4] pioneering the fitting of model edges to image
edges. Harris’ RAPiD tracker [5] first achieved such fitting in
real-time, with a range of improvements to the original algo-
rithm having been proposed [6], causing edge- and contour-
based tracking systems to maintain significant popularity [7]–
[10]. Other approaches employ appearance-based methods to
perform tracking [11] or view tracking as a combination of
wide-baseline matching and bundle adjustment relying on
so-called keyframe information gathered offline [12].

The demands of using a locomoting humanoid as the
perception platform have implied that several perception ap-
proaches restrict their operation to reactive obstacle detection
and avoidance [13], [14]. Others have restricted the recovered
environment information to 2D occupancy grids [15], have
employed external sensors to aid in robot localization and
map building [16] or use stereo for reconstruction [17].

Several bipeds have successfully accomplished stair climb-
ing. Sony’s QRIO robot uses stereo to reconstruct stairs
and climb them gradually, step-by-step [18]. The Johnnie
walking robot has successfully and quickly climbed stairs
detected reactively using vision [19], [20]. Honda’s ASIMO
humanoid [21] first positions itself precisely with respect to
a set of stairs equipped with fiducials and then executes
fixed footstep sequence, adjusted according to the contact
force with each step, to climb them. The H7 humanoid [22]
has also successfully climbed a set of stairs positioned in
front of it. Most prior stair-climbing approaches carry some
a-priori knowledge of the shape or location of the stairs,
or alternatively tend to carefully execute each stepping-
up motion in isolation, foregoing continuous execution and
smoothness for safety.

There is an ever increasing body of work regarding the
use of GPUs for general purpose computation. Several good
overview resources exist [23], [24]. Particularly relevant to
perception is the work by Fung et. al. [25].

III. MODEL-BASED 3D TRACKING & POSE RECOVERY

A. Overview

Our approach to monocular model-based 3D tracking
closely follows the method proposed by Drummond and
Cipolla [26]. We manually initialize and subsequently main-
tain and recursively update an estimate of the matrix repre-
senting the SE(3) pose of the tracked object relative to the
camera. This 3 × 4 matrix E corresponds to the extrinsic
parameter matrix of the camera and transforms points from
world coordinates to camera coordinates. Together with the
3 × 3 matrix of intrinsic parameters K, which we gather
during a one-off calibration step using Zhang’s camera cal-
ibration method [27], it forms the camera projection matrix
P = KE.

The pose estimation process then operates as follows. To
estimate the relative pose change between two consecutive

frames, we project the object model onto the image plane
according to the latest estimate of the pose Et and initialize
a set of regularly spaced so-called control nodes along those
projected edges. We then use these control nodes to match
the visible projected model edges to edge features extracted
from the camera image using a Canny edge detector [28].
The errors in this matching can then be used to find an
update ∆E to the extrinsic parameter matrix using robust
linear regression. The updated pose of the object is finally
calculated as Et+1 = Et∆E and the procedure repeated for
the next frame.

B. Model-based 3D object tracking

In this section, we summarize how the recovery of the
inter-frame pose update outlined above can be implemented
by considering the set of control nodes along the visible
model edges and, for each, determining the perpendicular
distance to the closest image edge using a one-dimensional
search.

Recall that the camera projection matrix takes a point
from world coordinates to projective camera coordinates via
(u, v, w)T = P (x, y, z, 1)T , with pixel coordinates given by
x = u/w and y = v/w. To recover the rigid transform ∆E
representing the inter-frame pose update, we consider the six
generating motions which comprise it, namely translations
in the x, y and z directions and rotations about the x, y
and z axes. These generating motions form a basis for the
vector space of derivatives of SE(3) at the identity and can
be represented by the following six matrices, which can be
considered velocity basis matrices:

G1=

[

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

]

, G2=

[

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

]

, G3=

[

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

]

,

G4=





0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0



 , G5=





0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0



 , G6=





0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0





The pose update ∆E can be constructed from these Eu-
clidean generating motions via the exponential map [29]

as ∆E = exp
(

∑6

i=1
µiGi

)

. The motion vector µ thus

parameterizes ∆E in terms of the six generating motions
G1 to G6. It is µ that we will recover using robust linear
regression.

If a particular control node ξ with homogeneous world co-
ordinates pξ = (x, y, z, 1) is subjected to the ith generating
motion, the resulting motion in projective image coordinates
is given by (u′, v′, w′)T = PGi p

ξ. This can be converted
to pixel coordinates as follows:

L
ξ
i =

(

ũ′

ṽ′

)

=

(

u′

w
− uw′

w2

v′

w
− vw′

w2

)

We can project this motion onto the model edge normal n̂

at the control node as fξ
i = L

ξ
i · n̂.

Suppose we have determined during our 1D edge search
along the model edge normal that control node ξ is at a
distance dξ from the closest image edge extracted from the
video frame. Considering the set of control nodes in its
entirety, we can calculate the motion vector µ by fitting

dξ to fξ
i for each control node via the usual least-squares

approach:

gi =
∑

ξ

dξfξ
i ; Cij =

∑

ξ

fξ
i fξ

j ; µi =
∑

j

C−1

ij gj
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Algorithm 1: IRLS(D,F )
Perform iteratively reweighted least squares model-edge
to image-edge fitting

Data: D = {dξ1 , . . . , dξk}: measured edge-normal distances to
closest image edge for all k control nodes

F = {fξ1
{1...6}

, . . . , f
ξk

{1...6}
}: edge-normal motion resulting

from each of the 6 generators for all k control nodes
Result: µ: motion vector parameterizing pose update

µ = ORDINARYLEASTSQUARES(D, F );
while iteration < max iterations do

for each control node ξ do

residualξ = dξ -
∑6

i=1 f
ξ
i µi;

end
MAD = MEDIANABSOLUTEDEVIATION(residuals);
for each control node ξ do

c =
abs(residualξ)×0.6745

4.685×MAD
;

weightξ =

{

(1 − c2)2 if c < 1
0 otherwise

end
µ = WEIGHTEDLEASTSQUARES(D, F, weights);

end

We can now use the recovered motion vector µ to recon-
struct the inter-frame pose update via the exponential map.

C. Robust linear regression

The standard least-squares fitting method outlined above
is well known to be adversely influenced by the presence
of outliers. Since we are dealing with rapidly changing and
often cluttered views of the world from the robot camera,
such outliers occur universally. For instance, when there is
a weak edge response from the object being tracked, but
a strong edge resulting from other scene structure close
to the object-background boundary in the image, the 1D
edge search process will falsely associate one or several
control nodes with the background edge. A variety of robust
estimation methods have been proposed to ameliorate this
problem, including RANSAC and M-estimators [30].

We employ Iteratively Reweighted Least Squares (IRLS)
for robust fitting. The first iteration consists of a step of
ordinary least squares with equally weighted measurements
and with the edge-normal distances dξ forming the resid-
uals, to yield an initial estimate of the motion vector, µ1.
Subsequently, the residuals are adjusted in accordance with
this first estimate of the motion vector. The measurements
are then re-weighted by applying a bisquare function to the
residuals from the previous iteration, giving lower weights
to points that do not fit well. Algorithm 1 details the IRLS
process. We iterate the reweighted fitting a fixed number
n of times until the residuals change only marginally (for
the experiments in this paper, n = 5), arriving at the latest
estimate for the motion vector, µn. This can be used to
calculate an intermediate estimate for the pose update matrix,

∆Ẽ.
Then, still considering the same two adjacent frames in the

video, we re-project the control nodes using the pose Et∆Ẽ
and re-start the entire inter-frame tracking process, including
edge search and IRLS fitting. Iterating essentially the whole
pose update process in this way for a single pair of frames
ensures the most accurate and robust model-to-edge fitting,
but is computationally very expensive. This is mainly due to
the many weighted least squares fitting steps executed, the
only component of our algorithm that runs on the CPU.

Still, it is only due to the fact that all of the image
processing and edge search takes place on the GPU that we
even have the CPU resources to execute the model fitting
process several iterations for each frame (3 times for the
experiments in this paper to remain at 30fps for 640 × 480
video). Leveraging the GPU has thus effectively enabled
much of the robustness our approach exhibits.

IV. GPU-BASED IMPLEMENTATION

All aspects of our 3D tracking system involving image
or geometry processing are either executed entirely in the
GPU’s fragment shaders or involve hardware-accelerated
OpenGL. We have implemented our method using a cascade
of fragment programs, shown in Figure 2, written using
NVIDIA’s Cg language [31] and operating on image data
stored as textures in GPU memory. The latest incoming video
frame serves as input to the filter cascade, which ultimately
outputs a texture containing the edge-normal distances dξ for
all control nodes on the visible projected model edges of the
object. All steps in between operate on data stored locally
on the GPU as the output of a previous step. Each fragment
program is executed in a single off-screen rendering pass
during which the input data is processed. We make use of
OpenGL’s recent framebuffer extension to efficiently perform
render-to-texture and store the resulting output data in GPU
memory. Note that merely two CPU-GPU data transfers are
performed: one to upload the latest camera image to the GPU
initially and one to read back the results of the edge search
process, with all processing in between taking place on the
GPU. CPU-GPU memory transfers are costly, tend form the
main bottleneck in general purpose GPU applications and
should generally be avoided.

A. Image acquisition, undistortion & Canny edge detection

We use a firewire camera, standalone or mounted on the
robot head, to gather video at a resolution of 640 × 480
pixels and 30 frames per second. The camera supplies
video in YUV 4:1:1 format, which needs to be converted
to RGB before image processing begins. Performing color-
space conversion on live video on the CPU is a fairly costly
operation, yet very parallelizable and thus amenable to GPU
implementation. We bind the raw YUV byte array supplied
by the camera to a rectangular OpenGL texture which serves
as input to a fragment program converting the YUV 4:1:1
image to regular RGB. This is accomplished by selecting
the appropriate luminance and chrominance components for
each pixel from the input texture and performing a standard
color conversion step.

Subsequently, the resulting RGB image is adjusted to
account for radial camera distortion. This step is crucial for
accurate model-edge to image-edge fitting. Radial distortion
can either be taken into account during the fitting process
itself or, as we have done, can be dealt with during an image
pre-processing step. To perform undistortion, we execute
another fragment program taking the RGB texture as input,
together with the camera’s intrinsic parameters fx, fy, ox, oy

(focal lengths and optical center) and the four radial dis-
tortion coefficients κ1, . . . , κ4 and producing an undistorted
image as output. Again, since undistortion operates on a per-
pixel basis, it is very efficiently implemented on the GPU.

The final step of GPU-based image processing is Canny
edge detection. Each of the standard components of the
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Fig. 2. GPU fragment program cascade defining flow of image processing, model projection and edge search.

edge detector (gaussian smoothing, gradient computation,
non-maximum suppression, hysteresis thresholding) executes
sequentially as a fragment program. Although implemented
on the GPU, the edge detector remains fully parameteriz-
able, with Canny parameters such as σgauss, threshhigh and
threshlow staying adjustable during tracker operation. The
result of GPU-based Canny edge detection is a single binary
texture indicating presence or absence of an edge at each
pixel.

B. Model projection & edge search

To fit edges rendered using the current pose estimate
to image edges, we assume the existence of a simple 3D
model of the object of interest in terms its main salient
lines and its faces. Such models are easily generated using
CAD or image-based modelling software. We then render
our model onto the image plane using OpenGL according to
the latest pose estimate. The pose estimate matrix Et and
the matrix of intrinsic camera parameters K are converted
beforehand to suitable OpenGL modelview and projection
matrices, respectively. During rendering, we perform hidden
line removal efficiently using depth-buffered OpenGL, re-
sulting in a binary texture containing only the visible edges
of the model. The visibility of each control node can then
be determined at the entry point to our edge search fragment
program by checking for presence of an edge at each control
node’s (x, y) position in the visible edge texture.

We initialize a certain fixed number of control nodes along
the model edges (about 20 per edge for the experiments in
this paper, spaced evenly in world coordinates). Control node
information is provided to the edge search fragment program
as a single four channel RGBA texture. An alternative we are
investigating is to use point rendering to reduce the amount
of data transferred and the number of times the edge search
fragment program is invoked. If a control node is present at a
particular (x, y) location in the image and edge-search should
be performed at that node, we set the red component of the
corresponding pixel in the texture to 255. The direction of the
model edge normal at the control node, along which edge
search should be performed, is encoded in the remaining
components. The green channel indicates the x component
of the normal, the blue channel the y component, with the
normal scaled such that both components lie in the range
(0, . . . , 255). Since textures cannot contain signed values
(the use of full 32-bit floating point textures results in a
large performance penalty), we use an integer encoding to
represent the signs of the x and y components by a single
byte value stored in the alpha channel in the control node
texture. The representation of control node data as a texture
is illustrated in Figure 3.

Finally, the edge search fragment program steps along the
model edge normal trying to detect the closest image edge
to the control node in either the positive or negative normal

edge normal

n

nx

ny

control 

node ξ 
at (x,y)

dξ

projected
model edge

image edge

input
texture entry 

@ (x,y)
255 nx ny (+,+)

R G B A

Edge Search

FP

255 dξx
dξy (+,+)

R G B A
output

texture entry 
@ (x,y)

Fig. 3. Representation of input/output data to and from the edge
search fragment program.

direction. Search is performed up to a certain cutoff distance.
If an image edge is not found within that distance, the control
node is ignored and does not contribute to the least squares
fitting. If search is successful, the results are stored in an
output texture a manner similar to the input data format
described above, and shown in Figure 3. The red channel
indicates success of search, the green and blue channels
hold the vector leading from the control node to the closest
edge, and the alpha channel is used for sign encoding. While
some prior approaches have, for reasons of computational
tractability, restricted the edge search to the 45◦ line closest
to the true edge normal, our approach does indeed consider
the true model edge normals, albeit quantized to pixel
coordinates, resulting in increased accuracy.

It is worth noting that both the search distance and the
number of control points search is performed on directly
affect the running time of the edge search process. Previous
approaches have thus tended to keep these numbers small
(e.g. 20 pixels distance cutoff and one control node every
20 pixels along the model edge). While it is certainly not
wise to increase these numbers arbitrarily (as control points
will start latching onto distant background edges), even with
many hundreds of control points and edge search distances
of up to 50 pixels, we have not detected any slow-down in
our GPU implementation.

V. ROBOT LOCALIZATION & ENVIRONMENT MAPPING

To perform navigation planning for our robot we need a
representation of the environment, with the robot localized
within that representation. Suppose that we are interested
in objects that a humanoid should avoid during walking
or sets of stairs that it should climb during locomotion.
We can establish a map coordinate system in which the
object being tracked is assumed to remain at a fixed position
and orientation in map coordinates, given by a transform
m
o T . Once we have recovered the pose of the object in
camera coordinates (given, say, by a transform c

oT ), it is
easy to position the camera relative to the object. The pose
of the camera in map coordinates is then straightforwardly
recovered as m

c T = m
o T o

cT = m
o T (c

oT )−1, essentially
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(a) (b) (c)

Fig. 4. Stairs being tracked during handheld camera sequence (a). View of model-edge to image-edge fitting during occlusion (b). Tracker
operation under severe occlusion (c).

positioning the camera in a consistent coordinate system
relative to the object of interest.

For footstep planning, knowing the accurate location of
the robot foot at any point during execution is crucial.
Fortunately, the robot kinematics can supply us with another
transform, c

fT , locating the robot foot relative to the camera
at any instant in time. This transform, when chained with
m
c T , allows us to recover the position and orientation of the
foot in map coordinates.

Given the fixed position and orientation of the tracked
objects in map coordinates, it is straightforward to generate
a height map describing the robot environment. We render
our object model using an orthographic projection and depth
buffering at the appropriate pose m

o T and viewed from an
OpenGL camera positioned above and looking straight down
onto the scene. A height map can then be generated simply
by reading back the depth buffer after rendering and scaling
the resultant depths using the values for zNear and zFar
used for the orthographic projection. Due to its object-
centric nature, the height map need only be constructed once.
Together with the continuously updated robot foot location,
this map is used to find a safe path through the environment.

VI. HEIGHTMAP-BASED FOOTSTEP PLANNING

The navigation planning performed for the experiments
in this paper uses a modified version of our previously
described footstep planner [32]. The planner reduces the
problem of motion planning for the humanoid to planning
a sequence of footsteps for the robot to follow. Given a se-
quence of step locations, a walking controller then generates
a dynamically stable motion to walk along the desired path.

The planner takes as input a 2.5D height map repre-
sentation of the environment, a start and goal state, and a
model of the the robot’s capabilities. It returns a path of
footholds in the world which take the robot from its current
state to the specified goal. For planning purposes, we model
the humanoid as having a set of actions available to it for
each footstep. These actions represent locations – (x, y, θ)
relative to the stance foot – where the robot can place its
foot for the next step. Each action has several associated
attributes, such as the height that it can step up or down, the
height of obstacles it can traverse, and the cost of taking that
action. During planning, each candidate footstep is evaluated
to determine if it is both a stable place to step, and if the
intervening terrain allows that action to be taken. To account
for environments for which the given actions may not “fit,”
a local search is performed at each step location to find
the closest location to which the robot can safely step. This

search allows the planner to adjust its actions during planning
to walk up a set of stairs, without the need for an action
which matches the length of the stairs.

Once the footstep path has been found, we calculate the
convex hull of the terrain between successive locations for
each foot. We use this convex hull to generate knot points for
a cubic spline swing leg trajectory which will move the foot
smoothly from one foothold to the next while avoiding any
obstacles between them. In addition, timings are calculated
for each step so as to slow the walking down when making
long steps or when stepping up or down. These adjustments
keep the robot within the joint velocities and allow it to
execute the desired trajectory.

The path, together with the swing leg trajectories and step
timings, is then used by the walking and balance controller
to generate a dynamically stable walking motion which can
safely take the robot from its current state to the goal location
in the environment.

VII. RESULTS

A. Standalone tracker operation

To establish the operational performance of our tracker, we
first used a standalone firewire camera attached to a commod-
ity PC equipped with an NVIDIA GeForce 7800GTX PCI-
Express GPU (although our system has been tested to work
on a range of modern GPUs from various manufacturers).
The system tracked a set of white stairs at 30fps while
an experimenter moved the handheld camera around freely.
Before starting the tracking process, we initialize the pose
of the stair model to roughly reflect the actual pose of the
stairs in the camera view. This is done via a GUI and need
not be very accurate. Upon tracker initialization, the model
edges almost instantaneously “snap” to the image edges,
subsequently tracking the stairs and recovering their pose.
Compared to manual measurements, the recovered transla-
tion from the camera to the object was accurate to within
1cm at a camera-object distance range of 1–2m. Figure 4(a)
shows a typical view with the tracked model superimposed in
green, Figure 4(b) shows a view of the model superimposed
on the extracted image edges during object occlusion with a
checkerboard. Figure 4(c) shows a view of the tracker during
severe occlusion by an experimenter walking in front of the
camera.

B. Robot experiments

Our robot experiments combine the GPU-accelerated 3D
tracking system, footstep planner, and walking and balance
controller operating on-line on an HRP-2 humanoid robot.
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(a)

(b)

Fig. 5. Examples of GPU-accelerated tracking used for mapping and localization during humanoid locomotion: HRP-2 autonomously
climbing (a) and avoiding (b) a set of stairs. Insets in top row show tracker view during execution. Stairs are no longer visible from the
top step in the rightmost image of (a).
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Fig. 6. Plots of the x, y and z coordinates of the camera in map
coordinates during a walking sequence of HRP-2 approaching and
starting to climb a set of stairs.

The tracker processes live video supplied by a robot head-
mounted camera to an off-board computer, again tracking
a set of stairs in the environment, which the robot climbs
or avoids in our experiments. After the tracker builds an
environment map and localizes the robot, the footstep planner
proceeds to compute an optimal sequence of footsteps toward
the goal positioned at the top of the stairs (for stair climbing)
or on the opposite side of the stairs (for obstacle avoidance),
which is then executed by the humanoid. Since the object
of interest is tracked continuously throughout the walking
sequence (provided it remains in view), the robot’s location
can be updated in real-time during the walking sequence.

We carried out 15 stair climbing experiments with the
robot starting from a wide variety of distances from and

orientations relative to the stairs, during 13 of which HRP-
2 successfully reached the top of the stairs. The average
length of a successful climbing sequence from the point the
robot started moving was under 8 seconds. Figure 5(a) shows
HRP-2 successfully approaching and climbing our set of
stairs. Figure 5(b) shows HRP-2 navigating around the same
set of stairs. Note that, unlike in several previous approaches
to stair climbing, neither planner nor controller have any
predefined knowledge about the stair geometry or location,
but instead operate only on the map and localization data
supplied by the tracker. Also note that our tracker continues
to recover the stair pose despite significant camera motion
occurring during the walking sequence and even when the
stairs have nearly vanished from the camera view.

Figure 6 plots the tracker-reconstructed (x, y, z) camera
position in map coordinates during the initial part of a
straight-on stair climbing sequence, until the stairs fall out-
side of the robot’s view. Note the increasing y coordinate as
the robot approaches the stairs directly in front of it in map
coordinates and the increasing z coordinate toward the end
when the robot begins to climb the stairs. The oscillations in
x reflect the lateral swaying of the robot as it changes stance
foot during walking. The overall lack of smoothness in the
curves hints at the shakiness inherent in perception on a rigid,
moving humanoid platform. Our tracker handles both of
these issues well. There are of course limits to the amount of
motion that can occur between two frames before the system
loses track of the object. The spike in x and z at around 2.5s
shows an instance where the object pose was briefly distorted
(but later recovered) due to a particularly harsh head motion
resulting from a fast sidestepping movement executed by the
robot.

VIII. DISCUSSION

We have presented a fully-integrated online perception-
planning-execution system for a humanoid robot employing
a GPU-accelerated model-based 3D tracker for perception.
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The increased robustness afforded by leveraging the GPU
has enabled an HRP-2 humanoid to successfully accomplish
complex locomotion tasks such as stair climbing and obstacle
avoidance with a speed and flexibility not achieved before.

As an improvement, we would like to eliminate the
currently necessary manual pose initialization step. Since a
rough model-to-image matching is usually enough to start
the tracker, simple appeareance-based initialization (e.g. by
matching an image taken from a database of image/pose pairs
to the camera view) may be enough. Secondly, for humanoids
to navigate truly cluttered environments, we would like
to track many scene objects concurrently. Current tracker
performance seems to indicate that there are still plenty of
GPU resources available to deal with more objects, but that
increasing the number of GPU-CPU readback steps required
during IRLS fitting to deal with multiple objects would be
prohibitive. We are thus investigating the possibility of per-
forming robust linear regression entirely on the GPU. Third,
we are working towards tighter interplay between our 3D
tracker and a footstep planner supporting efficient replanning
to deal with dynamic environments where tracked objects
move quickly and unpredictably during robot navigation.

Finally, we would like to exploit our tracker for other
humanoid tasks such as visual servoing for grasping or
perhaps even person tracking for human-robot interaction
applications. We believe that GPUs will play an increasingly
important role as an implementation platform for robotic
perception algorithms, enabling humanoid robots to perform
increasingly complex tasks in everyday, real-world environ-
ments.
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