
Guohui Wang, Michael Wu, Yang Sun, and Joseph R. Cavallaro 

Department of Electrical and Computer Engineering 

Rice University, Houston, Texas 77005 

Email: {wgh, mbw2, ysun, cavallar}@rice.edu 

GPU Accelerated Scalable Parallel Decoding of LDPC Codes

Abstract— This paper proposes a flexible low-density parity-

check (LDPC) decoder which leverages graphic processor units 

(GPU) to provide high decoding throughput. LDPC codes are 

widely adopted by the new emerging standards for wireless 

communication systems and storage applications due to their 

near-capacity error correcting performance. To achieve high 

decoding throughput on GPU, we leverage the parallelism 

embedded in the check-node computation and variable-node 

computation and propose a parallel strategy of partitioning the 

decoding jobs among multi-processors in GPU. In addition, we 

propose a scalable multi-codeword decoding scheme to fully 

utilize the computation resources of GPU. Furthermore, we 

developed a novel adaptive performance-tuning method to make 

our decoder implementation more flexible and scalable. The 

experimental results show that our LDPC decoder is scalable and 

flexible, and the adaptive performance-tuning method can deliver 

the peak performance based on the GPU architecture. 

Keywords-GPGPU, parallel LDPC decoder, reconfigurable and 

scalable algorithms, adaptive performance-tuning 

I.  INTRODUCTION 

Low-density parity-check (LDPC) codes are a class of 
powerful error correcting codes that can achieve near-capacity 
error correcting performance [1]. The LDPC codes are widely 
used in Ethernet standards such as 802.3an, high speed 
magnetic storage devices and many cellular standards such as 
WiMAX (802.11e) and WiFi (802.11n). 

For cellular networks, cloud RAN (C-RAN) has been 
proposed to reduce the deployment cost and to support multiple 
wireless standards [2]. In this design, the base-station is a 
simple RF frontend that captures raw samples. The raw 
samples are forwarded to a central location where 
computational intensive baseband processing is performed. To 
achieve the performance as well as handle multiple standards, 
one possibility is to use multiple commodity x86 processors. 
An alternative is to employ graphics processors to perform 
baseband processing, which can achieve higher computational 
performance than x86 processors by using many more cores. 

Although power and strict latency requirements of real 
communication systems continue to be the main challenges for 
a practical real-time GPU based platform, the flexibility, 
scalability and high performance of GPU-based systems make 
it a powerful platform for fast simulation of new algorithms 
and fast prototyping of a new system. Recently, researchers 
have started to use GPU to accelerate baseband signal 
processing algorithms in wireless communication systems. For 
instance, a soft MIMO detector is implemented on GPU and 
achieves very high throughput [3]. Reference [4] proposed a 
parallel turbo decoding accelerator implemented on GPU. Due 

to the inherently massively parallel nature and very 
complicated message passing decoding algorithm, the GPU-
based implementation of LDPC decoder is another key 
communication component that has been widely studied.  For 
example, the parallel implementations of high throughput 
LDPC decoder on GPU are discussed in [5-9], in which the 
authors improved the throughput performance according to the 
GPU’s architecture by employing techniques such as workload 
kernel partitioning, shared and coalesced memory access 
optimization, and multiple-level parallelism degree exploration. 

Since GPUs evolve very quickly, several generations of 
GPU co-exist in the market with different underlying 
architectures. Each of the previous works only focuses on a 
specific GPU architecture. Therefore, existing implementations 
lack scalability and flexibility and only can achieve high 
performance for only a small class of codes on specific GPUs.  

This paper presents a scalable and flexible implementation 
of LDPC decoder on GPU. The novel adaptive tuning 
algorithm is proposed to map different LDPC decoding 
algorithms to different GPU architectures, which can generate a 
high performance LDPC decoder independent from the types 
of LDPC codes and the architectures of the GPU. In addition, 
this paper studies several implementation issues of GPU-based 
LDPC decoder according to extensive experiments and 
analysis. 

II. LDPC CODES  

Low-density parity-check (LDPC) codes are a class of error 
correcting codes. The binary LDPC codes can be represented 
by the following equation: 

 0T H x  

in which x is a codeword and H is an M×N sparse parity check 
matrix. The H matrix can be expressed by a bipartite graph in 
which each row represents a check node (CN) and each column 
represents a variable node (VN). M denotes the number of 
parity check nodes, and N is the number of variable nodes. A 
non-zero element in H is called an edge and represents a 
connection between a variable node and a check node. 

LDPC codes are usually decoded by using the sum-product 
algorithm (SPA), which is based on the iterative message 
passing among CNs and VNs [1]. The log-domain SPA (log-
SPA) is preferred due to the complexity and numerical stability 
issues of the probability-domain SPA. The log-SPA is 
described in detail in [11] and [12]. The decoding process 
contains an initiation stage, iterative decoding stages with 



check-node to variable-node (CTV) update and variable-node 
to check-node (VTC) update, and a hard decision stage.  

In this paper, we take quasi-cyclic LDPC (QC-LDPC) 
codes as examples since this class of codes has several good 
features. For example, they are very friendly to hardware 
implementations. In addition, QC-LDPC codes are widely 
adopted in current and next generation wireless communication 
standards such as IEEE 802.11n WiFi and IEEE 802.16e 
WiMAX, so studying QC-LDPC codes has a strong practical 
meaning. 

III. CUDA PROGRAMMING MODEL 

Computer Unified Device Architecture (CUDA) adopted in 
this work is widely used to program massively parallel 
computing applications [10].  CUDA exploits the 
computational power of a GPU by employing the Single 
Instruction Multiple Threads (SIMT) programming model. In 
this model, a kernel is executed by thousands of concurrent 
multiple threads over different data sets. The threads executing 
a kernel on a GPU are distributed on a grid. Each grid consists 
of thread blocks with adjustable dimensions. All threads inside 
the same block can share data through a shared memory 
mechanism. They can also synchronize execution at specific 
synchronization barriers inside the kernel, where all the threads 
in a block are suspended until they all reach that point. 

Because of the large number of cores and an efficient SIMT 
architecture, GPU can achieve very high peak performance. 
However, it is still challenging to program a GPU to achieve  
peak performance due to the following reasons: 

1. We have to provide a sufficient number of threads 
(typically at least thousands) to fully occupy the general-
purpose processing cores in GPU. 

2. We need to minimize the device memory access time 
since device memory access takes hundreds of clock cycles. In 
addition, non-coalesced memory access will be serialized 
which increases the number of device memory requests. 
Therefore, the programmer should carefully coalesce device 
memory access to reduce the number of device memory 
requests. 

3. Although the shared memory can be accessed very fast, 
the size of the shared memory per thread is quite limited, which 
limits the achievable maximum parallelism. 

In addition, there are differences among different 
generations of GPUs. The SIMD width of the stream 
multiprocessor (SM) has doubled and the number of registers 
available has quadrupled from G80 to Fermi. In addition, the 
amount of shared memory available per SM has increased from 
32KB to 48KB. As a result, tuning is required to reach peak 
performance on different generations of GPUs. For example, 
the maximum number of threads per block depends on the 
number of registers available on the GPU. To make sure that 
the maximum numbers of threads are running concurrently to 
reach peak performance while keeping processing latency 
relatively low, the thread block configurations need to be 
updated according to the target GPU hardware.  

IV. ALGORITHM MAPPING AND IMPLEMENTATION 

Because of the SIMT characteristic and the shared memory 
architecture employed by GPU, directly mapping the LDPC 
decoding algorithm will not deliver the peak performance of 
the GPU. Therefore, we first explore the methodology to map 
the LDPC decoding algorithm more efficiently. 

A. Mapping LDPC Decoder to Many-core Architecture of 

GPU 

The LDPC decoding process can be split into two stages: 
horizontal CTV processing stage, and vertical VTC and APP 
update stage [12]. Therefore, we can create one computational 
kernel for each stage. We can partition the complete decoding 
process into CPU host code and two GPU computation kernels. 
The relationship between the CPU host code and the GPU 
kernel is shown in Fig. 1.  

The LDPC decoding algorithm itself bears massive 
parallelism so that it is very suitable for a GPU 
implementation. During the horizontal processing stage, all the 
rows of the H matrix are processed from left to right 
horizontally. Since all the CTV messages are calculated 
independently and there is no data dependency among rows, 
we could use many parallel threads to compute these CTV 
messages. For an M×N parity-check matrix, M threads are 
spawned, and each thread processes one row. During the VTC 
and APP updating stage, there are N APP values to be updated. 
Similar to the CTV message processing stage, the APP value 
update is independent among variable nodes. We can spawn N 
threads to update all the APP values in parallel.  Since all the 
threads in each kernel access device memory which is visible to 
all the threads and thread blocks, to avoid a memory conflict 
and RAW (read-after-write) data hazard, we need to 
synchronize all the threads explicitly at the end of each kernel, 
using the __syncthreads() function.  

B. Performance Optimization Schemes 

The goal to use GPU as an accelerator is to implement a 
highly scalable LDPC decoder with high throughput 
performance. To archive this goal, we have applied several 
optimization methods including using compact representation 
of the H matrix, optimizing the device memory access, using 

Macro-Codeword NMCW

Macro-Codeword 2

Layer 1 of Codeword NCW

. . .
Layer 1 of Codeword 1

Z threads

Z threads

.

..
Thread block (1, 1)

(ZxNCW threads)

Macro-Codeword 1

Layer 12 of Codeword NCW

. . .
Layer 12 of Codeword 1

Z threads

Z threads

.

..
Thread block (1, 12)

(ZxNCW threads)

..

.

..
.

..

.

1 2

3

 
Figure 3: 3D-structure multi-codeword decoding. Arrows labeled 

with 1~3 show three dimensions of the proposed multi-codewo 

Host

 (CPU)
1. Initialization

2. Transfer data from 

    Host to Device

Device 

(GPU)
...CUDA Kernel 1

Horizontal Processing

CUDA Kernel 2

1. Update APP values

2. Hard decisions

1. Transfer data from       

    Device to Host

2. Finish decoding

Device 

(GPU)
...

Host 

(CPU)

Serial code

Serial code

It
er

a
ti

v
e 

D
ec

o
d

in
g

 

Figure 1: Code structure of the GPU implementation of LDPC decoder by 

using two CUDA kernels. 



TABLE I 
NOTATIONS FOR ADAPTIVE PERFORMANCE TUNING 

Parameter Explanation 

Z Expansion factor.  

For 802.11n, Z=81; for WiMax, Z=96. 

NCW Number of codewords per macro-codeword 

NMCW Number of macro-codewords 

Nthreads/block Allocated number of threads per thread block 

Nactive_threads/SM Number of active threads per SM 

Nactive_TB/SM Number of active thread blocks per SM 

Nregister/threads Amount of registers used per thread 

Nshared memory/threads Amount of shared memory used per thread 

Ncodeword Total number of codewords to be processed 

 

 

an early termination algorithm, and so on. The facts that these 
performance optimization methods are highly related to the 
LDPC decoding algorithm and GPU’s hardware architecture 
indicate that the programmer should be familiar with the 
GPU’s architecture and programming model to achieve peak 
performance. Moreover, we have utilized different memories 
including constant memory and coalesced device memory to 
fully take advantage of the memory hierarchy. The details of 
these optimization schemes have been explained in our 
previous work [9]. 

C. Multi-codeword Decoding Scheme 

In order to maximize the data throughput, we need to make 

sure the workload is large enough for all the SMs to work 

without idle cores because of the GPU’s many-core 

architecture. Directly mapping the LDPC decoding algorithm 

based on Section IV-A cannot provide enough workload to 

hide the long latency and overhead of device memory access. 

We propose the following 3D-structure multi-codeword 

decoding scheme. 

The parity check matrices of QC-LDPC codes in 802.11n 

WiFi and 802.16e WiMAX have 12 layers (one layer 

represents one row of Z×Z sub-matrices, in which Z is called 

expansion factor of the parity-check matrix). Since the threads 

to process one layer share the same parity-check matrix entry, 

they have very similar execution paths from which we can 

take advantage of multi-thread processing inside one thread 

block. Therefore, the natural idea is to use one thread block to 

process one layer, which has Z threads in each block. 

However, one layer has only Z rows (Z=81 for 802.11n WiFi 

and Z=96 for 802.16e WiMAX). Thus, the parallelism is too 

small to achieve peak performance. 

To increase the amount of the workload, we add another 

dimension of parallelism by packing several independent 

codewords to form a macro-codeword. We use multiple thread 

blocks to process the same layer of parity-check matrix for 

different macro-codewords because they still share the same 

execution path. So far, each macro-codeword is processed by 

12 thread blocks, each of which has Z×NCW threads (NCW 

represents the number of codewords in one macro-codeword).  

To further increase the workload, we add the third 

dimension to the multi-codeword structure, in which we 

decode multiple (NMCW) Macro-codewords in parallel. This 

3D-structure multi-codeword decoding scheme not only 

provides higher parallelism but also enables the adaptive 

performance-tuning method described below. 

D. Adaptive Performance-Tuning Method 

Different GPUs have different architectures and hardware 
resources in terms of the number of stream multi-processors 
(SM) and maximum parallelism supported per SM, amount of 
shared memory and amount of registers [10]. The variations on 
these aspects are so big that the parallel programs tuned for 
certain GPUs will quite possibly perform badly on other GPUs 
in terms of flexibility, scalability and throughput performance. 
The mapping from algorithm to GPU architecture should be 
quite different according to the computation capability of the 
GPU [10]. Therefore, we propose an adaptive performance-
tuning method to dynamically calculate the parameter 

configurations for the decoder to achieve peak performance on 
different devices.  

The steps of this adaptive scheduling and tuning algorithm 
are as follows. First, the program enquiries the architecture 
information of the GPU using API functions. In this step, we 
can get several important parameters of GPU such as number 
of usable parallel threads, maximum active thread blocks and 
the amount of shared memories and registers. Then according 
to the properties of the LDPC codes, such as expansion factor 
Z of a certain code matrix and the length of the codeword, the 
program calculates the parameters NCW and NMCW to configure 
the multi-codeword decoding structure and to determine the 
size of the computation kernels.  

The proposed adaptive performance-tuning method can be 
summarized as an optimization problem, in which the notations 
are defined in Table I. Our goal is to maximize the number of 
active threads per SM (Nactive_threads/SM) with the smallest 
Ncodeword, given the following four constraints: 

 Nthreads/block=Z×Ncw≤ max number of threads per thread 
block; 

 Nactive_threads/SM=Z×Ncw×Nactive_TB/SM ≤ max number of 
active threads per SM; 

 Nactive_threads/SM×Nregisters/thread ≤amount of available 
registers per SM; 

 Nactive_threads/SM×Nshared_memory/thread ≤amount of available 
shared memory per SM. 

After solving the above optimization problem based on the 
given constraints, we can get Nactive_threads/SM, Nthreads/block and 
NCW. We can then calculate the number of macro-codewords 
by using the equation NMCW=Nactive_threads/SM/Nthreads/block×NSM. 
Then the total amount of codewords is Ncodeword=NMCW×MCW.  

Let us take the WiMAX 1152×2304 LDPC code with 
expansion factor Z=96 as an example to show how this 
adaptive scheme works. A CUDA compute capability 2.0 
device is used in this example, so the maximum number of 
threads per block is 1024, the number of active threads per SM 
is 1536 and the total number of SMs is 14 [10]. We try to 
maximize Nactive_threads/SM under the following constraints: 

 Nthreads/block=Z×Ncw≤1024; 

 Nactive_threads/SM=Z×Ncw×Nactive_TB ≤ 1536. 



TABLE II 
DATA SETS AND ADAPTIVE PERFORMANCE-TUNING PARAMETER  

CONFIGURATIONS (FOR NVIDIA GTX470 GPU) 

Code type Code Length Edges Threads 

Per block 

Active  

Threads 
Per SM 

NCW NMCW 

WiFi 1944 6804 729 1458 9 28 

WiMAX 2304 8064 768 1536 8 28 

Matrix A 3072 15360 768 1536 6 28 

Matrix B 6144 30720 768 1536 3 28 

Matrix C 12288 55296 512 1536 1 42 

Matrix D 24576 98304 1024 1024 1 14 

 

 

TABLE III 
THROUGHPUT PERFORMANCE SIMULATION RESULTS (ON GTX470 GPU) 

Code type Code Length NCode-word  Iterations Decoding  

throughput 

WiFi 1944 252  10 39.01 Mbps 

WiMAX 2304 224  10 48.74 Mbps 

Matrix A 3072 168  10 48.96 Mbps 

Matrix B 6144 84  10 47.27 Mbps 

Matrix C 12288 42  10 49.35 Mbps 

Matrix D 24576 14  10 48.21 Mbps 

 

 

Solving this problem, we get Nactive_TB=2, Nthreads/block=768, 
Ncw=8. Then, the number of macro-codeword can be calculated 
via equation NMCW=Nactive_threads/SM/Nthreads/block×NSM=28. The 
total number of codewords for the peak performance should be 
Ncodeword=NMCW×MCW=28×8=224. By profiling our CUDA 
code, we know that 17 registers are used per thread in the first 
kernel and 11 registers are used per thread in the second kernel. 
None of the kernels use any shared memory. Based on the 
configurations, we have 32 available shared memory slots per 
thread (48 K/1536=32) and 21 available registers per thread (32 
K/1536=21). The amount of required shared memory and 
registers in our kernels is within the limit, so the shared 
memory and registers are not the bottleneck for this decoding 
system. The peak performance is bounded by the amount of 
computational resources (SMs). 

V. IMPLEMENTATION RESULTS AND DISCUSSIONS 

We conducted experiments to evaluate the performance of 
the proposed algorithm on the GPU consisting of an NVIDIA 
GTX470 GPU with 448 stream processors running at 
1.215GHz and with 1280MB DDR5 device memory. We also 
run experiments on an NVIDIA 8600GT GPU with 32 stream 
processors running at 1.18GHz and with 256MB DDR3 device 
memory. We use C language and the CUDA programming 
interface (version 4.0). The graphics card is installed on a PC 
with an Intel i5-750 CPU and 8GB DDR3 memory. 

Our experiments include different data sets, which are 
defined in Table II. The data sets consist of 802.11n WiFi 
codes, 802.16e WiMAX codes. Matrix A, B, C and D are 
generated based on WiMAX H matrix by increasing the 
expansion factor. All the codes in the table are irregular LDPC 
codes, which can provide better error-correcting performance 
but are challenging to decode due to workload imbalance. The 
average row weights (number of non-zero elements per row) 
are seven for all the data sets in this experiment. Number of 
edges indicates the computational complexity of the LDPC 
decoding kernel. The number of edges increases in Table II, so 
the computational complexity from WiFi to matrix D increases. 

A. Throughput Performance Analysis 

Table II also shows the parameter configurations for each 
code based on the adaptive tuning scheme. Given code 
information, the parameters can be easily generated. Table III 
shows the throughput results of our LDPC decoder 
implementation to decode different types of codes on GPU. 
The throughput values are calculated by using the total 
processing time that includes all kernel execution time on GPU, 

run time of host code, and the time to transfer data between 
host and device. We can see that the decoder can achieve high 
throughput, which can greatly speed up the simulation of 
LDPC decoders. 

The performance of WiFi codes and WiMAX codes are 
different because the properties of each H matrix are very 
different. The distribution of the non-zero entries in the sparse 
matrix is different. Matrix A, B, C and D have similar 
performance as WiMAX codes, since their H matrices have  
similar structures as the WiMAX code. We can also notice that 
for different kinds of codes, the performance is almost the 
same. Moreover, experiments show that even if we further 
increase the workload for all the codes, the throughput does not 
increase. This fact indicates that we have fully utilized the SMs 
and achieved peak performance for all the code types by using 
the configuration parameters generated by our adaptive 
performance-tuning scheme. 

B. Configurability and Scalability 

Our massively parallel LDPC decoding implementation has 
great configurability and scalability. First, the proposed parallel 
LDPC decoder supports different types of codes, for example, 
codes with different parity-check matrices and codes with 
different codeword sizes. Second, our LDPC decoder supports 
both the Min-Sum algorithm and log-SPA algorithm. 
Furthermore, thanks to the adaptive performance-tuning 
scheme, our decoder is able to support devices with different 
compute capabilities. 

C. Discussion of Adaptive Performance-Tuning Scheme 

 In this section, we evaluate the adaptive performance-

tuning scheme by experiments. We use the WiMAX 

1152×2304 LDPC code as an example. Since we have already 

calculated the configuration parameters for peak performance, 

here we change the workload assigned to GPU by adjusting the 

parameters NCW and NMCW. The program records the kernel run 

time and calculates the decoding throughput. Fig.2 shows the 

relationship between throughput performance and the amount 

of workload (in the unit of “number of codewords”). Fig.2  

shows that the throughput increases very quickly in the 

beginning; however, after a certain transition point, the 

throughput almost does not change any more. If we zoom in to 

take a closer look at the range 0~500 codewords, we can see 

that when the workload is larger than 200~300 codewords, the 

throughput curve tends to be flat. Section IV-D shows that 

decoding more than 224 codewords in parallel could deliver the 

peak performance. Furthermore, the calculated configurations 

from Section IV-D and Table II match the simulation results in 

Fig.2 very well.  



Fig.3 shows experimental results on 8600GT GPU. Using 

our adaptive performance-tuning algorithm, we get the 

following parameters: NCW=4, NMCW=6 and Ncodeword=24. Fig.3 

shows that when we decode 24 codewords, the throughput is 

very close to the peak performance. This result indicates that 

our adaptive performance-tuning algorithm works well for 

older GPUs such as 8600GT whose CUDA compute capability 

is 1.1 [10]. 

The above experimental results prove that our adaptive 

performance-tuning scheme can successfully calculate and 

predict the parameters for different GPU devices to achieve 

peak performance. Since the GPU computation involves other 

complicated overheads, when practically applying the adaptive 

performance tuning algorithm to the implementation, we can 

assign a little more workload than the calculated number to 

guarantee that we can achieve near-peak performance. 

VI. CONCLUSION 

Flexibility and scalability are two major advantages of the 

GPU accelerator for parallel signal processing. However, due 

to the diversity of LDPC codes and the different hardware 

architecture of a GPU, it is very challenging to design an 

adaptive LDPC decoding accelerator on GPU. In this paper, 

we propose a novel multi-codeword decoding method and an 

adaptive performance-tuning scheme, which can not only 

provide high decoding throughput but also deliver good 

flexibility and scalability. Experimental results show that the 

implemented LDPC decoding accelerator is able to support 

different codes with different codeword sizes. With the help of 

the adaptive performance-turning scheme, the decoder can 

efficiently achieve peak performance while keeping the 

decoding latency relatively low. The experimental results also 

prove the correctness and efficacy of the configuration 

parameters generated by the adaptive performance-tuning 

scheme. 

ACKNOWLEDGEMENT 

This work was supported in part by Renesas Mobile, 

Samsung, and by the US National Science Foundation under 

grants CNS-0551692, CNS-0619767, EECS-0925942 and 

CNS-0923479.  

REFERENCES 

[1] R. Gallager, “Low-density parity-check codes,” IRE Transactions on 
Information Theory, vol. 8, no. 1, pp. 21 –28, 1962. 

[2] INTEL Solutions for Next Generation Multi-Radio Basestation. 
[Online]. Availible: 
ftp://download.intel.com/design/intarch/applnots/30745002.pdf 

[3] M. Wu, Y. Sun, S. Gupta, and J. R. Cavallaro, “Implementation of a 
high throughput soft MIMO detector on GPU,” Journal of Signal 
Processing Systems, pp. 1–14, 2010, 10.1007/s11265-010-0523-4. 
[Online]. Available: http://dx.doi.org/10.1007/s11265-010-0523-4 

[4] M. Wu, Y. Sun, and J. R. Cavallaro, “Implementation of a 3GPP LTE 
turbo decoder accelerator on GPU,” in 2010 IEEE Workshop on Signal 
Processing Systems (SIPS), 2010, pp. 192 –197. 

[5] G. Falcao, L. Sousa, and V. Silva, “Massively LDPC decoding on 
multicore architectures,” IEEE Transactions on Parallel and Distributed 
Systems, vol. 22, no. 2, pp. 309 –322, 2011. 

[6] H. Ji, J. Cho, and W. Sung, “Memory access optimized implementation 
of cyclic and quasi-cyclic LDPC codes on a GPU,” Journal of Signal 
Processing Systems, pp. 1–11, 2010, 10.1007/s11265-010-0547-9. 
[Online]. Available: http://dx.doi.org/10.1007/s11265-010-0547-9 

[7] S. Wang, S. Cheng, and Q. Wu, “A parallel decoding algorithm of 
LDPC codes using CUDA,” in IEEE 42nd Asilomar Conference on 
Signals, Systems and Computers, 2008, pp. 171 –175. 

[8] Y.-L. Chang, C.-C. Chang, M.-Y. Huang, and B. Huang, 
“Highthroughput GPU-based LDPC decoding,” vol. 7810, no. 1. SPIE, 
2010, p. 781008. [Online]. Available: 
http://link.aip.org/link/?PSI/7810/781008/1 

[9] G. Wang, M. Wu, Y. Sun, and J. R. Cavallaro, “A Massively Parallel 
Implementation of LDPC Decoder on GPU,” in Preceding of IEEE 
Symposium on Application Specific Processors, 2011, pp. 82 -85. 

[10] NVIDIA CUDA C programming guide Version 4.0. [Online]. Available: 
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/d
oc/CUDA_C_Programming_Guide.pdf 

[11] M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity 
iterative decoding of low-density parity check codes based on belief 
propagation,” IEEE Transactions on Communications, vol. 47, no. 5, pp. 
673 –680, May 1999. 

[12] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X.-Y. Hu, 
“Reduced-complexity decoding of LDPC codes,” IEEE Transactions on 
Communications, vol. 53, no. 8, pp. 1288 – 1299, 2005. 

 
Figure 2: The trend of throughput performace as the workload increases (On 

an NVIDIA GTX470 graphics card wich CUDA compute capability 2.0). 

 
Figure 3: The trend of throughput performace as the workload increases (On 

an NVIDIA 8600GT graphics card wich CUDA compute capability 1.1). 

http://dx.doi.org/10.1007/s11265-010-0547-9
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf

