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We have accelerated a robust model-based 3D tracking system by programmable graphics hardware to run online
at frame-rate during operation of a humanoid robot and to efficiently auto-initialize. The tracker recovers the full 6
degree-of-freedom pose of viewable objects relative to the robot. Leveraging the computational resources of the GPU for
perception has enabled us to increase our tracker’s robustness to the significant camera displacement and camera shake
typically encountered during humanoid navigation. We have combined our approach with a footstep planner and a controller
capable of adaptively adjusting the height of swing leg trajectories. The resulting integrated perception-planning-action
system has allowed an HRP-2 humanoid robot to successfully and rapidly localize, approach and climb stairs, as well as to
avoid obstacles during walking.
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1. Introduction

Perception on humanoid robots presents several unique
challenges. Approaches to localization and mapping must de-
liver accurate results to comply with the small error tolerances
imposed by the walking controller if the robot is to success-
fully step onto surfaces or avoid obstacles. Moreover, they
must be able to deal with rapid scene changes, large camera
displacement and camera shakiness and should operate in
real-time, since pausing for deliberation or sensing is often
not an option. However, the complexity of vision processing
often implies that these requirements cannot all be met at
once with the traditional CPU-based computational resources
available. In this paper, we present a GPU implementation of
a model-based 3D tracking algorithm which we have applied
specifically to the problem of humanoid locomotion. Our
system robustly fits the visible model edges of a given object
to edge features extracted from the video stream, yielding
the full 6DOF pose of the object relative to the camera. The
recovered pose, together with the robot kinematics, allows
us to accurately localize the robot with respect to the object
and to generate environment maps. These can then be used to
plan a sequence of footsteps that, when executed, allow the
robot to quickly and successfully circumnavigate obstacles
and climb stairs.

2. Related Work

A large body of work exists relating to model-based 3D
object tracking and associated visual servoing approaches.
For a more complete overview, please refer to Lepetit & Fua’s
excellent survey [1]. Early work by Gennery [2] first focused
on tracking objects of known 3D structure, with Lowe [3]
pioneering the fitting of model edges to image edges. Harris’
RAPiD tracker [4] first achieved such fitting in real-time,
with a range of improvements to the original algorithm having
been proposed [5]–[7]. Other approaches employ appearance-
based methods to perform tracking [8] or view tracking as
a combination of wide-baseline matching and bundle ad-
justment relying on so-called keyframe information gathered
offline [9]. There is an ever increasing body of work regarding
the use of GPUs for general purpose computation. Several
good overview resources exist [10], [11]. Particularly relevant
to perception is the work by Fung et. al. [12]. The demands
of using a locomoting humanoid as the perception platform
have implied that several perception approaches restrict their
operation to reactive obstacle detection and avoidance [13].
Others have restricted the recovered environment information
to 2D occupancy grids [14], have employed external sensors

Fig. 1. The HRP-2 humanoid autonomously climbing a set of stairs.
Environment mapping and robot localization is accomplished online
using our GPU-accelerated 3D tracker (tracker view inset).

to aid in robot localization and map building [15] or use
stereo for reconstruction [16].

3. Model-based 3D Tracking & Pose Recovery

3.1 Overview

Our approach to monocular model-based 3D tracking
closely follows the method proposed by Drummond and
Cipolla [17]. The reader is referred to [18] for a more
thorough explanation. We initialize and subsequently update
an estimate of the matrix representing the SE(3) pose of the
tracked object relative to the camera. This 3 × 4 matrix E
corresponds to the extrinsic camera matrix and transforms
points from world coordinates to camera coordinates. We
also gather a 3 × 3 matrix of intrinsic parameters K, during
an offline calibration step. Together, these matrices form the
camera projection matrix P = KE.

To estimate the relative pose change between two consecu-
tive frames, we project the object model onto the image plane
according to the latest estimate of the pose Et and initialize
a set of regularly spaced so-called control nodes along those
projected edges. We then use these control nodes to match
the visible projected model edges to edge features extracted
from the camera image using a Canny edge detector [19].
The errors in this matching can then be used to find an
update ∆E to the extrinsic parameter matrix using robust
linear regression. The updated pose of the object is finally
calculated as Et+1 = Et∆E and the procedure repeated for
the next frame.



3.2 Model-based 3D object tracking

The recovery of the inter-frame pose update ∆E can
be implemented by considering the set of control nodes
along the visible model edges and, for each, determining the
perpendicular distance to the closest image edge using a one-
dimensional search.

The camera projection matrix takes a point from world
coordinates to projective camera coordinates via (u, v, w)T =
P (x, y, z, 1)T , with pixel coordinates given by x = u/w and
y = v/w. To recover the rigid transform ∆E, we consider the
six generating motions which comprise it, namely translations
in the x, y and z directions and rotations about the x, y
and z axes, represented by the 4 × 4 matrices G1 to G6.
These generating motions form a basis for the vector space
of derivatives of SE(3) at the identity and can be considered
velocity basis matrices.

The pose update ∆E can be constructed from these Eu-
clidean generating motions via the exponential map as ∆E =
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. The motion vector µ thus parameterizes

∆E in terms of the six generating motions G1 to G6. It is
µ that we recover using robust linear regression.

If a particular control node ξ with homogeneous world
coordinates pξ = (x, y, z, 1) is subjected to the ith generating
motion, the resulting motion in projective image coordinates
is given by (u′, v′, w′)T = PGi p
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We can project this motion onto the model edge normal n̂ at

the control node as fξ
i = L

ξ
i · n̂.

Suppose we have determined during our 1D edge search
along the model edge normal that control node ξ is at a
distance dξ from the closest image edge extracted from the
video frame. Considering the set of control nodes in its
entirety, we can calculate the motion vector µ by fitting dξ to

fξ
i for each control node via the usual least-squares approach:
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We can now use the recovered motion vector µ to reconstruct
the inter-frame pose update via the exponential map.

3.3 Robust fitting / Pose filtering

The standard least-squares fitting method outlined above
is well known to be adversely influenced by the presence
of outliers, which are particularly present when dealing
with rapidly changing and often cluttered views of the
world from the robot camera. We thus employ Iteratively
Reweighted Least Squares (IRLS) for robust fitting. The
residuals from an initial ordinary least squares fitting step
are subsequently re-weighted according to Tukey’s biweight,
giving lower weights to points that do not fit well. We iterate
the reweighted fitting a fixed number n of times until the
residuals change only marginally (for the experiments in this
paper, n = 5).

Then, still considering the same two adjacent frames in
the video, we re-project the control nodes using the pose

Et∆Ẽ and re-start the entire inter-frame tracking process,
including edge search and IRLS fitting. Iterating essentially
the whole pose update process in this way for a single pair
of frames ensures the most accurate and robust model-to-
edge fitting, but is computationally very expensive. However,
leveraging the GPU for all of the image processing and
edge search leaves us with enough CPU resources to execute
the model fitting process several iterations for each frame,
thus significantly increasing robustness over a CPU-only
implementation.

To further increase the robustness of the tracker against
incorrect snapping to strong misleading background contours,
we consider multiple edge hypotheses for each control node
during the fitting stage. For each control node ξ, we search
along the model edge normal and record distance measure-

ments dξ
k to the k closest image edges found, rather than

merely attributing a single measurement to each control node.
During the initial fitting step, we take all hypotheses extracted
for all control nodes into account with equal weight. During
the subsequent IRLS fitting process, weights are computed for
each hypothesis at every point. Now, at each control node,
only the residual corresponding to the hypothesis with the
lowest weight contributes to the fit at each iteration.

We combine measurements (i.e. the recovered pose from
each inter-frame tracking step, Et) using a Discrete Extended
Kalman Filter [20]. The filter maintains a 12 dimensional
internal state, representing both pose (6DOF) and velocity
(6DOF) of the object being tracked. These are stored as an
SE(3) pose matrix and a velocity 6 vector, holding transla-
tional and rotational velocities. The filter aids in appropriately
integrating successive pose measurements to eliminate jitter
and provide ‘smoother’ pose recovery over time. The filter’s
embedded dynamics model also provides an estimate of how
the object being tracked is expected to move in the near
future, and proves very helpful when tracking rapidly moving
objects. We use the filter state after each prediction step to
start our inter-frame pose recovery process.

4. GPU-based implementation

All aspects of our 3D tracking system involving image or
geometry processing are either executed entirely in the GPU’s
fragment shaders or involve hardware-accelerated OpenGL.
We have implemented our method using a cascade of frag-
ment programs, shown in Figure 2, written using NVIDIA’s
Cg language and operating on image data stored as textures
in GPU memory. The latest incoming video frame serves as
input to the filter cascade, which ultimately outputs a texture
containing the edge-normal distances dξ for all control nodes
on the visible projected model edges of the object. All steps
in between operate on data stored locally on the GPU as the
output of a previous step.

We use a firewire camera, standalone or mounted on the
robot head, to gather video at resolutions of up to 1024 × 768
pixels and 30 frames per second. We perform YUV-RGB
color conversion, radial undistortion of the camera image
according to the recovered calibration parameters and Canny
edge detection on the GPU. This results in a single rectified
binary image texture indicating presence or absence of an
edge at each pixel.

4.1 Model projection & edge search

To fit edges rendered using the current pose estimate to
image edges, we assume the existence of a simple 3D model
of the object, easily generated using CAD or photogrammetry
software. In particular, we use Google Sketchup and its Photo
Match feature to quickly generate geometrically accurate
textured models from a few photographs. We then render
our model onto the image plane according to the latest
pose estimate, performing hidden line removal efficiently
using depth-buffered OpenGL, resulting in a binary texture
containing only the visible edges of the model.

We initialize a number of control nodes along the model
edges, spaced evenly in image coordinates. Control node
information is provided to the edge search fragment program
as a single four channel RGBA texture, with the red channel
indicating presence/absence, the green and blue channels
encoding the x and y components of model edge normal
at the control node, and their signs being integer-encoded in
the alpha channel.

The edge search fragment program then steps along the
true model edge normal (albeit quantized to pixel coordi-
nates) trying to detect the k = 4 closest image edges to
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Fig. 2. GPU fragment program cascade defining flow of image processing, model projection and edge search.

the control node in either the positive or negative normal
direction. Search is performed up to a certain cutoff distance.
If no image edges are found within that distance, the control
node is ignored and does not contribute to the solution fit.

Although the search distance, the number of hypotheses
and the number of control points search is performed on
directly affect the running time of the edge search process,
we have not been able to saturate our GPU-implementation
even with many hundreds of control nodes and edge search
distances spanning more than 50 pixels in either direction
of the normal. Furthermore, the GPU’s abundant compute
resources have also enabled us to handle the tracking of
multiple objects present in the scene in a straightforward
manner. A separate pose estimate is maintained throughout
the tracking process for each object of interest, with a single
texture containing control node information for all objects to
the edge search fragment program. During the fitting stage,
search results are then associated with their respective objects
and fitting proceeds separately for each one.

4.2 Tracker Initialization

Many previous approaches to edge-based 3D tracking rely
on an a-priori step of manual initialization to establish the
initial pose of the object E0. We have implemented an
automatic initialization method that rapidly establishes 2D-
3D point correspondences, from which the initial pose can
be recovered. It relies on a textured 3D model of the object
being tracked, which we render from a variety of viewpoints
(sampled uniformly or from a given set of viewpoints we are
likely to encounter during operation). The resulting model
images are stored together with the pose from which they
were rendered.

We use features based on David Lowe’s Scale Invariant
Feature Transform [21] to perform matching between in-
coming camera images and our database of model images.
SIFT features are extracted from each of the model images
and from incoming camera images very rapidly on the GPU
using a modified version of SiftGPU [22]. Extracting about
500 features from an image takes roughly 80ms on the
GPU, compared to around 6 seconds for a typical CPU
implementation. We then match the input image features to
each of the model images using a Best-Bin-First KD-tree
search and RANSAC to yield a set of inliers. The model
image with the largest number of inliers is chosen.

Given these 2D-2D matches and the 3D model of the object
of interest, we are able to recover the 3D coordinates of
the SIFT keypoints in the model images. We use OpenGL’s
gluUnproject() function to very efficiently determine
the 3D object coordinates of a 2D point using the graphics
hardware. The resulting set of 2D-3D matches (associating
keypoints in the input images with 3D points on the surface
of the object model via one of the model images) is then
used to find the initial pose using the POSIT algorithm [23].

5. Robot Localization / Environment Mapping /
Planning

To localize the robot, we establish a map coordinate system
in which the object being tracked is assumed to remain
at a fixed location, given by a transform m

o T . Once we
have recovered the pose of the object in camera coordinates
(given, say, by a transform c

oT ), it is easy to position the
camera relative to the object. The pose of the camera in
map coordinates is then straightforwardly recovered as m

c T =

m
o T o

cT = m
o T (c

oT )−1, essentially positioning the camera
in a consistent coordinate system relative to the object of
interest. For planning, we require the precise location of
the robot’s feet. We recover this using the robot kinematics,
which supplies another transform, c

fT , locating the robot foot
relative to the camera at any instant in time. When chained
with m

c T , this locates the foot in map coordinates. From the
known shape of the object being tracked and its fixed position
in map coordinates, we can easily generate a height map
describing the robot environment by rendering it top-down
using an orthographic projection.

The navigation planning performed for the experiments in
this paper uses a modified version of our previously described
footstep planner [24]. The planner reduces the problem of
motion planning for the humanoid to planning a sequence
of footsteps for the robot to follow, along with swing leg
trajectories and step timings that move the robot’s legs
from foothold to foothold. Using this information, a walking
controller then generates a dynamically stable motion to walk
along the desired path.

6. Results

6.1 Standalone tracker operation

To establish the operational performance of our tracker, we
first used a standalone firewire camera attached to a com-
modity PC equipped with an NVIDIA GeForce 8800GTX
PCI-Express GPU. The system tracked a set of white stairs
at 30fps while an experimenter moved the handheld cam-
era around freely. Compared to manual measurements, the
recovered translation from the camera to the object was
accurate to within 1cm at a camera-object distance range of
1–2m. Figure 3(a) shows a typical view with the tracked
model superimposed in green, Figure 3(b) shows a view
of the model superimposed on the extracted image edges
during object occlusion with a checkerboard. Figure 3(c)
shows a view of the tracker during severe occlusion by an
experimenter walking in front of the camera.

6.2 Robot experiments

Our robot experiments combine the GPU-accelerated 3D
tracking system, footstep planner, and walking and balance
controller operating on-line on an HRP-2 humanoid robot.
The tracker processes live video supplied by a robot head-
mounted camera to an off-board computer, again tracking a
set of stairs in the environment, which the robot climbs or
avoids in our experiments.

We carried out 15 stair climbing experiments with the
robot starting from a wide variety of distances from and
orientations relative to the stairs, during 13 of which HRP-
2 successfully reached the top of the stairs. The average
length of a successful climbing sequence from the point
the robot started moving was under 8 seconds. Figure 4(a)
shows HRP-2 successfully approaching and climbing our set
of stairs. Figure 4(b) shows HRP-2 navigating around the
same set of stairs.

7. Discussion

We have presented a fully-integrated online perception-
planning-execution system for a humanoid robot employing
a GPU-accelerated model-based 3D tracker for perception.
The increased robustness afforded by leveraging the GPU
has enabled an HRP-2 humanoid to successfully accomplish



(a) (b) (c)

Fig. 3. Stairs being tracked during handheld camera sequence (a). View of model-edge to image-edge fitting during occlusion (b). Tracker
operation under severe occlusion (c).

(a)

(b)

Fig. 4. Examples of GPU-accelerated tracking used for mapping and localization during humanoid locomotion: HRP-2 autonomously
climbing (a) and avoiding (b) a set of stairs. Insets in top row show tracker view during execution. Stairs are no longer visible from the
top step in the rightmost image of (a).

complex locomotion tasks such as stair climbing and obstacle
avoidance with a speed and flexibility not achieved before.

As future research, we have been working on exploiting our
tracker for other humanoid tasks such as visual servoing for
grasping. We have also been investigating a tighter coupling
between the perception and planning stages of our system by
having the planning stage reason explicitly about perception.
We believe that GPUs will play an increasingly important
role as an implementation platform for robotic perception
algorithms, enabling humanoid robots to autonomously per-
form increasingly complex tasks in everyday, real-world
environments.
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