
Noname manuscript No.
(will be inserted by the editor)

GPU Accelerated Segmentation and Centerline Extraction of Tubular
Structures from Medical Images

Erik Smistad · Anne C. Elster · Frank Lindseth

the date of receipt and acceptance should be inserted later

Abstract

Purpose To create a fast and generic method with sufficient

quality for extracting tubular structures such as blood ves-

sels and airways from different modalities (CT, MR and US)

and organs (brain, lungs and liver) by utilizing the computa-

tional power of graphic processing units (GPUs).

Methods A cropping algorithm is used to remove unnec-

essary data from the datasets on the GPU. A model-based

tube detection filter combined with a new parallel center-

line extraction algorithm and a parallelized region growing

segmentation algorithm is used to extract the tubular struc-

tures completely on the GPU. Accuracy of the proposed

GPU method and centerline algorithm is compared to the

ridge traversal and skeletonization/thinning methods using

synthetic vascular datasets.

Results The implementation is tested on several datasets from

three different modalities: airways from CT, blood vessels

from MR and 3D Doppler Ultrasound. The results show that

the method is able to extract airways and vessels in 3-5 sec-

onds on a modern GPU and is less sensitive to noise than

other centerline extraction methods.

Conclusions Tubular structures such as blood vessels and

airways can be extracted from various organs imaged by

different modalities in a matter of seconds, even for large

datasets.

Keywords Segmentation · Centerline extraction · Vessel ·
Airway · GPU · Parallel

Erik Smistad · Anne C. Elster · Frank Lindseth

Dept. of Computer and Information Science

Norwegian University of Science and Technology

Sem Saelandsvei 7-9, NO-7491 Trondheim

Tlf.: +47 73594475

E-mail: smistad@idi.ntnu.no

Frank Lindseth

SINTEF Medical Technology

1 Introduction

Blood vessels and airways are both examples of impor-

tant tubular structures in the human body. The extraction

of these structures can be essential for planning and guid-

ance of several surgical procedures such as bronchoscopy,

laparoscopy and neurosurgery.

Registration is to create a mapping between two domains,

for instance between an image and the patient or between

different image modalities [34]. Registration is an important

step in image guided surgery as it enables us to accurately

plot the location of surgical tools inside the body onto im-

ages of the patient using optical or magnetic tracking tech-

nology. Tubular structures extracted from preoperative im-

ages can be matched to similar intraoperative structures, e.g.

airways generated by a tracked bronchoscope or brain ves-

sels extracted from power Doppler based 3D ultrasound, and

consequently create the mapping between preoperative im-

ages and the patient. Also, extracted tubular structures from

pre- and intraoperative image data can be used to reduce

registration errors when a corresponding point (anatomical

landmarks or fiducials) patient registration method is used.

Furthermore, during surgical procedures, anatomical struc-

tures have a tendency to move and deform inside the body

due to respiration, pulsation, external pressure and resection.

This is called anatomical shift and is a major challenge as

it reduces the surgical navigation accuracy. However, it has

been shown that registration of blood vessels from pre- and

intraoperative image data can be used to detect and correct

organshift such as brainshift [38].

The automatic extraction of tubular structures can be

very time consuming. As time during surgery is very crucial,

long-lasting processing should be avoided. Preoperative data

This is a preprint. The final publication is available at

link.springer.com

2 Erik Smistad et al.

is often acquired just before the procedure and thus it is de-

sirable to process these data as fast as possible as well. The

purpose of this work is to create a fast and generic method

with sufficient quality for extracting tubular structures such

as blood vessels and airways from different modalities (CT,

MR and US) and organs (brain, lungs, liver) by utilizing the

computational power of graphic processing units (GPUs).

The rest of the introduction discuss GPU computing and

provides a brief survey of existing methods for extracting

tubular structures from medical images. An overview of the

contributions in this paper is also given. The methodology

section provides a detailed description of each part of the im-

plementation including how it is optimized for the GPU and

evaluated. In the result section, performance is measured in

terms of speed and quality. Finally, the results are discussed

and conclusions are given.

1.1 GPU computing

Several image processing techniques are data parallel be-

cause each pixel can be processed in parallel using the same

instructions. Graphic Processing Units (GPUs) allow many

pixels/voxels to be processed in the same clock cycle, en-

abling substantial speedups. The GPU is a type of single

instruction, multiple data (SIMD) processor. It can perform

the same instruction on each element in a dataset in paral-

lel. This is achieved by having many functional units like

arithmetic-logic units (ALUs) that share a control unit. Fig.

1 depicts the general layout of a GPU and its memory hi-

erarchy. The GPU originally had a fixed pipeline that was

created for fast rendering of 3D graphics. The introduction

of programmable shaders in the pipeline made it possible to

run programs on the GPU. However, the task of program-

ming shaders to solve arbitrary problems requires knowl-

edge about the GPU pipeline as the problem at hand needs

to be transformed into a rendering problem. General pur-

pose GPU (GPGPU) programming languages and frame-

works such as CUDA and OpenCL were created to make

GPU programming easier. The field of GPU computing is

still young. However, a brief survey of medical image pro-

cessing and visualization on the GPU was recently provided

by Shi et al. [39].

1.2 Methods for extracting tubular structures

Tubular structures are usually extracted from volumes in two

different ways:

– As a segmentation, either as a binary classification where

each voxel in the volume is given a non-zero value if it

belongs to the tubular structure or as a surface model of

the structure.

Fig. 1 General architecture of a GPU and its memory hierarchy. Note

however, that the actual architecture is much more complex and differ

for each GPU. This diagram only shows the general features.

– As a centerline, i.e. a line that goes through the center

of the tubular structures.

Both representations are useful in different applications.

For instance, the centerline is very useful for registration

while the segmentation is useful for volume estimation and

visualization of the structures’ surface.

There exist several methods for extracting tubular struc-

tures from medical images. A recent and extensive review

on blood vessel extraction was done by Lesage et al. [29]

and an older one by Kirbas and Quek [25]. Two reviews on

the segmentation of airways were done by Lo et al. [31] and

Sluimer et al. [40].

A common method for extracting tubular structures is

to grow the segmentation iteratively from an initial point or

area using methods such as region growing [27,45,16], ac-

tive contours and wave front propagation (e.g. snakes and

level sets) [24,35,46,32]. A centerline can then be extracted

from the segmentation using skeletonization and 3D thin-

ning methods [28,18,22].

Growing a segmentation using only a model of desired

intensity values has shown to give limited result in several

applications such as airway segmentation where the thin air-

way walls may cause severe segmentation leakage [32]. Thus

in many applications it may be necessary to use a model of

the shape of the tubular structures as well. Also, these grow-

ing methods are very sensitive to initialization.

Tube Detection Filters (TDFs) are used to detect tubular

structures and calculates a probability that a specific voxel

GPU Accelerated Segmentation and Centerline Extraction of Tubular Structures from Medical Images 3

is inside a tubular structure. Most TDFs use gradient infor-

mation, often in the form of an eigenanalysis of the Hessian

matrix. Frangi et al. [15] presented an enhancement and de-

tection method for tubular structures based on the eigenval-

ues of this matrix. Krissian et al. [26] created a model-based

detection filter that fits a circle to the cross-sectional plane

of the tubular structure defined by the eigenvectors of the

Hessian.

A centerline can be extracted directly from the TDF re-

sult without a segmentation using methods such as ridge

traversal. Aylward et al. [2] provides a review of different

centerline extraction methods and proposed an improved ridge

traversal algorithm based on a set of ridge criteria and differ-

ent methods for handling noise. Bauer et al. [6] showed how

this method could be used together with Gradient Vector

Flow. For applications where only the centerline is needed,

segmentation can be skipped using this method and thus re-

duce processing time.

Some related work on accelerating the extraction of tubu-

lar structures on the GPU exist. Erdt et al. [14] performed the

TDF and a region growing segmentation on the GPU and re-

ported a 15 times faster computation of the gradients and up

to 100 times faster TDF. Narayanaswamy et al. [36] did ves-

sel luminae region growing segmentation on the GPU and

reported a speedup of 8. Bauer et al. presented a GPU accel-

eration for airway segmentation by doing the Gradient Vec-

tor Flow computation on the GPU in [7] and the TDF calcu-

lation on the GPU in [8]. However, they only provide a lim-

ited description of the GPU implementations. Helmberger

et al. performed region growing for airway segmentation on

the GPU and a lung vessel segmentation on the GPU using

a TDF [21]. They reported a runtime of 5-10 minutes using

a modern GPU and CUDA compared to a runtime of up to

an hour using only the CPU.

1.3 Contributions

The methodology in this paper is inspired by the works of

Bauer et al. [7,3,8] and Krissian et al. [26] and is a con-

tinuation of our previous paper on GPU accelerated airway

segmentation [41].

The main contributions in this paper are:

– A fast and generic method that can extract tubular struc-

tures like blood vessels and airways from different modal-

ities (e.g. CT, MR and Ultrasound) and organs (e.g. lung,

brain and liver) entirely on the GPU.

– A new parallel GPU algorithm for extracting centerlines

directly from the TDF result.

– A generic parallel cropping algorithm for reducing mem-

ory usage on the GPU.

2 Methodology

The implementation is written in C++ and OpenCL and is

available online. OpenCL is a framework for running paral-

lel programs on heterogeneous platforms such as CPU and

GPU. The implementation consists of five main steps that

are all executed on the GPU (see Fig. 2).

Fig. 2 Block diagram of the implementation

The first step is to crop the volume in order to reduce

the total memory usage. The second step involves a few pre-

processing steps such as Gaussian smoothing and Gradient

Vector Flow which are necessary to make the results less

sensitive to noise and differences in tube contrast and size.

After pre-processing, the model-based TDF by Krissian et

al. [26] is used. From the TDF result, the centerlines are

extracted using a new parallel algorithm. Finally, a segmen-

tation is performed using the centerlines as seeds for a re-

gion growing procedure. However, if only the centerlines are

needed for a given application, the segmentation step can be

skipped. The rest of this section will describe each of the

five steps in further detail.

2.1 Cropping

Memory on the GPU is limited and may not be enough for

processing large datasets. However, most medical datasets

http://github.com/smistad/Tube-Segmentation-Framework/

4 Erik Smistad et al.

contain a lot of data that is not part of the structures of in-

terest. Usually these areas are located at the borders of the

image. For instance, in the thorax CT image in Fig. 3, the ac-

tual lungs where the airways and blood vessels are located,

constitutes only about 50% of the image. The rest consist of

space outside the body, body fat and the bench that the pa-

tient is resting on. As several of the methods used to perform

segmentation and centerline extraction process each voxel in

the entire volume, removing the unnecessary data will not

only reduce memory usage, but also execution time.

In our previous work [41], we presented a novel crop-

ping algorithm for airway segmentation that could be run in

parallel on the GPU using less than half a second for large

CT volumes of the lungs. In this paper, this algorithm is ex-

tended to crop other medical datasets, such as MR and 3D

Doppler Ultrasound. The cropping method works by consid-

ering slices in all three orthogonal directions x, y and z. For

each slice s, the method determines if the slice intersects the

region of interest (ROI). This is done by counting the num-

ber of rows in the slice that intersects the ROI for each slice

and storing it as Ls. If Ls > Lmin, the slice is considered to

have intersected the ROI. The cropping borders are found by

traversing through Ls twice from s= 0 and s= size and find-

ing the first slice that has a value above a specific threshold

Lmin. These slices are then selected as cropping borders c1

and c2. This is done for each direction and results in 3 pairs

of cropping borders which is all that is needed to crop the

volume. An example of how this cropping procedure works

is shown in Fig. 3. For some applications and directions it

may be necessary to start the search from the middle s = size
2

to the end instead. This was the case for the axial direction

of CT airway datasets.

Algorithm 1 provides pseudocode for the cropping method.

The function CALCULATEL is used for estimating L for each

slice in a given direction and the function FINDCROPBOR-

DERS is used to find the cropping borders for a specific di-

rection given L and using the threshold Lmin. Each direction

and slice can be processed in parallel on the GPU. For a

dataset of size 512x512x512 this results in 3*512 individual

threads that can be processed using the same instructions.

The parts of this cropping method that is application de-

pendent, aside from the parameter Lmin, is the estimation of

Ls and whether the search for cropping borders starts from

the middle or at the ends of the dataset in a given direction.

For MR and 3D Doppler Ultrasound images it is suffi-

cient to remove the background from the dataset. For this

purpose Ls can be estimated by counting the number of vox-

els nv on a scan line that is above a certain threshold IT . Ls

is then set to the number of rows in slice s where nv > IT . A

threshold value of 100 was found to be enough for the MR

and Ultrasound datasets.

For CT images of the lungs, fat and other tissue that are

not part of the lungs can also be discarded by counting the

Fig. 3 Example of the cropping procedure. The black arrows indicate

slices that have Ls > Lmin and thus intersected the ROI while the grey

arrows are the opposite. This can be used to find the cropping borders,

marked with dotted red lines in the figure. This is done in all three

directions and each slice is processed in parallel.

number of areas that are above and below a certain thresh-

old. Details on this estimation of Ls can be found in our pre-

vious work [41].

2.2 Pre-processing and Gradient Vector Flow

Before the actual tube extraction, some pre-processing is

necessary. First, an optional thresholding is performed on

the dataset using a lower and upper threshold (Imin and Imax).

Thresholding may be necessary for datasets which have a

large range of intensity values such as CT images. The thresh-

olding is done to remove unnecessary gradient information

in the image which may lead to unwanted tubular structures

being detected. For instance, when extracting airways all

intensities above -500 HU can be converted to -500 as no

airways have intensity above this threshold. Second, some

noise suppression is performed. This is done by blurring the

dataset using Gaussian smoothing with standard deviation

σ . Afterwards, the gradient vector field V is created and nor-

malized using a parameter called Vmax. All gradients with a

length above this parameter will be set to unit length and

the others will be scaled accordingly. The gradient normal-

ization is necessary for contrast invariance. Vmax should be

adapted to the expected level of contrast and noise. Also, if

black tubular structures are to be extracted (e.g. airways),

GPU Accelerated Segmentation and Centerline Extraction of Tubular Structures from Medical Images 5

Algorithm 1 Cropping

function CROP(volume)

L← CALCULATEL(volume, x)

x1,x2← FINDCROPBORDERS(L, x)

L← CALCULATEL(volume, y)

y1,y2← FINDCROPBORDERS(L, y)

L← CALCULATEL(volume, z)

z1,z2← FINDCROPBORDERS(L, z)

crop volume according to x1,x2,y1,y2,z1 and z2

return volume

end function

function CALCULATEL(volume, direction)

for each slice s in direction in parallel do

Estimate Ls

end for

return L
end function

function FINDCROPBORDERS(L, direction)

size← volume.direction.size

c1←−1,c2←−1,s← 0

while (c1 =−1 or c2 =−1) and s < size do

if Ls > Lmin and c1 =−1 then

c1← s
end if

if Lsize−1−s > Lmin and c2 =−1 then

c2← size −1− s
end if

s← s+1

end while

return c1,c2

end function

the gradients have to inverted V = −∇ I. All of these pre-

processing parameters (Imin, Imax, σ , Vmax) are modality de-

pendent and the values used in this paper for each modality

is collected in Table 1.

Filters that use the Hessian matrix to detect tubular struc-

tures require gradient information to be present in the center

of the tube. For large tubes, such as trachea and the main

bronchi, the gradient information will not exist in the center.

Thus, it is necessary to propagate the gradient information

from the tube edge to the center. There exist two main meth-

ods of doing this: Gaussian scale space and Gradient Vector

Flow (GVF). Xu et al. [47] originally introduced GVF as

an external force field for active contours. Bauer et al. [5,

3] were the first to show that GVF could be used to create

scale-invariance of TDFs. The GVF method has the advan-

tage that it is feature-preserving and thus can avoid the prob-

lem of several structures diffusing into each other to create

the illusion of a tubular structure at a higher scale. Also,

GVF is only calculated using one scale. However, it has the

disadvantage that it is very computationally expensive. Nev-

ertheless, it has been shown that GVF can be accelerated

using GPUs. Eidheim et al. [13], He and Kuester [20] and

Zheng and Zhang [48] all presented a GPU implementation

of GVF and Active Contours using shader languages. How-

ever, their implementation was for 2D images only. In this

paper, a highly optimized 3D GPU implementation of GVF

from Smistad et al. [42] was used with a predefined num-

ber of 250 iterations. This implementation allows GVF to

be calculated for large volumes in only a few seconds.

2.3 Tube Detection Filter

Krissian et al. [26] created a TDF that assumes that the cross-

section of the tubular structure is circular. Their TDF calcu-

lates how well a circle match the gradient information in the

cross-sectional plane defined by the eigenvectors of the Hes-

sian matrix. The TDF starts by creating a circle with a small

radius in the cross-sectional plane. N = 32 evenly spaced

points on the circle is sampled from the vector field. Each

point, i, is found by calculating its angle α from the center

and then calculating a vector di which lies in the plane and

has angle α .

α =
2πi
N

(1)

di = e2 sinα + e3 cosα (2)

The position of point i on a circle with radius r and cen-

ter v is then given as v+ rdi. How well the circle match the

gradient information is calculated as the average dot prod-

uct of the gradient at position i and the inward normal of the

circle at point i which is equal to −di. The TDF of Krissian

et al. [26] is shown in equation 3. The radius of the circle is

increased with 0.5 voxels as long as the average dot product

also increases.

T (v,r,N) =
1

N

N−1

∑
i=0

V(v+ rdi) ·−di (3)

As noted by Bauer et al. [7,3], the GVF method may

eliminate the gradient information for small low-contrast tubu-

lar structures. Thus to detect these tubular structures it is

necessary to run the TDF two times. Once with a small

radius on the initial vector field to detect the small low-

contrast structures and once with the GVF vector field to de-

tect the rest. Different amounts of Gaussian blur can be used

for the tube detection of large and small structures (σsmall

and σlarge as seen in Table 1). The TDF response from each

of these are combined by selecting the largest TDF value for

each voxel.

2.4 Centerline Extraction

Centerline extraction from TDF results has primarily been

done by ridge traversal [2,4,6,5]. One problem with the ridge

traversal procedure is that it can’t be run in parallel. Thus,

6 Erik Smistad et al.

Fig. 4 Determining the angle θ from a centerpoint x to its neighbor n.

the GVF vector field and the TDF result has to be transferred

to the CPU. Nevertheless, the serial ridge traversal algorithm

can be used together with the rest of the GPU algorithms

presented in this paper (e.g. cropping, pre-processing, tube

detection and segmentation).

In this section, a new parallel centerline extraction (PCE)

algorithm is presented. This centerline algorithm, unlike ridge

traversal, can be run efficiently in parallel on a GPU. The

method has 4 main steps: Identifying centerpoints, filtering

centerpoints, link centerpoints and centerline selection.

2.4.1 Identify candidate centerpoints

The method for extracting centerlines starts by identifying

all possible centerpoints. This is done by creating a 3D struc-

ture with the same size as the dataset. This structure is ini-

tialized to 0 for each voxel and all voxels with a TDF value

above the threshold Tc = 0.5 is set to 1.

2.4.2 Filter centerpoints

The next step removes centerpoints that are either not in the

center of a tube or too close to other centerpoints. Whether a

centerpoint is in the center of a tube or not can be determined

by the magnitude of the GVF vector field |V|, because |V| is

smallest in the center of the tube.

First, a vector from the centerpoint x to a neighbor voxel

n is calculated:

r = n−x (4)

Second, this vector is projected onto the cross-sectional plane

of the tube (see Fig. 4). The plane’s normal e1 is the eigen-

vector of the Hessian matrix associated with the eigenvalue

of smallest magnitude. This vector points in the direction of

the tube.

rp = r− e1(e1 · r) (5)

Finally, the angle θ from the plane to the vector r can be

calculated using the projected vector rp:

θ = cos−1

(

r · rp

|r||rp|

)

(6)

Let N be the set of all neighbor voxels that are close

(|r| < r, where r is from Eq. 3) and the angle is θ < 30◦.

For each of these n, the magnitude of the GVF vector field

|V| is compared to the centerpoint x. The centerpoint is only

valid if the magnitude for the centerpoint x is lower than all

n ∈ N:

C(x) =

{

1 if ∀n ∈ N |V(n)|> |V(x)|

0 else
(7)

This has the effect that it removes centerpoints that are

not in the center of a tubular structure.

The next step is to remove centerpoints that are too close

to each other. The reason for doing this is that it reduces

the total number of centerpoints and thus makes the next

step, linking the centerpoints, much more efficient. Remov-

ing points that are too close to each other is done by dividing

the entire dataset into a grid with each grid element spanning

4x4x4 voxels. For each cube in the grid, the best centerpoint

is selected and the rest of the centerpoints in that cube is

removed. The centerpoint with the highest TDF value is se-

lected as the best centerpoint in a cube.

2.4.3 Link centerpoints

For each centerpoint, the method establishes links between

the centerpoints to create centerlines. This is done by con-

necting each centerpoint to the two centerpoints that are clos-

est and fulfills the following criteria:

– The angle between them is above 120 degrees.

– The average TDF value along the line is higher than

Tmean = 0.5.

2.4.4 Centerline selection

Due to noise and other image artifacts invalid centerpoints

and centerlines may be created. However, these are usu-

ally short and not connected to the actual tubular structures.

Thus invalid centerlines can often be discarded based on

their length.

In this step, all centerpoints that are connected with cen-

terlines from the previous section are assigned the same la-

bel. Those that are not connected get different labels. Graph

component labeling is the problem of finding and labeling

nodes in a graph that are connected. Hawick et al. [19] pre-

sented several GPU implementations of algorithms for graph

component labeling. In our implementation, an iterative method

using atomic operations was used. Assuming N labels, N

GPU Accelerated Segmentation and Centerline Extraction of Tubular Structures from Medical Images 7

counters are created and initialized to 0. A kernel is executed

for each centerpoint and the length of each centerline, iden-

tified with a label, is determined by using an atomic incre-

ment operation on the counter identified by the centerpoints’

labels. After the execution of this kernel, the counters will

contain the total length of each centerline. When the length

of all connected centerlines have been calculated, the largest

centerline or all centerlines with a specified minimum length

can be extracted.

2.5 Segmentation

Bauer et al. [7] proposed a method for generating a segmen-

tation from the centerline using the already computed GVF

vector field. They named this method Inverse Gradient Flow

Tracking Segmentation because it for each voxel tracks the

centerline using the directions of the GVF vector field, but in

the inverse direction. This segmentation method is a type of

seeded region growing, where the centerlines are the seeds

and the direction and magnitude of the vectors from the GVF

vector field is used to determine if the segmentation is al-

lowed to continue to grow.

In this paper, a data parallel version of this algorithm

is presented (see Algorithm 2). First, the centerlines, C, are

dilated in parallel on the GPU and added to the segmentation

S. Next, the neighboring voxels of S is added to a queue Q.

For each iteration, the GROW function runs a kernel on each

voxel x in the entire volume. If the voxel x is part of Q, the

gradients of all unsegmented neighbors are checked to see

if they point to x and has a larger magnitude than x. If such

a neighbor voxel y is found, x is added to S, its neighbor y

is added to Q and the stopGrowing variable is set to false.

Since this variable is initialized to true for every iteration,

the growing procedure will stop when no more voxels are

added.

For the 3D Ultrasound Doppler modality another seg-

mentation method than the inverse gradient tracking method

is used. The reason for this, is that this data can be quite

noisy. This alternative segmentation method starts by calcu-

lating an average radius based on the circle fitting method

for each link. For each discrete point on the centerline, all

voxels within a sphere with the same radius is marked as

part of the segmentation.

2.6 GPU Optimization

2.6.1 Texture system

The GPU has a specialized memory system for images, called

the texture system. The GPU has this because the GPU is

primarily made and used for fast rendering which involves

mapping images, often called textures, onto 3D objects.

Algorithm 2 Parallel Inverse Gradient Flow Tracking

S← DILATE(C)

Q← DILATE(S) - S

stopGrowing← false

while !stopGrowing do

stopGrowing← true

GROW(S, Q, stopGrowing)

end while

return S

function GROW(S, Q, stopGrowing)

for each voxel x in parallel do

if x ∈ Q then

for each voxel y ∈ Adj26(x) do

if y /∈ S and |V(y)|> |V(x)| and

argmaxz∈Adj26(y)

(

(z−y)·V(y)
|(z−y)||V(y)|

)

= x then

S← S∪{x}
Q← Q∪{y}
stopGrowing← false

end if

end for

end if

end for

end function

The texture system is optimized for fetching and caching

data from 2D and 3D textures [37,1] (see Fig. 1 for an overview

of the memory hierarchy on the GPU). The fetch unit of the

texture system is also able to perform interpolation and data

type conversion in hardware.

Since most of the calculations in this implementation in-

volves the processing of voxels, the implementation can be

accelerated considerably by storing the volumes as 3D tex-

tures and using the texture system. This increases the speed

of fetching data and trilinear interpolation which is used in

the TDF calculation when sampling arbitrary points on a cir-

cle.

In this implementation, textures has been used for almost

all 3D and 2D structures, such as the vector field V, TDF and

segmentation.

NVIDIA’s OpenCL implementation does not support writ-

ing to 3D textures in a kernel. Thus for NVIDIA GPUs, the

results has to be written to a regular buffer first and then

copied to a texture. Still, writing to 3D textures is possible

with CUDA.

Memory access latency can also be improved by reduc-

ing the number of bytes transferred from global memory to

the chip. The most common way to store a floating point

number on a computer is by using 32 bits with the IEEE

754 standard. However, most GPUs also support a texture

storage format called 16-bit normalized integer. With this

format, the data is stored as 16-bit integers (shorts) in tex-

tures. However, when it is requested, the texture fetch unit

converts the 16-bit integer to a 32-bit floating point number

with a normalized range from -1.0 to 1.0 or 0.0 to 1.0. This

reduces accuracy, and may not be sufficient for all applica-

8 Erik Smistad et al.

tions. However, it was found to be sufficient for this applica-

tion (see result section). This storage format also halves the

global memory usage, thus allowing much larger volumes to

fit in the limited GPU memory. In our recent work on opti-

mizing GVF for GPU execution [42], it was discovered that

using textures and the 16-bit format could make the parallel

execution a lot faster, depending on the size of the dataset

being processed. In this implementation, the 16-bit normal-

ized integer format is used for the dataset, vector fields and

TDF result.

2.6.2 Stream compaction

After finding the candidate centerpoints, we only want to

process these points in the next centerpoint filtering step.

This can be done by launching a kernel for every voxel in

the volume and have an if statement checking whether the

voxel is a candidate centerpoint. However, this can be very

inefficient on a GPU. As explained in the introduction, the

functional units on the GPU are grouped together and share

a control unit. This means that the functional units in a group

have to execute the same instructions in each clock cycle. To

ensure that the correct result is generated by if statements,

the GPU will use masking techniques. Nevertheless, such an

if statement may not reduce the processing time as it would

if it was executed sequentially on a CPU. On a GPU, it might

even increase the processing time due to the need of masking

techniques to ensure correct results. This is a common prob-

lem in GPU computing and one solution is a method called

stream compaction. Stream compaction removes voxels that

should not be processed from the volume so that the ker-

nel is only run for the valid voxels, thus no if statement is

needed. Stream compaction can be done on the GPU with

logarithmic time complexity. Two methods for performing

stream compaction is parallel prefix sum (see Billeter et al.

[11] for an overview) and Histogram Pyramids by Ziegler

et al. [49]. In this work, Histogram Pyramids has been used

due to the fact that this data structure has shown to be better

in some applications by exploiting the GPU’s texture sys-

tem for faster memory access. The original implementation

by Ziegler et al. [49] was for 2D. However, in our previous

work [43], we presented a 3D version of this stream com-

paction algorithm which also reduced the memory usage for

this data structure.

The Histogram Pyramid stream compaction method has

been used in three places of this implementation. All in the

centerline extraction step. The 3D Histogram Pyramid is

used after the candidate centerpoint step and filter center-

points step. A 2D Histogram Pyramid is used after the link

centerpoints step, where each link is stored in an adjacency

matrix on the GPU.

Fig. 5 Grouping with work-group size of 8 work-items and unit of exe-

cution size of 3. As 8 is not a multiple of 3, there will be idle functional

units for each work-group that is scheduled. This leads to an inefficient

use of the GPU.

2.6.3 Work-group size

Work-items, also called threads, are instances of a kernel and

are executed on the GPU in groups. AMD calls these units

of execution wavefronts, while NVIDIA calls them warps.

The units are executed atomically and has, at the time of

writing, the size of 32 and 64 work-items for NVIDIA and

AMD GPUs respectively. The work-items are also grouped

together at a higher level in software. These groups are called

work-groups in the OpenCL terminology (in CUDA they

are referred to as thread blocks). If the number of work-

items in a work-group is not a multiple of the unit of exe-

cution size, some of the GPUs’ functional units will be idle

for each work-group that is executed as shown in Fig. 5.

Thus, the work-group sizes can greatly affect performance

and optimal size can vary a lot from device to device. There

is a maximum number of work-items that can exists in one

work-group. This limit is on AMD GPUs currently 256 and

on most NVIDIA GPUs it is 1024. Also, the total number

of work-items in one dimension has to be dividable by the

size of the work-group in that dimension. So, for a volume

of size 400 in the x direction, the work-group can have the

size 2 or 4 in the same direction, but not 3, because 400 is

not dividable by 3.

For most of the GPUs used on this implementation a

work-group size of 4x4x4 was used. One exception is the

new Kepler GPUs from NVIDIA where a work-group of

16x8x8 was found to be much better. The 4x4x4 work-group

size gives a total of 64 work-items in each work-group. To

make sure that the cropped volume is dividable by 4 in each

direction, the size of the cropping is increased until the new

size is dividable by 4.

2.7 Evaluation

In this section, the evaluation of the proposed GPU method

is described.

2.7.1 Comparison with other methods

The method in this paper was compared in terms of speed

and quality with other commonly used segmentation and

GPU Accelerated Segmentation and Centerline Extraction of Tubular Structures from Medical Images 9

centerline extraction algorithms. Blood vessels from the MR

Angio, Doppler Ultrasound and synthetic datasets were seg-

mented using thresholding after performing Gaussian blur.

As thresholding is unsuitable for segmenting airways, an im-

plementation of region growing, similar to the conservative

region growing used in Graham et al. [16], was used instead.

This region growing methods starts by automatically finding

a seed point inside trachea. This is done by looking for a

dark circular region in the middle of one of the upper slices.

After a seed has been found, the dataset is filtered with a

Gaussian mask with σ = 0.5 voxels and the intensities are

capped at -500 HU as no airways have intensities above this

threshold. Next, a region growing procedure with segmen-

tation leakage detection is used. The region growing is per-

formed several times with increasing threshold starting with

the intensity of the seed. For each iteration, the volume size

is measured. If the volume size increases with more than 20

000 voxels in one iteration a segmentation leakage has most

likely occurred and the previous threshold is used. Finally,

a morphological closing is performed to remove any holes

inside the segmentation.

The proposed GPU implementation can be used together

with both the PCE algorithm and the ridge traversal algo-

rithm for the centerline extraction step. Thus, with the serial

ridge traversal algorithm a hybrid solution is used where all

steps except the centerline extraction step is run on the GPU.

For the centerline extraction, the proposed GPU method

is evaluated with both the proposed PCE centerline algo-

rithm and the ridge traversal algorithm and compared to an

ITK filter by Homann [22] based on the skeletonization al-

gorithm by Lee et al. [28]. This skeletonization method per-

forms iterative thinning of a segmented volume. Note that

the implementation by Homann [22] does not exploit paral-

lelism.

2.7.2 Qualitative analysis

To show the general applicability of the method, clinical im-

ages from three different modalities and two different organs

were used:

1. Computer Tomography scans of the lungs (Airways, 12

datasets)

2. Magnetic Resonance images of the brain (Blood vessels,

4 datasets)

3. 3D Ultrasound Doppler images of the brain (Blood ves-

sels, 7 datasets)

The study was approved by the local ethics committee, and

the patients gave informed consent prior to the procedure.

For each modality, several datasets were processed using the

proposed GPU implementation together with the PCE and

the ridge traversal centerline algorithms and region growing

/ thresholding together with skeletonization.

Note that for each modality the same parameters were

used, except for a small set of modality dependent parame-

ters such as blur and radius (see Table 1).

2.7.3 Speed and memory usage

The speed of the method was measured on all the clinical

datasets using three different GPUs from both AMD and

NVIDIA. Two high-end GPUs with a peak performance of

around 4 tera floating point operations per second (TFLOPS)

(AMD HD7970 and NVIDIA Tesla K20). And one GPU of

the previous generation with a peak performance of about 1

TFLOPS (NVIDIA Tesla C2070). The implementation was

run using both 16-bit normalized integers and 32-bit floating

point vectors to see how the two different data types affected

the speed. The proposed method was also run on an Intel i7-

3770 CPU (4 cores, 3.4 GHz) with 16 GB memory to show

the speedup of using a GPU versus a multi-core CPU. This

was also done to demonstrate that the proposed implemen-

tation can be run in parallel on a multi-core CPU with no

modification.

For comparison, runtime measurements for region grow-

ing, thresholding and skeletonization were performed for

each modality using an Intel i7-3770 CPU with 4 cores run-

ning at 3.4 GHz. Parts of the region growing and threshold-

ing methods were parallelized using OpenMP.

As explained earlier, the memory available on GPUs is

limited. Thus it is important to keep the memory usage as

low as possible. In this paper, a cropping procedure and a

16-bit normalized integer data format was used to reduce

the memory usage on the GPU. To show the effect of the

cropping procedure, the average dataset size and peak mem-

ory usage before and after cropping was measured on sev-

eral datasets from different modalities. Peak memory us-

age occurs in the Gradient Vector Flow step. In this step,

3 vector fields with 3 components, each of the same size

as the dataset are needed. For an uncropped volume of size

512x512x800 and 32-bit floats this amounts to 3 ∗ 3 ∗ 4 ∗

512 ∗ 512 ∗ 800 bytes = 7200 MB. When using 16-bit nor-

malized integers the memory usage is halved.

2.7.4 Quantitative analysis

The quality of the extracted centerlines and the segmentation

were measured using realistic synthetic vascular tree vol-

umes and their ground truth segmentation and centerlines.

These synthetic volumes and their ground truth data were

created using the VascuSynth software by Hamarneh and

Jassi [17,23]. One of these synthetic volumes is depicted

in Fig. 6. Three generated datasets were used. Each with a

different amount of Gaussian additive noise. This was done

to show how well the different methods performs with in-

creasing amounts of noise.

10 Erik Smistad et al.

Fig. 6 Synthetic vascular image created using the VascuSynth software

by Hamarneh and Jassi [17,23].

Each discrete point of the centerline is called a center-

point. The accuracy of the centerline was measured using

the Hausdorff distance measure which is the average dis-

tance from each centerpoint of the extracted centerline to the

closest point on the ground truth centerline. To estimate how

much of the vascular tree was extracted, each extracted point

marks all ground truth centerpoints within a radius of 4 vox-

els as detected. The total percentage extracted is then calcu-

lated as the number of detected points divided by the total

number of ground truth centerpoints. Any extracted center-

point that was farther away than 4 voxels from a grouth truth

centerpoint was marked as invalid. The parameters for the

amount of Gaussian blur and Vmax were adjusted for each

dataset and centerline method so that no extracted center-

points were marked as invalid. Precision and recall for the

segmentation is calculated by comparing each voxel of the

segmentation result to the ground truth.

The quantitative analysis was performed using the pro-

posed GPU implementation with both PCE and ridge traver-

sal and thresholding+skeletonization together with 16-bit nor-

malized integers and 32-bit floating point numbers.

3 Results

3.1 Qualitative analysis

Figures 7, 8 and 9 show results for each method on each

modality. Also, to further show the general applicability of

the method, extracted vessels from liver and lung is included

in Fig. 10. These results indicate that the method is able to

extract tubular structures from several modalities and organs

with comparable quality by changing only a few parameters

(see Table 1).

Parameter CT Airways MR Vessels US Vessels

Imin -1024 100 50

Imax -400 300 200

σsmall 0.5 1.0 2.0

σlarge 1.0 1.0 3.0

Vmax 0.3 0.1 0.1

rmin 0.5 0.5 1.5

rmax 25 8 7

Lmin 128 10 0

Table 1 A list of modality dependent parameters and the values used

for each of the datasets.

3.2 Speed and memory usage

The speed measurements of our GPU implementation with

the proposed centerline extraction method and the ridge traver-

sal algorithm is collected in Table 2. These results show

that using 16-bit normalized integers is faster than 32-bit on

AMD GPUs, and opposite on NVIDIA GPUs.

Table 3 contains speed measurements of the non-GPU

methods: region growing, thresholding and skeletonization.

Comparing the runtime of Table 2 and 3 reveals that the

GPU methods are much faster than the simple serial seg-

mentation and skeletonization methods.

Table 4 shows the average memory usage for all the clin-

ical datasets, both with and without cropping and the 16-bit

data type. From these results it is evident that the memory

usage is significantly reduced when cropping and 16-bit nor-

malized integers are used.

3.3 Quantitative analysis

Table 5 contains the results of the quantitative analysis de-

scribed in 2.7.4. From these results it is clear that using the

16-bit normalized integer format does not affect the quality

compared to using the standard 32-bit floating point num-

bers. The same applies to the clinical datasets.

Furthermore, thresholding is able to extract more from

the synthetic datasets for noise levels 0.1 and 0.2. However,

for noise level 0.3, the proposed PCE algorithm is able to

extract almost 10% more than the thresholding and skele-

tonization technique and the ridge traversal algorithm.

4 Discussion

4.1 Qualitative analysis

The results of the clinical datasets (Fig. 7, 8 and 9) indi-

cate that the quality of the segmentation and centerlines are

quite comparable with some small differences. However, if

the segmented tubular structure is very irregular or has holes,

skeletonization will create poor centerlines as can be seen in

Fig. 9. The PCE and ridge traversal algorithms however, do

GPU Accelerated Segmentation and Centerline Extraction of Tubular Structures from Medical Images 11

Fig. 7 Results for a CT image of the lungs. Left: Proposed GPU method + proposed PCE algorithm. Middle: Proposed GPU method + ridge

traversal algorithm. Right: Region growing with skeletonization

Fig. 8 Results for an MR Angio image of the brain. Left: Proposed GPU method + proposed PCE algorithm. Middle: Proposed GPU method +

ridge traversal algorithm. Right: Thresholding with skeletonization

Method Datasets AMD HD7970 NVIDIA Tesla K20 NVIDIA Tesla C2070 Intel i7-3770 CPU

16-bit / 32-bit (secs) 16-bit / 32-bit (secs) 16-bit / 32-bit (secs) 32-bit (secs)

Proposed GPU implementation CT Airways (12) 4.7 / 6.9 21.9 / 13.4 40.9 / 19.2 177.1

+ Proposed PCE MR Vessels (4) 4.6 / 6.6 28.7 / 16.4 44.9 / 26.6 200.7

US Vessels (7) 2.7 / 3.8 13.0 / 7.1 24.1 / 14.8 134.4

Proposed GPU implementation CT Airways (12) 5.8 / 8.3 22.3 / 13.9 37.3 / 19.3 175.9

+ Ridge traversal MR Vessels (4) 6.3 / 8.5 29.7 / 17.5 45.3 / 27.3 200.5

US Vessels (7) 3.4 / 4.7 13.3 / 7.4 24.1 / 15.0 141.5

Table 2 Average runtime of 10 runs using the proposed GPU implementation together with the proposed parallel centerline algorithm and the

ridge traversal centerline algorithm on different datasets and devices. The first three devices (HD7970, K20, C2070) are GPUs while the last device

(i7-3770) is a multi-core CPU.

12 Erik Smistad et al.

Fig. 9 Results for a 3D Ultrasound Doppler image of vessels in the brain. Left: Proposed GPU method + proposed PCE algorithm. Middle:

Proposed GPU method + ridge traversal algorithm. Right: Thresholding with skeletonization

Fig. 10 Segmentation result from other organs using proposed GPU method. From left to right: Vessels of liver from CT, vessels of liver from MR

and vessels of one lung from CT.

Segmentation and centerline method Datasets Avg. runtime (seconds)

Region Growing + Skeletonization CT Airways (12) 158

Thresholding + Skeletonization MR Vessels (4) 77

Thresholding + Skeletonization US Vessels (7) 33

Table 3 Average runtime of 10 runs using region growing, thresholding and skeletonization/thinning on different modalities.

GPU Accelerated Segmentation and Centerline Extraction of Tubular Structures from Medical Images 13

Datasets Avg. original size Avg. percentage removed Avg. peak memory usage Avg. peak memory usage

without cropping (MB) with cropping (MB)

16-bit / 32-bit 16-bit / 32-bit

CT Airways (12) 512x512x704 76% 3169 / 6339 762 / 1524

MR Vessels (4) 628x640x132 23% 2826 / 5652 793 / 1586

US Vessels (7) 272x288x437 31% 1223 / 2445 417 / 834

Table 4 Memory usage and effect of cropping

Dataset Noise(σ) Method Avg. centerline Extracted Segmentation Segmentation

error (voxels) centerpoints (%) recall precision

16-bit / 32-bit 16-bit / 32-bit 16-bit / 32-bit 16-bit / 32-bit

Dataset 1 0.1 Proposed GPU method + PCE 0.57 / 0.58 95.6 / 95.6 0.79 / 0.79 0.84 / 0.84

Proposed GPU method + Ridge traversal 0.35 / 0.35 92.9 / 92.9 0.78 / 0.78 0.84 / 0.84

Thresholding + Skeletonization - / 0.34 - / 98.8 - / 0.70 - / 0.99

Dataset 2 0.2 Proposed GPU method + PCE 0.60 / 0.59 80.9 / 80.8 0.57 / 0.57 0.83 / 0.83

Proposed GPU method + Ridge traversal 0.31 / 0.31 76.1 / 76.1 0.56 / 0.56 0.86 / 0.86

Thresholding + Skeletonization - / 0.36 - / 82.1 - / 0.67 - / 0.89

Dataset 3 0.3 Proposed GPU method + PCE 0.65 / 0.65 54.4 / 54.4 0.36 / 0.36 0.79 / 0.79

Proposed GPU method + Ridge traversal 0.31 / 0.31 42.4 / 42.4 0.28 / 0.28 0.90 / 0.90

Thresholding + Skeletonization - / 0.47 - / 45.6 - / 0.47 - / 0.74

Table 5 Performance on three synthetic dataset created with the VascuSynth software (Hamarneh and Jassi [17,23]). For each line, the first value

is acquired using 16-bit normalized integers and the second using 32-bit floats.

not suffer from this problem as the centerline extraction is

not based on the segmentation result.

There are several examples in the literature of methods

that claim to be robust enough to segment and extract center-

lines of tubular structures of different types (e.g. vessels and

airways), organs and modalities. Some examples are Bauer

et al. [3–8], Krissian et al. [26], Aylward et al. [2], Benman-

sour et al. [10], Li et al. [30], Behrens et al. [9], Cohen et al.

[12], Lorigo and Faugeras [33] and Spuhler et al. [44]. How-

ever, most of these present results only for a few datasets of

one or two organs/modalities. The PhD thesis of Bauer and

related articles [3–8] is one exception that present results for

several different organs (e.g. lung, heart and liver), however

only from CT. Although their approach is similar to the ap-

proach in this paper, Bauer et al. use different methods to

perform the major steps (tube detection, centerline extrac-

tion and segmentation) for each organ. In this paper, results

from several organs (e.g. lung, brain and liver), modalities

(e.g. CT, MR and Ultrasound) and structures (e.g. vessels

and airways) are presented and use the same method for all

the major steps. In addition, the method presented in this

paper is open source and very fast.

4.2 Speed and memory usage

The proposed GPU implementation is slightly slower using

1-2 seconds more when used with the ridge traversal center-

line extraction method than PCE on the two fastest GPUs,

the AMD HD7970 and the NVIDIA Tesla K20. However,

for the slower GPU, the proposed GPU implementation with

ridge traversal is just as fast or even faster. Since this GPU

have a peak performance of about one fourth to that of the

HD7970 and K20 GPUs, the parallel computation cost of

PCE on this slower device is most likely higher than the

ridge traversal computation plus the data transfer time.

It is clear from the results that using 16-bit normalized

integers instead of 32-bit floats for the vector fields is faster

on AMD GPUs, and slower on NVIDIA GPUs. This is due

to the fact that NVIDIA’s OpenCL implementation does not

support writing directly to 3D textures. Because of this re-

striction, buffers have to be used in the most computation-

ally expensive step, Gradient Vector Flow. This means no

3D cache optimization and hardware data type conversion.

Both of which can increase performance.

The runtime of the proposed GPU implementation on

a multi-core Intel CPU is several minutes compared to a

few seconds on the high-end GPUs. This illustrates the huge

speedup gained from running tube detection and segmenta-

tion on the GPU.

Skeletonization is the most time-consuming step of the

serial methods and is mainly dependent on the thickness

of the tubular structures. This is evident in the long exe-

cution time of over 2 minutes when processing the airway

datasets. Nevertheless, the skeletonization implementation

used in this comparison does not exploit parallelism.

Helmberger et al. [21] noted that it is difficult to pro-

cess a large CT scan due to the limited memory on the GPU.

They solved this challenge by decomposing the volume into

overlapping sub-volumes that are processed sequentially on

the GPU. However, this takes more time and they reported

runtime of several minutes. In this paper, the memory limit

is avoided by performing cropping and using a 16-bit nor-

malized integer data format. Table 4 shows that the crop-

ping algorithm is able to discard a large portion of the total

14 Erik Smistad et al.

input volume. This reduces memory usage significantly and

without it, no GPU at the present time would have enough

memory to perform the entire calculation in one step for

large medical images. Using 16-bit for storage also halves

the memory usage allowing larger volumes to be processed

entirely on the GPU. On average, the peak memory usage is

below 1 GB when cropping and 16-bit data types are used,

which is below the memory limit of most modern GPUs.

4.3 Quantitative analysis

The average centerline error is worse for the proposed PCE

algorithm than the ridge traversal and skeletonization meth-

ods. This increased centerline error is due to the fact that the

PCE algorithm creates straight lines between centerpoints.

However, it is below 0.7 voxels which we argue is not prob-

lematic for most applications and this approximation en-

ables the proposed PCE algorithm to extract over 10% more

of the synthetic vascular tree compared to the ridge traversal

algorithm for large noise levels (0.3).

Thresholding assumes that all voxels with an intensity

above some threshold is part of the tubular structures. This

assumption is correct for these synthetic datasets and is thus

able to extract more for noise levels 0.1 and 0.2. However,

this assumption is usually never correct for a clinical dataset

and especially not if the noise level is high. This is evident

with noise level 0.3 and in the MR Angio modality in Fig.

8 where the segmentation contains some noise and parts of

the cranium.

5 Conclusion

In this article, a fast and generic method that can extract

tubular structures such as blood vessels and airways from

images of different modalities (CT, MR and US) and organs

(brain, lungs and liver) was presented. This was achieved by

utilizing the computational power of modern Graphic Pro-

cessing Units. The method was compared to other meth-

ods such as region growing, thresholding, skeletonization by

thinning and ridge traversal. Results from both synthetic and

clinical datasets from three different modalities (CT, MR

and US) was presented. The results show that the method is

able to extract airways and vessels in 3-5 seconds on a mod-

ern GPU. These near real-time speeds can be beneficial in

reducing processing time in image guided surgery applica-

tions such as bronchoscopy, laparoscopy and neurosurgery.

Although faster and more general than other methods, the

quality of the centerline and segmentation was found to be

comparable for all the methods.

Acknowledgements Thank you to the people of the Heterogeneous

and Parallel Computing Lab at NTNU for all their assistance and St.

Olav’s University Hospital for the datasets. The authors would also

like to convey thanks to NTNU and NVIDIA’s CUDA Research Center

Program for their hardware contributions to the HPC Lab. Without their

continued support this project would not have been possible.

Conflict of interest Erik Smistad, Anne C. Elster and Frank Lindseth

declare that they have no conflict of interest.

References

1. AMD. AMD Accelerated Parallel Processing OpenCL

Programming Guide. Technical Report December, 2012.

http://developer.amd.com/download/AMD Accelerated Parallel

Processing OpenCL Programming Guide.pdf - accessed 4. July

2013.

2. S. R. Aylward and E. Bullitt. Initialization, noise, singularities,

and scale in height ridge traversal for tubular object centerline

extraction. IEEE transactions on medical imaging, 21(2):61–75,

Feb. 2002.

3. C. Bauer. Segmentation of 3D Tubular Tree Structures in Medical
Images. PhD thesis, Graz University of Technology, 2010.

4. C. Bauer and H. Bischof. A novel approach for detection of tubular

objects and its application to medical image analysis. In Proceed-
ings of the 30th DAGM Symposium on Pattern Recognition, pages

163–172. Springer, 2008.

5. C. Bauer and H. Bischof. Edge based tube detection for coronary

artery centerline extraction. The Insight Journal, 2008.

6. C. Bauer and H. Bischof. Extracting curve skeletons from gray

value images for virtual endoscopy. In Proceedings of the 4th
International Workshop on Medical Imaging and Augmented Re-
ality, pages 393–402. Springer, 2008.

7. C. Bauer, H. Bischof, and R. Beichel. Segmentation of airways

based on gradient vector flow. In Proceedings of the 2nd Interna-
tional Workshop on Pulmonary Image Analysis. MICCAI, pages

191–201. Citeseer, 2009.

8. C. Bauer, T. Pock, H. Bischof, and R. Beichel. Airway tree re-

construction based on tube detection. In Proceedings of the 2nd
International Workshop on Pulmonary Image Analysis. MICCAI,
pages 203–214. Citeseer, 2009.

9. T. Behrens, K. Rohr, and H. S. Stiehl. Robust segmentation of

tubular structures in 3-D medical images by parametric object de-

tection and tracking. IEEE transactions on systems, man, and cy-
bernetics. Part B, Cybernetics : a publication of the IEEE Systems,
Man, and Cybernetics Society, 33(4):554–61, Jan. 2003.

10. F. Benmansour and L. D. Cohen. Tubular Structure Segmentation

Based on Minimal Path Method and Anisotropic Enhancement.

International Journal of Computer Vision, 92(2):192–210, Mar.

2010.

11. M. Billeter, O. Olsson, and U. Assarsson. Efficient stream com-

paction on wide SIMD many-core architectures. In Proceedings
of the Conference on High Performance Graphics, pages 159–166,

2009.

12. L. D. Cohen and T. Deschamps. Segmentation of 3D tubular ob-

jects with adaptive front propagation and minimal tree extraction

for 3D medical imaging. Computer methods in biomechanics and
biomedical engineering, 10(4):289–305, Aug. 2007.

13. O. Eidheim, J. Skjermo, and L. Aurdal. Real-time analysis of

ultrasound images using GPU. International Congress Series,

1281:284–289, May 2005.

14. M. Erdt, M. Raspe, and M. Suehling. Automatic hepatic vessel

segmentation using graphics hardware. In Proceedings of the 4th
international workshop on Medical Imaging and Augmented Re-
ality, pages 403–412, 2008.

15. A. Frangi, W. Niessen, K. Vincken, and M. Viergever. Multi-

scale vessel enhancement filtering. Medical Image Computing and
Computer-Assisted Interventation, 1496:130–137, 1998.

GPU Accelerated Segmentation and Centerline Extraction of Tubular Structures from Medical Images 15

16. M. W. Graham, J. D. Gibbs, D. C. Cornish, and W. E. Higgins.

Robust 3-D airway tree segmentation for image-guided peripheral

bronchoscopy. IEEE transactions on medical imaging, 29(4):982–

97, Apr. 2010.

17. G. Hamarneh and P. Jassi. VascuSynth: simulating vascular trees

for generating volumetric image data with ground-truth segmenta-

tion and tree analysis. Computerized medical imaging and graph-
ics, 34(8):605–616, Dec. 2010.

18. M. Hassouna and A. Farag. On the extraction of curve skeletons

using gradient vector flow. In IEEE 11th International Conference
on Computer Vision, pages 1–8. IEEE, 2007.

19. K. Hawick, a. Leist, and D. Playne. Parallel graph component la-

belling with GPUs and CUDA. Parallel Computing, 36(12):655–

678, Dec. 2010.

20. Z. He and F. Kuester. GPU-Based Active Contour Segmentation

Using Gradient Vector Flow. In Advances in Visual Computing,

pages 191–201, 2006.

21. M. Helmberger, M. Urschler, M. Pienn, Z. Bálint, A. Olschewski,

and H. Bischof. Pulmonary Vascular Tree Segmentation from

Contrast-Enhanced CT Images. In Proceedings of the 37th An-
nual Workshop of the Austrian Association for Pattern Recogni-
tion, pages 1–10, Apr. 2013.

22. H. Homann. Implementation of a 3D thinning algorithm. The
Insight Journal, 2007.

23. P. Jassi and G. Hamarneh. VascuSynth: Vascular Tree Synthesis

Software. The Insight Journal, 2011.

24. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour

models. International Journal of Computer Vision, 1(4):321–331,

Jan. 1988.

25. C. Kirbas and F. Quek. A review of vessel extraction techniques

and algorithms. ACM Computing Surveys, 36(2):81–121, June

2004.

26. K. Krissian, G. Malandain, and N. Ayache. Model-Based Detec-

tion of Tubular Structures in 3D Images. Computer Vision and
Image Understanding, 80(2):130–171, Nov. 2000.

27. T.-Y. Law and P. A. Heng. Automated extraction of bronchus from

3D CT images of lung based on genetic algorithm and 3D region

growing. Proceedings of SPIE, 3979:906–916, 2000.

28. T. Lee, R. Kashyap, and C. Chu. Building skeleton models via

3-D medial surface/axis thinning algorithms. CVGIP: Graphical
Model and Image Processing, 56(6):462–478, 1994.

29. D. Lesage, E. D. Angelini, I. Bloch, and G. Funka-Lea. A review

of 3D vessel lumen segmentation techniques: models, features and

extraction schemes. Medical image analysis, 13(6):819–845, Dec.

2009.

30. H. Li and A. Yezzi. Vessels as 4-D curves: global minimal 4-D

paths to extract 3-D tubular surfaces and centerlines. IEEE trans-
actions on medical imaging, 26(9):1213–23, Sept. 2007.

31. P. Lo, B. V. Ginneken, J. M. Reinhardt, and M. de Bruijne. Extrac-

tion of Airways from CT (EXACT’09). In Second International
Workshop on Pulmonary Image Analysis, pages 175–189, 2009.

32. P. Lo, J. Sporring, H. Ashraf, J. J. H. Pedersen, and M. de Bruijne.

Vessel-guided airway tree segmentation: A voxel classification ap-

proach. Medical image analysis, 14(4):527–538, Mar. 2010.

33. L. Lorigo and O. Faugeras. Codimension-two geodesic active con-

tours for the segmentation of tubular structures. In Computer Vi-
sion and Pattern Recognition, pages 444–451, 2000.

34. J. B. A. Maintz and M. A. Viergever. A survey of medical image

registration. Medical Image Analysis, 2(1):1–36, 1998.

35. R. Malladi, J. Sethian, and B. Vemuri. Shape Modeling with Front

Propagation: A Level Set Approach. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 17(2):158–175, 1995.

36. A. Narayanaswamy, S. Dwarakapuram, C. S. Bjornsson, B. M.

Cutler, W. Shain, and B. Roysam. Robust adaptive 3-D segmen-

tation of vessel laminae from fluorescence confocal microscope

images and parallel GPU implementation. IEEE transactions on
medical imaging, 29(3):583–597, Mar. 2010.

37. NVIDIA. OpenCL Best Practices Guide. Technical report,

2010. http://www.nvidia.com/content/cudazone/CUDABrowser/

downloads/papers/NVIDIA OpenCL BestPracticesGuide.pdf -

accessed 4. July 2013.

38. I. Reinertsen, F. Lindseth, G. Unsgaard, and D. L. Collins. Clinical

validation of vessel-based registration for correction of brain-shift.

Medical image analysis, 11(6):673–684, Dec. 2007.

39. L. Shi, W. Liu, H. Zhang, Y. Xie, and D. Wang. A survey of GPU-

based medical image computing techniques. Quantitative Imaging
in Medicine and Surgery, 2(3):188–206, 2012.

40. I. Sluimer, A. Schilham, M. Prokop, and B. van Ginneken. Com-

puter Analysis of Computed Tomography Scans of the Lung: A

Survey. IEEE transactions on medical imaging, 25(4):385–405,

Apr. 2006.

41. E. Smistad, A. C. Elster, and F. Lindseth. GPU-Based Air-

way Segmentation and Centerline Extraction for Image Guided

Bronchoscopy. In Norsk informatikkonferanse, pages 129–140.

Akademika forlag, 2012.

42. E. Smistad, A. C. Elster, and F. Lindseth. Real-time gradient vec-

tor flow on GPUs using OpenCL. Journal of Real-Time Image
Processing, 2012.

43. E. Smistad, A. C. Elster, and F. Lindseth. Real-Time Surface

Extraction and Visualization of Medical Images using OpenCL

and GPUs. In Norsk informatikkonferanse, pages 141–152.

Akademika forlag, 2012.

44. C. Spuhler, M. Harders, and G. Székely. Fast and Robust Extrac-

tion of Centerlines in 3D Tubular Structures Using a Scattered-

Snakelet Approach. Proc. SPIE, 6144, Mar. 2006.

45. B. van Ginneken, W. Baggerman, and E. M. van Rikxoort. Ro-

bust segmentation and anatomical labeling of the airway tree from

thoracic CT scans. International Conference on Medical Image
Computing and Computer-Assisted Intervention, 11:219–26, Jan.

2008.

46. A. Vasilevskiy and K. Siddiqi. Flux maximizing geometric flows.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

24(12):1565–1578, Dec. 2002.

47. C. Xu and J. Prince. Snakes, shapes, and gradient vector flow.

Image Processing, IEEE Transactions on, 7(3):359–369, 1998.

48. Z. Zheng and R. Zhang. A Fast GVF Snake Algorithm on the

GPU. Research Journal of Applied Sciences, Engineering and
Technology, 4(24):5565–5571, 2012.

49. G. Ziegler, A. Tevs, C. Theobalt, and H. Seidel. On-the-fly point

clouds through histogram pyramids. In Vision, modeling, and vi-
sualization 2006: proceedings, November 22-24, 2006, Aachen,
Germany, page 137. IOS Press, 2006.

