
1

GPU Accelerated Stochastic Simulation
David D. Jenkins, Gregory D. Peterson

Department of Electrical Engineering and Computer Science
University of Tennessee

Knoxville, Tennessee, USA
Email: {ddj,gdp}@utk.edu

Abstract—Through computational methods, biologists are able
learn more about molecular biology by building accurate models.
These models represent and predict the reactions among species
populations within a system. One popular method to develop
predictive models is to use a stochastic, Monte Carlo method
developed by Gillespie called the stochastic simulation algorithm
(SSA). Since this algorithm is based on stochastic principles,
large numbers of simulations are needed to provide quality
statistical models of the species and their interactions, giving way
to long runtimes for large systems. In this paper, we provide an
implementation of SSA onto NIVIDA graphics processing units
using CUDA to parallelize ensembles of simulations. With this
implementation we are able to see up to 41.9x speedup over the
best-known serial implementations.

Index Terms—Gillespie; SSA; GPU; CUDA;

I. INTRODUCTION

With the advancement of systems biology comes the need
to observe and understand the reactions among molecular
species. One way to do this is to generate predictive models
of the time evolution of spatially homogeneous mixtures of
chemically reacting molecules using deterministic or stochas-
tic approaches. A scientist can use deterministic approaches
involving ordinary differential equations (ODEs) to model a
system; however, these approaches are inaccurate for model-
ing small species populations because they do not consider
statistical fluctuations and correlations inherent in chemical
reactions. The use of ODEs are not able to correctly model
nonlinear systems. Also, ODEs have no sense of discrete
values for species populations. Therefore, we employ the
stochastic approach using the stochastic simulation algorithm
(SSA).

Dan Gillespie first developed the SSA approach in 1976 to
help combat the previously mentioned issues with traditional
deterministic approaches [1], [2]. Using Monte Carlo methods,
SSA is used to exactly predict the execution time and identity
of each reaction. One run of SSA gives one possible solution
to the Chemical Master Equation (CME) in equation 1 [3],
[4], that describes all species populations for any given time
step. Due to the stochastic nature of the algorithm, many
simulations are needed to produce statistically accurate models
of these systems. In the serial case, this becomes extremely
time consuming, especially for large systems.

∂

∂t
P (x, t|X(0), t0) =

M−1

Σ
j=0

[αj(x− νj)P (x− νj , t|X(0), t0)

− αj(x)P (x, t|X(0), t0)] (1)

Previous research examined the ability to accelerate indi-
vidual simulations by using different calculation methods [1],
[2], [4], [6]–[10]. Despite these computational improvements,
performing many SSA runs is still a time consuming task.
Because of this, we developed an implementation on NVIDIA
GPUs using CUDA [12] to perform many ensembles of
simulations simultaneously to speedup the overall runtime.

II. METHODOLOGY

To give a solution to the CME, the SSA takes an initial
set of species populations and reactions, determines the next
reaction time by random sampling of a distribution, calculates
the likelihood of each reaction occurring in the next time step
and it selects one based on their relative likelihood, and applies
the selected reaction to the species populations (refer to figure
1). This process is repeated until a specified end reaction
time is reached or until a specified number of reactions are
executed. Although, there are a number of methods designed
to accelerate a single simulation, we decided to focus on one of
the original methods, the Direct Method [1], [2]. This method
reduces the amount of random numbers and expensive floating
point divisions. It also eliminates the need for maintaining a
dependency graph for reactions thus reducing the amount of
memory usage.

As previously mentioned, the SSA calculates the species
populations, X(t) = X1(t), X2(t), ..., XN (t) where N is the
number of species, for each time step of the system. Within
each time step, a reaction, R = R1, R2, ..., RM where M is
the number of reactions, is chosen based on each reaction’s
propensity (likelihood), αj where j is the jth reaction, to
occur.

First, the propensity of each reaction is calculated based on
the populations and coefficients, li where i is the species index,
of the reaction’s reactants, rj where j is the set of reactants
of the jth reaction, as well as the reaction’s stochastic rate
constant, kj . The propensity can be calculated as follows [1]:

αj = kj ∗ Π
i∈rj

(
i

li

)
(2)

Second, the time step that the next reaction that will occur
is calculated by selecting an exponentially distributed random
number and dividing it by the sum of the propensities, α as
shown in equation 3 where URN is a uniform random number.

τnext =
−ln(URN)

α
(3)



2

Fig. 1. Steps to execute the Stochastic Simulation Algorithm

Third, the next reaction to occur is selected by multiplying
a uniformly distributed random number by the total sum of
the propensities. This number is then incrementally subtracted
by the propensity of each reaction until the value reaches less
than or equal to 0. The index of the reaction whose propensity
causes the value to reach this bound is the index of the next
reaction.

Finally, the selected reaction is executed by updating each
of the species populations involved in the reaction as described
by equation 4.

X(t) = X(t− 1)− rselectedReaction + pselectedReaction (4)

These steps can be summarized in the algorithm pseudo
code shown in algorithm 1.

Algorithm 1 Pseudocode for the Direct Method. Courtesy of [5]
CurrentTime = 0.0 1. Initialization
X[1...M] = Initial Species Populations
R[1...N] = Reactions
TotalPropensity = 0.0

2. Propensity Calculation
for I = 1...N do

Prop[I] = CalcPropensity(S,R[I])
TotalPropensity += Prop[I]

end for
T = -ln(rand())/TotalPropensity 3. Reaction Time Generation
Selector = TotalPropensity * rand() 4. Reaction Selection
for I = 1...N do

Selector - Prop[I]
if Selector ≤ 0 then

SelRxn = I
break

end if
end for
X = X - R[SelRxn].reactants + R[SelRxn].products 5.Reaction Execution
CurrentTime += T;

6. Termination
if CurrentTime < EndTime then

GOTO Propensity Calculation
end if

III. GRAPHICS PROCESSING UNIT IMPLEMENTATION

General-purpose computation on graphics processing units
(GPGPUs) has grown to be an enormous research area for gen-
eral purpose computing. This can be attributed to relative ease
of programming compared to other accelerator technologies
(e.g., FPGAs), efficient parallel pipelines, and efficient floating
point performance. For this work, we explored the use of both
an NVIDIA Tesla c1060 (4GB RAM, 16KB shared memory)
and an NVIDIA GeForce GTX 480 (1.5GB RAM, 49KB
shared memory). The Tesla c1060 is the previous generation of

GPUs whereas the GeForce GTX 480 is the current generation
Fermi architecture containing 480 processing cores. Since we
are using NVIDIA GPUs, we are also using CUDA (compute
unified device architecture) as our programming language of
choice.

Due to the iterative nature of SSA, it is extremely difficult
to parallelize a single simulation on the GPU. However, we
are able to exploit the need to run many simulations by
performing ensembles of simulations concurrently. To do this,
we delegated each thread to do a single simulation for a set
number of reactions.

Unlike previous implementations [13], this work contains
only one kernel that performs the simulations. Random num-
bers are generated with a linear feedback shift register to
help reduce the about of kernels needed for execution. This
simple implementation was used because there are currently
no random number generators for the GPU available that give
numbers on a thread-by-thread basis.

Since this application contains copious amounts memory
accesses, it was necessary to coalesce memory reads and
writes as well as limit the use of global memory. To do
this, we allocate and arrange memory so that each thread
with in a block is reading/writing in consecutive memory
locations. Also, to combat the usage of global memory, we
loaded information that is repetitively used into registers such
as random number generator seeds, propensity totals, and
temporary intermediate values.

Our final optimization was to limit the amount of divergent
branches. We simply replace some conditionals with logic
operations. This causes extra computations; however, it proved
beneficial for our implementation.

IV. RESULTS

To examine the performance, we run our program against
the fastest known serial implementation [14]. We use a few
models varying in sizes described in table I. All the model
files came from [6].

Both implementations were written in C and/or CUDA and
compile with the Intel C complier version 11.1 and NVIDIA’s
CUDA version 3.0. Each of the codes was compiled with the
highest optimization flags. The serial implementation was run
on a 2.93GHz Intel Core i7 with 24GB RAM.

For each implementation, multiple numbers of simulations
are run to get a trend of the speedup compared to the serial
version. These numbers of simulations vary by powers of two
from 1024 up to 32768. For each increment in the number of
simulations, we complete 10 runs to get an accurate average
simulation runtime.

Figure 2 shows the speedup of our application over the
serial implementation using the Tesla c1060. We achieve a
maximum speedup of 8.5x over the serial implementation
with the DIMER model, 8.5x with the HSR model, and 5.9x
with the QS8 model. This difference in performance can be
attributed to the larger number of memory accesses for the
larger models. As expected, as the number of simulations
doubles, so does the runtime for both implementations thus
giving us a roughly linear speedup. Saying this, with a smaller



3

TABLE I
MODELS USED FOR COMPARISONS

Model # Species # Reactions
DIMER 8 13

HSR 28 61
QS8 122 201

number of simulations, we see less of a speedup due to
transfer costs of data to/from the GPU. With larger numbers
of simulations, these transfer costs are masked by the runtime
of the application.

Figure 3 shows the speedup of our application over the
serial implementation using the GeForce GTX480. As can
be seen from the figure, we achieve a maximum speedup of
42x over the serial implementation with the DIMER model,
25.7x with the HSR model, and 16.5x with the QS8 model.
The differences in performance among models are the same
as described above. One thing to note here is that we did not
change the code between the two cards. We simply recompiled
the same code and ran the on each of the cards. Doing this
gave us an additional 4.9x speedup for the DIMER model,
3.0x for the HSR model, and 2.9x for the QS8 model.

V. CONCLUSION

In this paper, we examined the use of GPUs with CUDA
to accelerate the stochastic simulation algorithm. Due to data
dependencies, each simulation is not targeted for acceleration,
but rather the parallel simulation of an ensemble of simulations
to provide good statistical analysis. We find that the GPU
provides excellent acceleration for the SSA algorithm while
maintaining the exact statistical properties of the chemical
master equation. With the recent release of the Fermi architec-
ture GPUs, this acceleration is further increased without any
code changes. Future work would be to port this to OpenCL
to explore the use of other types of GPUs such as the ATI
5870.

ACKNOWLEDGMENT

This work is partially supported by the National Science
Foundation, grant NSF CHE-0625598.

REFERENCES

[1] D. T. Gillespie, “A General Method for Numerically Simulating the
Stochastic Time Evolution of Coupled Chemical Reactions”, J. Comp.
Phys., vol. 22, no. 4, pp. 403-434, December 1976.

[2] D. T. Gillespie, “Exact Stochastic Simulation of Coupled Chemical
Reactions”, J. Phys. Chem., vol. 81, no. 25, pp. 2340- 2361, 1977.

[3] D. T. Gillespie, “A rigorous derivation of the chemical master equation”,
Physica A: Statistical and Theoretical Physics, vol. 188, no. 1-3, pp.
404-425, September 1992.

[4] D. T. Gillespie, “Approximate Accelerated Stochastic Simulation of
Chemically Reacting Systems”, J. Chem. Phys., vol. 115, pp. 1716-1733,
2001.

[5] J. M. McCollum, “Accelerating Exact Stochastic Simulation”, MS thesis,
University of Tennessee. 2004.

[6] J. M. McCollum, “Accelerating Exact Stochastic Simulation of Biochem-
ical Systems”, PhD dissertation, Electrical and Computer Engineering,
University of Tennessee. 2006.

[7] J. M. McCollum, et. al., “The sorting direct method for stochastic simu-
lation of biochemical systems with varying reaction execution behavior”,
Computational Biology and Chemistry, vol. 30, No. 1, pp. 39-49, February
2006.

[8] M. A. Gibson and J. Bruck, “An Efficient Algorithm for Generating
Trajectories of Stochastic Gene Regulation Reactions,” California Institute
of Technology, Pasadena, CA, Technical Report 1998.

[9] M. A. Gibson and J. Bruck, “Efficient Exact Stochastic Simulation of
Chemical Systems with Many Species and Many Channels,” Journal of
Physical Chemistry, vol. 104, p. 23, March 2000.

[10] H. Li and L. R. Petzold, “Logarithmic Direct Method for Discrete
Stochastic Simulation of Chemically Reacting Systems,” Technical Re-
port, p. 11, 27 July 2006 2006.

[11] H. Li and L. Petzold, “Efficient Parallelization of Stochastic Simulation
Algorithm for Chemically Reacting Systems on the Graphics Processing
Unit”, Technical report, Dept. Computer Science, University of California,
Santa Barbara, 2007.

[12] NVIDIA Corporation, “NVIDIA CUDA Compute Unified De-
vice Architecture Programming Guide”, February 2010 [Online],
http://developer.download.nvidia.com.

[13] D. Jenkins and G. D. Peterson, “Accelerating the Stochastic Simulation
Algorithm,” presented at the Symposium on Application Accelerators in
High-Performance Computing, Urbana, IL, 2009.

[14] D. D. Jenkins, “Accelerating the Stochastic Simulation Algorithm Using
Emerging Architectures.” Master’s Thesis, University of Tennessee, 2009.
http://trace.tennessee.edu/utk gradthes/533

Fig. 2. Speedup of the NVIDIA Tesla c1060 over the serial implementation.

Fig. 3. Speedup of the NVIDIA GeForce GTX 480 over the serial
implementation.


