
GPU as a General Purpose Computing Resource

Qihang Huang†, Zhiyi Huang†, Paul Werstein†, and Martin Purvis‡
†Department of Computer Science
‡Department of Information Science

University of Otago, Dunedin, New Zealand
Email:{tim, hzy, werstein}@cs.otago.ac.nz, mpurvis@infoscience.otago.ac.nz

Abstract

In the last few years, GPUs (Graphics Processing Units)
have made rapid development. Their ever-increasing com-
puting power and decreasing cost have attracted attention
from both industry and academia. In addition to graphics
applications, researchers are interested in using them for
general purpose computing. Recently, NVIDIA released
a new computing architecture, CUDA (Compute Unified
Device Architecture), for its GeForce 8 series, Quadro
FX, and Tesla GPU products. This new architecture can
change fundamentally the way in which GPUs are used. In
this paper, we study the programmability of CUDA and its
GeForce 8 GPU and compare its performance with general
purpose processors, in order to investigate its suitability
for general purpose computation.

Keywords: GPU, GPGPU, CUDA programming, Mas-
sively Parallel Computing Resource, Sun UltraSPARC T1,
Intel Pentium 4

1 Introduction

Due to physical limitations, the clock speed of CPUs has
come to a maximum limit. However, the Moore’s Law still
holds, which means there still exists the ability to pack more
transistors on a chip. The recent trend in the microproces-
sor industry is to put more cores (processors) into a single
chip. A GPU is a good example of specialized massively
parallel processors with over a hundred of cores in the lat-
est products. Yet a GPU is known to be notoriously hard to
program. In June 2007, NVIDIA released the CUDA pro-
gramming guide, v1.0, for its G80 GPUs [1]. The CUDA
programming model offers programmers a straightforward
C-like interface instead of mapping computation using the
traditional graphic API, which makes it significantly easier
to utilize a GPU.

Naturally, one could ask questions like “Is a GPU now
ready for general purpose computing?”, “How is its perfor-
mance compared to the traditional CPU and the new multi-

core processor?” These questions are of importance, as we
could, based on their answers, determine whether it is ap-
propriate to combine GPU computing with cluster comput-
ing or even Grid computing, e.g., to form GPU cluster or
GPU Grid. However, to the best of our knowledge, there
is little work published regarding performance comparisons
among the latest GPUs, traditional CPUs, and the latest
multi-core processors.

This paper attempts to address partially the above ques-
tions from the aspects of performance and programmabil-
ity. The rest of the paper is organized as follows: Section 2
briefly presents the traditional GPU programming and the
newly released CUDA programming model, and discusses
its programmability issues. Section 3 evaluates the perfor-
mance of a GPU in comparison with general-purpose pro-
cessors including UltraSPARC T1 [2] and Intel Pentium 4.
Conclusions and future work are suggested in Section 4.

2 CUDA programming

CUDA has changed significantly GPU programming com-
pared to traditional GPU programming. In order to better
understand the advantages of CUDA programming, we first
briefly introduce traditional GPU programming.

2.1 Earlier GPU programming

Due to the huge demand in the game market, 3D com-
puter graphics cards are becoming cheaper while provid-
ing greater processing power. This trend has drawn atten-
tion regarding how to apply this computing power to non-
graphical applications. Significant work has been done in
the development of GPGPU (General-Purpose computing
on Graphics Processing Unit) [3].

Yet there are some issues that hinder its development:

• The hardware architecture exposed to programmers is
complex.

In the earlier GPUs, only part of the graphics pipeline
was programmable. That is, only the vertex processor

1

and the fragment processor were programmable (The
program for this part is called shader program). In or-
der to trigger the fragment processor, all steps before
the fragment processor in the rendering pipeline start-
ing from the vertex processor have to be executed [4],
which means programmers need to have a good under-
standing of the whole rendering pipeline.

• The GPU is programmed via a graphics API, which is
not convenient for general purpose computing.

Although there exists a number of C-like high-level
shading languages to program a GPU, they all need
to wrap the actual computation with the graphics API.
Thus they have a strong computer graphics terminol-
ogy. This imposes a steep learning curve for novice or
even experienced programmers.

• The GPU memory does not support write access in a
general way.

The GPU cannot write its DRAM in the same way
a CPU does, though it can read its DRAM in the
same way a CPU. This shortcoming removes signifi-
cant programming flexibility which is readily available
on CPUs [1].

2.2 CUDA programming

The GeForce 8 series GPUs and the CUDA programming
model are NVIDIA’s answer to the issues mentioned in Sec-
tion 2.1. The new hardware architecture exposed to pro-
grammers is shown in Figure 1. Let us take the GTX 8800
as an example. Logically it has 16 multiprocessors (MP).
Each MP contains 8 streaming processors (SP), which are a
set of SIMD (Single Instruction Multiple Data) processors
with 16KB on-chip shared memory (mainly used as a soft-
ware managed cache) and 8192 registers. All the MPs have
access to the DRAM (768MB) of the GPU.

The parallelism is achieved by issuing a number of
threads to run on the GPU concurrently. These concur-
rent threads are organized as a two-dimension grid of thread
blocks, with each thread block as a two- or three-dimension
thread array. Thread blocks are executed on the GPU by
executing one or more blocks on each multiprocessor us-
ing time slicing. The actual scheduling of the threads works
as follows: it splits a block into warps, each of which con-
tains the same number of threads grouped by consecutive
thread ID; and then each warp is executed on a MP in a
SIMD fashion. Time slicing is used to switch among warps.
All threads execute the same program (known as a kernel in
CUDA terminology). Task partition is done through a block
index (blockIdx) and a thread index (threadIdx).

To utilize the GPU, CUDA provides an extended C-like
programming language. A function in the source code could

Figure 1: Hardware Model (from [1])

be declared ashost , global , and device , denoting
respectively that the function will be run in the CPU (the
host), run in the GPU but called from a host function, or run
in the GPU but called from a global/device function. Any
call to a global function is said to issue a kernel to run
on the GPU and must first specify the dimension of the grid
and the blocks that will be used to execute the function on
GPU. The execution model is shown in Figure 2.

A sample program is as follows:

d e v i c e f l o a t compute (i n t i d x) {
/ / do some compu ta t i on
.

}

g l o b a l void ke rne lFunc (f l o a t ∗ va r){
/ / t h i s i s a k e r n e l f u n c t i o n c a l l e d
/ / from h o s t and e x e c u t e d on GPU
i n t i ;
i = b lock Idx . x∗blockDim . x+ t h r e a d I d x . x ;
va r [i]= compute (i) ;

}

i n t main (void) {
f l o a t ∗ va r ; / / a r ray a l l o c a t e d on CPU
f l o a t ∗varGPU ; / / a r ray a l l o c a t e d

/ / on GPU
/ / i n i t va r
.
/ / a l l o c a t e varGPU , i n i t i t u s i n g var
cudaMal loc ((void ∗∗)&varGPU , \

s i z e o f (f l o a t)∗ s i z e) ;
cudaMemcpy (varGPU , var ,\

cudaMemcpyHostToDevice) ;
/ / e x e c u t i o n s p e c i f i c a t i o n

2

kerne lFunc<<<96,192>>>(varGPU) ;
/ / f r e e varGPU
cudaFree (varGPU) ;
re turn 0 ;

}

Figure 2: Execution Model (from [1])

In this example,kernelFuncwill be executed on the GPU
as a grid of 96 thread blocks, with 192 threads in each
thread block. If it is run on an 8800 GTX card (with 16
MPs), 6 thread blocks will be run on each MP concurrently.
If it is run on a 8800 GTS card (with 12 MPs), 8 thread
blocks will be run on each MP concurrently. However since
all thread blocks running on the same MP share its regis-
ters and shared memory, the actual number running concur-
rently on a MP might be less than the aforementioned num-
ber according to the actual usage of the shared resources in
the kernel.

A thread that executes on the GPU has access to the fol-
lowing memory spaces:

• Registerwhich can be read and written by its thread.

• Local memorywhich can be read and written by its
thread.

• Shared memorywhich can be read and written by the
threads in the same block.

• Global memorywhich can be read and written by the
threads in the same grid.

• Constant memorywhich is read only by the threads in
the same grid.

• Texture memorywhich is read only by the threads in
the same grid.

Only the constant memory and the texture memory are
cached. Both the local memory and the global memory
reside on the DRAM of the GPU. The only difference is
whether or not it is accessible to other threads. In terms of
access latency, the register, shared memory, and cache of
the constant memory and texture memory are of the same
magnitude. However access to the rest of memory spaces
such as the global memory takes hundreds of times longer.
The host (CPU) only has access to the global memory, the
constant memory, and the texture memory.

The memory model is shown in Figure 3.

Figure 3: Memory Model (from [5])

2.3 Programmability Issues

We can see from Section 2.2 that the extended C program-
ming interface of CUDA has removed the burden of pro-
grammers learning complex shader programming. Also it
has a straghtforward way of multi-threaded programming.
These features mean simpler code porting from CPU to
GPU and between GPUs.

However, even with this great improvement of GPU pro-
grammability, CUDA still has some issues. Firstly, the
global memory is not cached. This is because more transis-
tors are devoted to data processing than control logic such
as data caching. In order to compensate, CUDA encourages
programmers to use the on-chip shared memory as manu-
ally controlled cache. Clearly, it is not a trivial job for pro-
grammers. Often programmers have to alter the algorithm
structure to fit into the limited shared memory. One impor-
tant consequence of this sort of tweak is poor scalability. If
the size of the shared memory changes in upcoming GPUs,
code porting becomes a problem. The authors believe that
hiding shared memory from programmers will make CUDA
programming much more convenient. Given the current de-

3

sign of the GPU hardware, we think a software solution
should be investigated to hide the shared memory from the
programmers. One way of doing so is to adopt the con-
cept of View-Oriented Parallel Programming (VOPP) [6]
into CUDA.

In VOPP, shared data are partitioned intoviewsthat are
non-overlapping memory blocks. Views can be dynami-
cally allocated or statically defined by programmers. Each
view is identified by its view id. A view manager is adopted
to manage view allocation and destruction. Before a view
is accessed, a view primitive likeacquireview is called so
that the view manager will know which data will be ac-
cessed and can place the data in an optimal location such
as shared memory. In this way, programmers do not need
to distinguish between shared memory and global memory.
The compiler and the view manager can optimize the ac-
cess of the views according to the data access pattern of
the program by placing them either in shared memory or in
global memory. The relation between global memory and
shared memory in the GPU resembles the relation between
RAM and cache in a CPU. Therefore, the view-based mem-
ory consistency protocol [7] used for VOPP can be read-
ily used for memory consistency of views between global
memory and shared memory in the GPU.

If the VOPP API could be implemented in CUDA as a
library, a view becomes the universal memory concept to
programmers. However, we need further investigation in
order to determine if an implementation of VOPP will be
efficient under the various restrictions of a GPU.

Secondly, CUDA provides an API for threads to commu-
nicate within the same thread block, but there is no mech-
anism for inter-block communication. To fully utilize the
GPU computing power, we need to use all MPs. How-
ever, since each block can only run on a single MP, we need
to generate multiple thread blocks on different MPs which
do not provide any communication facility for the thread
blocks. For applications where inter-block communication
is essential, it is not possible to run them without extra ef-
fort. We propose two ways to achieve this inter-block com-
munication. One way is to implement a mutex in the global
memory to coordinate two blocks. However hard-coding
mutexes is not flexible and becomes error-prone as the num-
ber of blocks increases. Another way is to split the kernel
into multiple parts and use the host (CPU) as a central place
to synchronize the different parts. This can incur significant
data transfer between host and GPU. We have adopted the
second approach in our N-Body problem and Game of Life
problem to be discussed in Section 3.3.

Thirdly, programmers need to be aware of the GPU
memory spaces. It is not only the separation between the
shared memory and the global memory, but also between
the GPU memory and the CPU memory, which causes ex-
tra coding for passing the data between different memory

spaces.
There are a number of other small inconvenience and

limitations. For example, becausedevice functions are
inlined into global functions, they cannot be recursive.
This could be solved by a standard transformation of the au-
tomatic function stack to the manual recursive stack. Also,
at the moment floating point calculations only support sin-
gle precision. However this is expected to change in up-
coming GPUs.

3 Performance evaluation

In this section, we evaluate the performance of a GPU
against general purpose processors. We first present the test
results of memory access for different processors. Then we
present performance results of two non-graphical applica-
tions: matrix multiplication and N-Body problem running
on a GPU, a UltraSPARC T1, and a Pentium 4. Then we
summarize the results of our tests. We do not include graph-
ics applications in our performance evaluation since we fo-
cus on general purpose computing. GPU performance for
graphics applications has been explored in previous work
such as [8].

The configurations of the testing platforms are as fol-
lows:

• The GPU is a NVIDIA GTX 8800, which has 16 mul-
tiprocessors (MPs). Each MP has 8 streaming proces-
sors (SPs). Each SP runs at 1.35GHz clock speed. The
GPU is installed in an Intel 2.8GHz Pentium PC.

• The Intel Pentium 4 processor has a 2.8GHz clock
speed and is configured with 2GB RAM and 2048 KB
cache.

• We use a Sun UltraSPARC T1 to compare scalability
with the GPU. The T1 processor has 8 cores. Each core
runs at 1.0GHz clock speed and has four strands (hard-
ware threads). In total it can run 32 threads simultane-
ously. The T1 chip is installed in a Sun T2000 server
with 16GB RAM. Since there is only one floating point
unit (FPU) in the T1, the FPU is a bottleneck for paral-
lel floating point applications. In order to make reason-
able comparisons, we make a special adjustment for
some test cases and note it accordingly. For the Sun,
the three applications are programmed with OpenMP,
compiled bycc from Sun Studio 11, and run on Solaris
11.

In the following subsections, the terms GPU, Intel, and
Sun are used to denote the above testing platforms.

4

3.1 Characteristics of memory accesses

In order to find out the characteristics of GPU memory such
as memory access latency, we have designed three memory
test programs. The first test determines the time of mem-
ory copy from one array to another array. We test it in four
cases: memory copy in the Intel’s RAM with cache dis-
abled, memory copy in the GPU’s global memory, memory
copy in the Intel’s RAM with cache enabled, and memory
copy in the GPU’s shared memory. We use a range of ar-
ray sizes from 1KB to 7KB. The GPU shared memory has a
size of 16KB, but it is also used for passing kernel function
arguments, so we cannot use all shared memory for data.
In order to hold two arrays on shared memory at the same
time, we make the largest size to be 7KB. We use only one
thread in this test. The test results are shown in Table 1.

Table 1: Memory Copy (time inµ second)
Platform Size

1KB 2KB 4KB 7KB

Intel(CD) 2.11 3.54 6.67 15.73
GPU(GM) 94.88 189.65 379.53 735.38
Intel(CE) 0.63 1.26 2.49 4.85
GPU(SM) 8.42 16.72 33.34 64.48

In Table1, “CD” stands for cache disabled; “CE” stands
for cache enabled; “GM” stands for global memory; “SM”
stands for shared memory. To disable cache in the Intel
CPU, the privileged instruction “WBINVD” (write back
and invalidate cache) is used.

From Table 1, we can see that GPU memory is more than
10 times slower than RAM access in the Intel machine, for
both cache (or shared memory) enabled and disabled. To
hide the memory latency in the GPU, hundreds of threads
are suggested to be used in one MP of GPU. The second test
(described in the next paragraph) shows that increasing the
number of threads in the GPU can increase the throughput
of memory accesses.

The second test determines the throughput of random ac-
cess of a 1KB array residing in global memory, constant
memory, texture memory, and shared memory respectively.
The GPU execution configuration varies from 1 block with
1 thread per block, to 512 blocks with 256 threads per block.
The test results are shown in Table 2. To reduce extra over-
head of thefor loop, each loop contains 64 memory ac-
cesses. This idea is similar to [9], which can keep the loop
overhead to around 2%.

Table 2 shows that when the number of threads increases,
the throughput of memory accesses is increased in general.
Also the shared memory access is at least 30 times faster
than global memory.

The last test determines the speed of transfering a block
of data in global memory to shared memory and the read
speed of global memory and shared memory. This test is

made to see one major overhead of implementing VOPP
in GPU. This overhead results from requiring a view to
be loaded from global memory to shared memory when
needed. The results are shown in Table 3. Again, because
the 16KB shared memory in GPU is also used for passing
kernel function argument, only 15KB is used in the last col-
umn.

In Table 3, “G2S” means copying data from the global
memory to the shared memory; “GR” means reading data
from the global memory; “SR” means reading data from the
shared memory. We can see from the table that it is prof-
itable to use shared memory as cache of global memory.
However, if the data is only read once, there is no perfor-
mance gain by copying data from the global memory to the
shared memory. Programmers have to keep this in mind in
order to use the shared memory for improving performance.
If VOPP is implemented, the compiler has to determine this
before deciding whether or not to copy a view in the shared
memory.

3.2 Matrix multiplication

Matrix multiplication computes the matrix product ofA and
B and stores the result intoC. Since the computation of
each element inC is independent, matrix multiplication is
a problem with embarrassingly parallelism and thus partic-
ularly suitable for a GPU.

We use three problems sizes for our tests. The first
problem size (called PS1) is3072 × 800 for matrix A and
800 × 800 for matrix B. The second problem size (called
PS2) is3072× 1600 for matrix A and1600× 1600 for ma-
trix B. The third problem size (called PS3) is3072 × 3200

for matrix A and3200× 3200 for matrix B. PS1 is used for
testing the scalability of the GPU and UltraSPARC T1. PS2
is used for testing the performance of the GPU with differ-

Table 2: Memory access throughput (in GB/s)
Block× Memory Type
Thread global constant texture shared

1 × 1 0.32 2.92 0.53 2.73
32 × 64 3.40 37.60 31.16 73.67

128 × 128 3.54 38.59 34.71 74.96
256 × 128 3.73 51.48 38.99 97.91
256 × 256 3.73 47.49 38.92 109.46
512 × 256 3.32 51.65 38.24 115.37

Table 3: Transfer Speed and Read Speed (time inµ second)
Type Size

1KB 2KB 4KB 8KB 15KB

G2S 22 45 87 174 327
GR 18 32 59 113 214
SR 1.1 1.6 2.8 5.1 9.4

5

ent execution configurations. All problem sizes are used to
test computing power of the GPU in comparison with the In-
tel CPU and Sun T1. To make the comparision fair since the
T1 only has one FPU, we use long integers in the scalability
and computing power tests, and use floating point numbers
for the GPU test with different execution configurations.

The scalability result is shown in Figure 4.

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35

S
pe

ed
up

Num. of MPs(for GPU)/Threads(for Sun)

Scalability

Sun
GPU w/o SM

GPU w/ SM

Figure 4: Matrix Multiplication(Problem Size 1)

Figure 4 shows the speedup of matrix multiplication run-
ning on the GPU and Sun UltraSPARC T1. It also shows the
speedup of the application without using the shared memory
(similar to software managed cache) in the GPU in order to
show the importance of using the shared memory in GPU
applications. We use 256 threads per block in the applica-
tion for testing the scalability of the GPU.

The figure shows the scalability of GPU is extremely
good for matrix multiplication when shared memory is
used. Its speedup is almost linearly increasing with the
number of MPs. However, when not using the shared mem-
ory, the speedup curve starts to become flat when the num-
ber of MPs is 8. The scalability of the UltraSPARC T1 is
also very good, and the speedup keeps growing all the way
up to 32 threads for the OpenMP implementation of matrix
multiplication. From this test, we know the GPU has ex-
cellent scalability for embarrassingly parallel problems. Its
scalability is even better than the UltraSPARC T1, which is
a start-of-the-art general purpose multicore processor.

Table 4: Different Execution Configuration of GPU
64 t/b 192 t/b 256 t/b 256 t/b SM

Time 9.94 6.781 2.593 0.325
(second)
GFLOPS 1.57 2.3 6.1 48.3

We tested the performance of GPU with different ex-
ecution configurations. The result is shown in Table 4.
“GFLOPS” means giga floating point operation per second;
“t/b” means threads per block (“32 t/b” means 32 threads

Figure 5: Matrix Multiplication

per block); “SM” means using the shared memory.
From the result, we observe that by increasing the num-

ber of threads in one block, the GFLOPS of the GPU in-
creases as well. This is because more threads in a block can
hide memory access latency. More interesting, there is a big
difference (8 times better) when shared memory is used.

In Figure 5, we compare the performance of the GPU
against Intel and Sun. In this test, the Sun uses 32 threads
and the GPU uses 256 threads and shared memory is used.
The numbers on top of the bars represent the computing
power. It is based on the Intel CPU, whose computing
power is considered to be 1. The computing power of other
processors is calculated by dividing the running time on the
Intel by the running time on that processor.

Compared with the Pentium 4, the GPU can be 322 times
faster for PS3. One interesting result is that when the prob-
lem size grows, the GPU and Sun computing power grows.
That means the Intel CPU slows down more than the GPU
and Sun as the problem size grows. This is because increas-
ing problem size will increase the granularity of the parallel
algorithm. This is more advantageous to the multi-core pro-
cessors.

3.3 N-Body problem

The N-Body problem is concerned with determining the ef-
fects of forces between astronomical bodies in space. Its
task is to find the positions and movements of bodies in
space that are subject to gravitational forces from other bod-
ies using Newtonian laws of physics.

We choose this application because we want to measure
how the GPU performs when there is communication be-
tween two iterations. After each time interval before con-
tinuing with the computation, each thread needs to update
the location and velocity of each body. This needs synchro-
nization among all threads. As pointed out in Section 2.3,
CUDA does not directly support inter-block communica-

6

tion, so we need to synchronize the threads via the host,
which resembles a master/slave pattern.

Figure 6: N-Body (floating point number)

Figure 6 shows the computing power of the GPU based
on the Intel CPU. We can see that when the problem size
(number of bodies) increases, the GPU computing power
increases in comparison with the Intel CPU, which is con-
sistent with the matrix multiplication.

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35

S
pe

ed
up

Num. of MPs(for GPU)/Threads(for Sun)

Scalability

Sun
GPU w/o SM

GPU w/ SM

Figure 7: Scalability of N-Body problem

For the next test, we alter the N-body problem to use
long integers instead of floating point numbers. For square
root operation used to calculate distance between bodies,
an integer approximation function is used. Figure 7 shows
the scalability of the application on the GPU and the Ul-
traSPARC T1. The number of bodies in the application is
4096. Each block in the GPU has 256 threads. From the
figure, we can see that the Sun UltraSPARC T1 has a better
scalability than the GPU. This is because the global memory
is more often used for information sharing in this applica-
tion. Figure 8 shows the computing power of Intel, Sun,
and GPU. Comparing Figure 6 and Figure 8, we can see
that the GPU supports floating point operation better than

Figure 8: N-Body (long integer number)

integer operation. The reason is because the GPU was orig-
inally designed to off-load graphic rendering computation
from the CPU, which is floating point intensive, and thus the
GPU hardware is optimized for floating point operations.

3.4 Summary

In Section 3.1, we showed that by using multiple threads,
the non-cached global memory access in GPU is compa-
rable to the Intel processor. The results from Section 3.2
and 3.3 demonstrate the shared memory in GPU has a much
better performance than global memory. There is a signifi-
cant difference in performance between whether the shared
memory is used or not. The GPU computing power is
promising with a maximum of 322 times of the Intel CPU
for matrix multiplication and a maximum of 83 times for the
N-body problem. Even without using the shared memory,
the GPU can obtain a 20 times to 50 times the computing
power of the Intel CPU.

The scalability of the GPU is excellent for embarrass-
ingly parallel problems such as matrix multiplication. How-
ever, when the global memory is used intensively for com-
munication between threads in different MPs, the GPU is
less scalable than the Sun UltraSPARC T1.

GPU Intel
(GTX 8800) Pentium 4 2.8GHz

Computing power 332 1
In-use power(Watts) 257 112

PE ratio 140 1
Price (USD) 600 150

CE ratio 83 1

Table 5: GPU vs Intel

Power efficiency is an important factor for choosing
computing resource. The power efficiency and cost effi-
ciency of the GPU are given in Table 5 in terms of the Intel
CPU.

7

In the table, we assume the GPU is 332 times more pow-
erful than the Intel CPU, as demonstrated in our test results
for the matrix multiplication problem. The power efficiency
is calculated using the computing power divided by the in-
use power. The PE ratio stands for power efficiency ratio in
terms of the Intel PC (excluding the monitor). The GPU PE
ratio is calculated using the GPU power efficiency divided
by the Intel PC power efficiency.

The cost efficiency is calculated using the computing
power divided by the price. The CE ratio stands for cost
efficiency ratio in terms of the Intel CPU. The GPU CE ra-
tio is calculated using the GPU cost efficiency divided by
the Intel CPU cost efficiency.

From the table, we know that the GPU can be 140 times
more power efficient than the Intel PC, and is 83 times more
cost efficient than the Intel CPU.

From the above figures, we can conclude that a GPU can
be a “greener” and cheaper computing resource.

4 Conclusions and future work

In this paper, we investigated a GPU as a general purpose
computing resource based on two fundamental aspects: pro-
grammability and performance.

Due to the secretive nature of the GPU industry, some
low level information about the GPU is (intentionally)
vague. Programmers can only get a high level overview
of CUDA programming on NVIDIA GPUs. However, from
our initial experience, it is not difficult to learn GPU pro-
gramming even for novice programmers. But it is certainly
not trivial to achieve high performance programming with
the GPU. For example, the use of the shared memory could
dramatically improve the GPU’s performance, but it also
considerably increases the programming complexity.

Nevertheless, the GPU has improved significantly both
in terms of programmability and performance. It per-
forms particularly well on data parallel applications. Even
for non-embarassingly parallel non-graphics applications, it
performs reasonably well. Thus we argue that a GPU as a
whole is a good candidate for general purpose computing.

Previous work has been done to investigate the possibil-
ity of using GPUs for GPU Cluster Computing and GPU
Desktop Grids Computing ([10, 11]). But that research was
based on older generations of GPUs. With NVIDIA’s new
GPU hardware and the CUDA programming model, we
demonstrated the improved performance and programma-
bility of a GPU. However, further research is needed to im-
prove the GPU programmability for wider general purpose
computing.

References

[1] NVIDIA CUDA Compute Unified Device Ar-
chitecture, Programming Guide, Version 1.0.
http://developer.nvidia.com/object/cuda.html, June
2007.

[2] UltraSPARC Architecture 2005 Specification.
http://opensparc-t1.sunsource.net/, 2005.

[3] http://www.gpgpu.org.

[4] T. Dokken, T.R. Hagen, and J.M. Hjelmervik. The
GPU as a high performance computational resource.
In Proceedings of Spring Conference on Computer
Graphics 2005, pages 21–26, 2005.

[5] Programming Massively Parallel Processors, Course
Slides, University of Illinois, Urbana-Champaign.
http://courses.ece.uiuc.edu/ece498/al1/index.html,
2007.

[6] Z. Huang and W. Chen. Revisit of View-Oriented
Parallel Programming. InProceedings of the Seventh
IEEE International Symposium on Cluster Computing
and the Grid, pages 801–810, 2007.

[7] Zhiyi Huang, Martin Purvis, and Paul Werstein. View-
Oriented Parallel Programming and View-based Con-
sistency. InProceedings of the Fifth International
Conference on Parallel and Distributed Computing,
Applications and Technologies (LNCS 3320), pages
505–518, 2004.

[8] Daniel Reiter Horn, Jeremy Sugerman, Mike Houston,
and Pat Hanrahan. Interactive k-D Tree GPU Raytrac-
ing. In I3D ’07: Proceedings of the 2007 Symposium
on Interactive 3D Graphics and Games, pages 167–
174, 2007.

[9] Larry McVoy and Carl Staelin. lmbench: Portable
Tools for Performance Analysis. InATEC’96: Pro-
ceedings of the Annual Technical Conference on
USENIX 1996 Annual Technical Conference, pages
23–23, 1996.

[10] Zhe Fan, Feng Qiu, Arie Kaufman, and Suzanne
Yoakum-Stover. GPU Cluster for High Performance
Computing. InSC ’04: Proceedings of the 2004
ACM/IEEE conference on Supercomputing, page 47,
2004.

[11] Jian Wang, Aobing Sun, Yongbo Li, and Haitao Liu.
Programmable GPUs: New General Computing Re-
sources Available for Desktop Grids.Grid and Coop-
erative Computing(GCC), 0:46–49, 2006.

8

