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Abstract

The 3D-DWT is a mathematical tool of increasing importance in those applications that require an efficient processing

of huge amounts of volumetric info. Other applications like professional video editing, video surveillance applications,

multi-spectral satellite imaging, HQ video delivery, etc, would rather use 3D-DWT encoders to reconstruct a frame as

fast as possible. In this article, we introduce a fast GPU-based encoder which uses 3D-DWT transform and lower trees.

Also, we present an exhaustive analysis of the use of GPU memory. Our proposal shows good trade off between R/D,

coding delay (as fast as MPEG-2 for High definition) and memory requirements (up to 6 times less memory than x264).
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1 Introduction
At video content production stages, digital video

processing applications require fast frame random

access to perform an undefined number of real-time

decompressing-editing-compressing interactive opera-

tions, without a significant loss of original video content

quality. Intra-frame coding is desirable as well in many

other applications like video archiving, high-quality

high-resolution medical and satellite video sequences,

applications requiring simple real-time encoding like

video-conference systems or even for professional or

home video surveillance systems [1] and digital video

recording systems (DVR). However, intra coding does not

take profit of the temporal redundancy between frames.

In the last years, most of all in areas such as video

watermarking [2] and 3D coding (e.g., compression of

volumetric medical data [3] or multispectral images [4],

3D model coding [5], and especially, video coding),

three-dimensional wavelet transform (3D-DWT) based

encoders have arisen as an alternative between simple

intra coding and complex inter coding solutions that

applies motion compensation between frames to exploit

temporal redundancy.
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In [6], authors utilized 3-D spatio-temporal subband

decomposition and geometric vector quantization (GVQ).

In [7] a full color video coder based on 3-D subband

coding with camera pan compensation was presented.

In [8] an extension to 3D of the well known embedded

zerotree wavelet (EZW) algorithm developed by Shapiro

[9] was presented. Similarly, an extension to 3D-DWT of

the set partitioning in hierarchical trees (SPIHT) algo-

rithm developed by Said and Pearlman [10] was presented

in [11], using a tree with eight descendants per coef-

ficient instead of the typical quad-trees of image cod-

ing. All of this 3D-DWT based encoders are faster than

complex inter coding schemes but slower than simple

intra coding solutions. So we will try in this study to

speed up 3D video encoders to achieve coding delays as

closer as possible to the ones obtained by intra video

encoders but with a clearly superior compression perfor-

mance. In order to achieve this goal, we will focus on

GPU-based platforms.

Wide research have been carried out to accelerate the

DWT, specially the 2D DWT, exploiting both multicore

architectures and graphic processing units (GPU). In [12],

a Single Instruction Multiple Data (SIMD) algorithm runs

the 2D-DWT on a GeForce 7800 GTX using Cg and

OpenGL, with a remarkable speed-up. A similar effort has

been performed in [13] combining Cg and the 7800 GTX

to report a 1.2–3.4 speed-up versus a CPU counterpart.
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in any medium, provided the original work is properly cited.



Galiano et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:24 Page 2 of 13

http://asp.eurasipjournals.com/content/2013/1/24

In [14], authors present a CUDA implementation for

the 2D-FWT running more than 20 times as fast as the

sequential C version on a CPU, and more than twice

as fast as the optimized OpenMP and Pthreads versions

implemented on a multicore CPU. In [15], authors present

GPU implementations for the 2D-DWT obtaining speed-

ups up to 20 when compared to the CPU sequential

algorithm.

In this study, we present a GPU 3D-DWT based video

encoder using lower trees as the core coding system.

The proposed encoder requires less memory than 3D-

SPIHT [11] and has a good R/D behavior. Furthermore,

we present an in-depth analysis of the use of GPU’s to

accelerate the 3D-DWT transform. Using these strategies,

the proposed encoder is able to compress a Full-HD video

sequence in real time.

The rest of the article is organized as follows. Section 2

presents the proposed 3D-DWT based encoder. In

Section 3, a performance evaluation in terms of R/D,

memory requirements and coding time is presented.

Section 4 describes several optimization proposals based

on CUDA to process the 3D-DWT transform, while in

Section 5 we analyze these proposals when applied to the

proposed encoder. Finally in Section 6 some conclusions

are drawn.

2 Encoding system
In this section, we present a 3D-DWT based encoder

with low complexity and good R/D performance. As

our main concern is fast encoding process, no R/D

optimization, motion estimation/motion compensation

(ME/MC) or bit-plane processing is applied. This encoder

is based on both the 3D-DWT transform and lower-trees

(3D-LTW).

First of all, the 3D-DWT is applied to a group of pictures

(GOP). In Figure 1 an example of a two level decomposi-

tion of the 3D-DWT transform is applied to a eight-frame

video sequence. As it can be seen on the left side, spatial

decomposition to all video frames is performed result-

ing in four subbands (LL∗1, LH∗1, HL∗1, HH∗1). After

applying the temporal decomposition, we will obtain the

high-frequency temporal subbands (∗ ∗ H1 labeled sub-

bands with a dark blue color), and the low-frequency ones

(∗ ∗ L1 labeled subbands with a light blue color). On the

right side of Figure 1, we show the second decomposi-

tion level of the 3D-DWT transform. So, we will perform

the same process to the frames belonging to the LLL1,

performing the spatial and temporal DWT filtering to

obtaining the corresponding subbands. Finally, we also

show the wavelet coefficients offspring relationship, that

the coefficient encoder will exploit. As it can be seen

each coefficient of a particular subband at Nth decompo-

sition level will have eight descendants in the (N − 1)th

decomposition level as shown at figure.

After all 3D-DWT decomposition levels are applied,

all the resulting wavelet coefficients are quantized and

then, the encoding system compresses the input data to

obtain the final bit-stream corresponding to that GOP. It

is important to remark that the compressed bit-stream

is ordered in such a way that the decoder obtains the

bit-stream in the correct order.

2.1 Lower-tree wavelet coding

The proposed video coder is based on the LTW image

coding algorithm [16]. As in LTW encoder, the proposed

video codec uses a scalar uniform quantization by means

of two quantization parameters: rplanes and Q. The finer

quantization consists in applying a scalar uniform quanti-

zation,Q, to all wavelet coefficients. The coarser quantiza-

tion is based on removing the least significant bit planes,

rplanes, from wavelet coefficients.

The encoder uses a tree structure to reduce data redun-

dancy among subbands (similar to that of [?{KIM00}]),
and also as a fast way of grouping coefficients, reducing

Figure 1 Example of a two decomposition level 3D-DWT and the relationship between parent-child subbands.
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Table 1 Memory requirements for evaluated encoders (KB)

Format/ QCIF CIF ITU-D1 Full-HD

Codec

H264 35824 86272 227620 489960

x264 10752 18076 36600 178940

MPEG-2 4696 6620 9164 32820

3D-SPIHT 10152 34504 118460 645720

3D-LTW 1611 6390 20576 123072

the number of symbols needed to encode the image. This

structure is called lower tree, and all the coefficients in the

tree are lower than 2rplanes. In Figure 1, a example of the

relationship between subbands is presented.

Let us describe the coding algorithm. In the first stage

(symbol computation), all wavelet subbands are scanned

from the first decomposition level to the Nth (to be able

to build the lower-trees from leaves to root) and the

encoder has to determine if each 2 × 2 block of coef-

ficients of both subband frames is part of a lower-tree.

In the first level subband (see Figure 1), if the eight

coefficients in these blocks (2 blocks of 2 × 2 coeffi-

cients) are insignificant (i.e., lower than 2rplanes), they are

considered to be part of the same lower-tree, labeled

as LOWER COMPONENT. Then, when scanning upper

level subbands, if both 2 × 2 blocks have eighth insignif-

icant coefficients and all their direct descendants are

LOWER COMPONENT, the coefficients in that blocks are

labeled as LOWER COMPONENT, increasing the lower-

tree size.

As in the original LTW image encoder, when there is at

least one significant coefficient in one of the two blocks

of 2 × 2 coefficients or in its descendant coefficients, we

need to encode each coefficient separately. Recall that

in this case, if a coefficient and all its descendants are

insignificant, we use the LOWER symbol to encode the

entire tree, but if the coefficient is insignificant, and it

has a significant descendant, the coefficient is encoded

as ISOLATED LOWER. However, if all descendants of a

significant coefficient are insignificant (LOWER COMP-

ONENT), we use a special symbol indicating the number

of bits needed to represent it and a superscript L (4L).

Finally, in the second stage, subbands are encoded from

the LLLN subband to the first-level wavelet subbands

and symbols computed in the first stage are entropy

coded by means of an arithmetic encoder. Recall that no

LOWER COMPONENT is encoded. The value of signifi-

cant coefficients and their sign are raw encoded.

3 Performance evaluation
In this section, we will compare the performance of our

proposed encoder (3D-LTW) using Daubechies 9/7F filter

for both spatial and temporal domain with the following

video encoders:

• 3D-SPIHT [17].
• H.264 (JM16.1 version) (high quality profile) [18].
• MPEG-2 (ffmpeg-r25117)—GOP size 15, sequence

type IBBPBBP . . . [19].
• x264 (mingw32-libx264 r1713-1 high quality profile)

in both Inter and Intra mode [19].

The performance metrics employed in the tests are R/D

performance, coding and decoding delay and memory

requirements. All the evaluated encoders have been tested

Table 2 Average PSNR (dB) with different bit rate and

coders

Codec/Bit rate

Kbps/dB x264 MPEG-2 x264 Intra 3D-SPIHT 3D-LTW

Foreman (CIF)

3040 44.99 40.74 39.95 40.32 41.38

1520 41.80 37.10 35.29 36.42 36.67

760 38.90 34.09 31.43 33.35 33.42

380 35.60 31.59 28.15 30.78 30.68

190 31.99 29.32 25.07 28.53 28.54

Container (CIF)

3040 47.20 43.59 37.97 47.82 46.54

1520 43.60 40.43 33.04 43.99 41.93

760 40.50 37.19 29.22 39.54 37.39

380 37.09 34.48 25.88 35.20 33.31

190 33.89 32.05 23.27 31.10 29.79

Hall (CIF)

3040 42.92 42.29 41.19 44.68 44.46

1520 40.55 39.89 36.60 42.27 41.66

760 38.94 37.95 31.89 40.11 38.93

380 37.25 35.95 27.32 37.39 35.43

190 34.80 33.59 23.88 33.56 31.90

Mobile (ITU-D1)

6400 40.33 37.82 35.56 38.24 38.86

3598 38.82 36.09 32.53 35.07 35.59

2100 37.57 34.37 30.12 32.53 32.69

1142 35.51 32.58 27.87 30.52 30.64

542 31.82 30.68 25.65 28.82 29.26

Ducks (Full-HD) 50fps

98304 37.34 38.49 36.26 37.77 36.07

49152 34.48 35.27 32.61 35.39 32.85

24576 32.46 32.28 29.16 33.68 31.49

12288 30.55 29.32 26.43 31.63 30.23

6144 28.47 27.82 24.19 28.99 29.19
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on an Intel PentiumM Dual Core 3.0GHz with 2Gbyte

RAMmemory.

The test video sequences used in the evaluation are:

Foreman (QCIF and CIF) 300 frames, Container (QCIF

and CIF) 300 frames, News (QCIF and CIF) 300 frames,

Hall (QCIF and CIF) 300 frames, Mobile (ITUD1 576p30)

40 frames, Station2 (HD 1024p25) 312 frames, Ducks

(HD 1024p50) 130 frames and Ducks (SHD 2048p50) 130

frames.

It is important to remark that MPEG-2 and x264

evaluated implementations are fully optimized, using

CPU capabilities like Multimedia Extensions (MMX2,

SSE2Fast, SSSE3, etc.) and multithreading, whereas

3D-DWT based encoders (3D-SPIHT and 3D-LTW) are

non optimized C++ implementations.

3.1 Memory requirements

In Table 1, memory requirements of different encoders

under test are shown. The 3D-LTW encoder running over

a GOP size of 16 frames uses up to 6 times less memory

than 3D-SPIHT, up to 22 times less memory than H.264

for QCIF sequence resolution and up to 6 times less mem-

ory than x264 which is an optimized implementation of

H.264, for small sequence resolutions. It is important to

remark that 3D-SPIHT keeps the compressed bit-stream

of a 16 GOP size in memory until the whole compression

a

b

Figure 2 PSNR (dB) for all evaluated filters for Container and Foreman sequences in CIF format. (a) Container. (b) Foreman.



Galiano et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:24 Page 5 of 13

http://asp.eurasipjournals.com/content/2013/1/24

is performed, while encoders like MPEG-2, H.264, 3D-

LTW and x264 output the bit-stream inline. Block based

encoders like MPEG-2 require less memory than the oth-

ers encoders, specially at high definition sequences.

3.2 R/D performance

Regarding R/D, in Table 2 we can see the R/D behav-

ior of all evaluated encoders for different sequences. As

shown, x264 is the one that obtains the best results for

sequences with highmovement, mainly due to the exhaus-

tive ME/MC stage included in this encoder, contrary to

3D-SPIHT and 3D-LTW that do not include any ME/MC

stage. The R/D behavior of 3D-SPIHT and 3D-LTW is

similar for images with moderate-high motion activity,

but for sequences with low movement, 3D-SPIHT out-

perform 3D-LTW, mainly due to the extra decomposition

levels applied in high frequency subbands. Figure 2 shows

an example of this effect in two different sequences, one

with low motion activity like Container and other with

Figure 3 Subjective comparison between a) MPEG-2 and c)

3D-LTW for Ducks (Full-HD) at 13000 Kbps, frame # 33. (a)

29.21 dB. (b) Original. (c) 31.57 dB.

moderate motion activity like Foreman. Notice that the

proposed 3D-LTW encoder improves the performance of

the old-fashioned MPEG-2 inter video encoder. Also, it

is worth to highlight the significant R/D improvement of

both 3D-LTW and 3D-SPIHT over the x264 intra encoder

(up to 11 dB). This R/D improvement is accomplished by

exploiting only the temporal redundancy among video

frames when applying the 3D-DWT. It is also interesting

the behavior of 3D-DWT based encoder for high frame

rate video sequences like Ducks. As it can be seen all 3D-

DWT based encoders have a similar behavior than the

other encoders, even better than x264 in INTER mode.

3.3 Subjective evaluation

We have also performed a subjective evaluation of the

proposed encoder. Figures 3 and 4 show the 33rd frame

of the Ducks sequence in Full-HD format compressed at

13000Kbps. As we can see, both 3D-LTWand x264 obtain

the best results. MPEG-2 obtain lower performance. Also,

Figure 4 Subjective comparison between a) x264-Intra and c)

x264 for Ducks (Full-HD) at 13000 Kbps, frame # 33. (a) 26.55 dB.

(b) Original. (c) 30.71 dB.
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Figure 5 Coding time in frames per second for all evaluated

encoders.

in Figure 4, we can see the poor performance of x264 Intra

in this frame where disturbing blocking artifacts appear.

Its interesting to see the great behavior of 3D-LTWwhich

is even better than x264, even when no ME/MC is applied

in the proposed encoder.

3.4 Coding/decoding time

In Figure 5, we present the total coding time (exclud-

ing I/O) of all evaluated encoders and for different

sequence resolutions. As it can be seen, MPEG-2 encoder

is the fastest one due to its block-based processing algo-

rithm. Regarding 3D-DWT based encoders, the proposed

encoder 3D-LTW is up to 7 times as fast as 3D-SPIHT and

up to 6 times as fast as x264 encoder.

a

b

Figure 6 Total coding time andWavelet transform time per frame of the 3D-LTW encoder for different video sequence resolutions and

GOP sizes. (a) Total coding time. (b)Wavelet time.
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Also, in Figure 6a we present the total coding time of a

frame for different video sequence resolutions as a func-

tion of the GOP size for the 3D-LTW encoder. As it can

be seen, for low resolution sequences there are near no

differences in the total coding time, but for high resolu-

tion video sequences, the total coding time will increase

up to 40% as the GOP size increases. Furthermore, its

interesting to see that the time required to perform 3D-

DWT stage ranges between 45 and 80% of the total coding

time depending on the GOP size, as seen in Figure 6b. So,

improvements in the 3D-DWT computation will drasti-

cally reduce the total coding time of the proposed encoder.

4 3D-DWT optimizations
As 3D-DWT computation requires more than 45% and up

to 80% of the total coding time in the proposed encoder,

in this section we present several GPU based strategies to

improve the 3D-DWT computation time.

Two different GPUs architectures are used in this study.

The first one is a GTX280 which contains 240 CUDA

cores with 1 GB of dedicated video memory. The other

one is a laptop GPU (GT540M) with 96 CUDA cores

and 2GB of dedicated video memory. We can appreciate

significant differences between both devices that will be

reflected in the results shown in this section.

The algorithm used to compute the 3D-DWT in the

GPUs is illustrated in Figure 7. Before the first computa-

tion step, image data must be transferred from host mem-

ory to the global memory of the device. We must transfer

the number of frames indicated by the GOP size. As we

increase the GOP size, more amount of global memory

is needed in the GPU. All frames are stored in adjacent

memory positions. In this way, the memory requirements

for the GPU is Width × Height × frames × size of (float)

bytes. As showed in Figure 7, in this implementation we

are using two memory spaces in the global memory of

the GPU: one for the input data and other for the output

data after applying the filtering process. In the first step,

each thread computes the row convolution and stores the

result in the output memory. For computing the second

step, the source data is now the output data obtained in

the previous step, so it is not needed a copy of memory

data for preparing this step. So, in the second step, the col-

umn filter is applied and the 2D-DWT is completed for

Figure 7 Steps for Computing 3D-DWT in GPUs.



Galiano et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:24 Page 8 of 13

http://asp.eurasipjournals.com/content/2013/1/24

a

b

Figure 8 GPU computational wavelet transform times per frame over GT540M and GTX280 for different video resolutions. (a) GT540M. (b)

GTX280.

each frame and after that, the output is again in the source

space memory. After that, in the third step, a 1D-DWT

is performed to consider the temporal dimension. At the

last step, data must be transferred to the host memory to

proceed with the next GOP. The first level 3D-DWT is

performed in the output space memory and if we want

compute a second level we must copy data from output

to input space. Then, in the second level only half of the

resolution (LLL subband) must be computed, iterating the

same steps that for the first level.

4.1 Performance evaluation of the GPU 3D-DWT

In this section, we present the performance evaluation

of our GPU-based 3D-DWT algorithm in terms of com-

putational and memory transfer times and the speed-ups

obtained when compared to the CPU sequential algo-

rithm. We present results for both previously mentioned

GTX280 and GT540M platforms.

In Figure 8, we present the computational times for both

GPU platforms used in this study and for two different

video sequence resolutions considering GOP sizes varying

from 16 to 128 and computing four wavelet decompo-

sition levels. As shown in Figure 8, for ITU-D1 video

frame resolution, the GTX280 is 2.3 times as fast as the

GT540M regarding the GPU computational time. This is

mainly due to the greater number of cores available in the

GTX280 (2.5 timesmore cores). Moreover, in Figure 9a we

compare computational times in GPU shown in Figure 8,

versus the times needed to compute the wavelet trans-

form in CPU, shown in Figure 6b), for a GOP size of 32

and we obtain an speed-up around 16.6 in GT540M, and

38 in GTX280. Computational times for Full-HD resolu-

tion over GTX280 are not available due to global memory

constraints.

However, only computational time has been considered

in this analysis. In Figure 10, we show total times including
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a

b

Figure 9 Speed-ups over GT540M and GTX280 for different video resolutions and a GOP size of 32. (a) Using Global memory access. (b)

Using optimized shared memory access.

transfer times between host memory and GPU memory.

We must notice that these times including transfer times

are higher than the ones showed in Figure 8, being 1.3

in GT540M and 3.73 in GTX280. The global computa-

tional time including the memory transfer time is lower

in the GT540M than in the GTX280 due to the signif-

icantly lower memory transfer time, thanks to a second

generation of PCI Express bus which improves data trans-

fers. As shown, data transfer between device memory and

host memory introduce a significant penalty when using

GPUs for general purpose computing. Comparing times

from Figure 10 with the measured times in CPU, note that

we continue obtaining a good speed-up of 12 in GT540M

and over 10 in GTX280 as shown in Figure 9a.

4.2 Memory access optimization

The previously presented algorithm uses the global mem-

ory to store both source and output data in wavelet com-

putation. A reasonable speed-up (13) has been obtained

with high video resolutions. However, we can achieve

better performance if we compute the filtering steps from

the shared memory. A block of the frame (row/column

or temporal array) can be loaded into a shared mem-

ory array with BLOCKSIZE pixels. The number of thread

blocks, NBLOCKS, depends on BLOCKSIZE and video

frame resolution. We must note that around the loaded

video frame block there is an apron of neighbor pixels

that it is also required to load in the shared memory in

order to properly filter the video frame block. We can

reduce the number of idle threads by reducing the total

number of threads per block and also using each thread

to load multiple pixels into shared memory. This ensures

that all threads are active during the computation stage.

Note that the number of threads in a block must be a

multiple of the warp size (32 threads on GTX280 and

GT540M) for optimal efficiency. To achieve better effi-

ciency and higher memory throughput, the GPU attempts

to coalesce accesses from multiple threads into a sin-

gle memory transaction. If all threads within a warp

(32 threads) simultaneously read consecutive words then
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a

b

Figure 10 GPU Computation wavelet transform and transfer times per frame over GT540M and GTX280 for different video resolutions.

(a) GT540M. (b) GTX280.

single large read of the 32 values can be performed at

optimum speed.

In this new approach, each row/column/temporal fil-

tering stage is separated into two sub-stages: (a) the

threads load a block of pixels of one row/column/temporal

array from the global memory into the shared memory,

and (b) each thread computes the filter over the data

stored in the shared memory and stores the results in

the global memory. We must not forget about the cases

when a row or column processing tile becomes clamped

by video frame borders, and initialize clamped shared

memory array indices with correct values. In this case,

threads also must load in shared memory the values of

adjacent pixels in order to compute the pixels located

in borders.

In Figure 11, we evaluate the new algorithm for com-

puting the wavelet transform using the shared memory.

As we can see, both GPUs have reduced considerably the

execution time. As an example, for Full-HD video res-

olution and with a GOP size of 32, we have improved

the computational time up to 1.83x and up to 3.5x

for GT540M and GTX280, respectively, when com-

pared to the previous algorithm that uses the global

memory. Figure 9b compares the times showed in

Figure 11 with times needed to compute the 3D-

DWT in CPU, and it shows an speed-up over 30 in

GT540M and 136 in GTX280. However, transfer times

between host and GPU memory are too high to notice

this improvement in total times over GPU. As shown

in Figure 12, total times increase considerably, being

the computational wavelet time only the 8% of the

total time needed to transfer and compute wavelet.

In Figure 9b, we show the speed-ups of our proposal

taking into account the transfer times. Speed-ups of

19 and 11 were obtained with GT540M and GTX280

GPUs, respectively.
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a

b

Figure 11 GPU computational wavelet transform times per frame over GT540M and GTX280 for different video resolutions using

optimized shared memory access. (a) GT540M. (b) GTX280.

5 Performance evaluation of the proposed
encoder using GPUs

After analyzing the performance of the GPU 3D-DWT

computation, we will present a comparison of the pro-

posed encoder against the other encoders in terms of

coding delay.

In Figure 13, we present the total coding time (exclud-

ing I/O) in frames per second of all evaluated encoders

and for different sequence resolutions for a quality of

30 dB. Now, our proposal uses the GPU to compute the

3D-DWT stage. As it can be seen, 3D-LTW encoder is

the fastest one being up to 3.2 times on average as fast

as the non-GPU version of the proposed encoder, up to

22 times as fast as 3D-SPIHT and up to 19 times as

fast as x264 which is a fully optimized version of H.264.

After the GPU optimization of the 3D wavelet transform

stage, the proposed encoder is able to compress a Full-

HD sequence in real time. Remark, that the optimizations

performed are due only to GPU strategies while other

encoders like x264, H263, MPEG-2, andMPEG-4 are fully

optimized implementations, using CPU capabilities like

Multimedia Extensions (MMX2, SSE2Fast, SSSE3, etc.)

and multithreading.

Although, the GPU version of the 3D-LTW encoder has

been speeded up to 3.2 times, now, the bottleneck in the

global encoder is the coding stage after computing the

3D-DWT transform, specially at low compression rates,

where there are lots of significant coefficients to encode.

Several strategies could be performed in order to speed

up evenmore the proposed encoder, like overlapping both

GPU computation and memory transfer times, overlap-

ping CPU processing times with GPU processing time,

or using several GPUs to compute multiple 3D wavelet

transforms from different GOPs.

6 Conclusions
In this article, we have presented the 3D-LTW video

encoder based on 3D wavelet transform and lower trees
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a

b

Figure 12 GPU computational wavelet transform and transfer times per frame over GT540M and GTX280 for different video resolutions

using optimized shared memory access. (a) GT540M. (b) GTX280.

with eight nodes. We have compared our algorithm

against 3D-SPIHT, H.264, x264, and MPEG-2 encoders in

terms of R/D, coding delay and memory requirements.

Regarding R/D, our proposal has a better behavior than

MPEG-2.When compared to 3D-SPIHT, our proposal has

a similar behavior for sequences with medium and high

movement, but slightly lower performance for sequences

with lowmovement like Container. However, our proposal

requires 6 times less memory than 3D-SPIHT. Both 3D-

DWT based encoders (3D-SPIHT and 3D-LTW) outper-

forms x264 in Intra mode (up to 11 dB) exploiting only the

temporal redundancy among video frames when applying

the 3D-DWT. It is also important to see the behavior of

3D-DWT based encoders when applied to high frame rate

video sequences obtaining even better PSNR than x264 in

Inter mode.

In order to speed up our encoder, we have presented an

exhaustive analysis of GPUmemory strategies to compute

Figure 13 Average coding time in frames per second for all

evaluated encoders after GPU optimization of the proposed

encoder.
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the 3D-DWT transform. As we have seen, the GPU 3D-

DWT algorithm obtains good speed-ups, up to 16 in the

GT540M platform and up to 39 in the GTX280. Using

these optimizations, the proposed encoder (3D-LTW) is a

very fast encoder, specially for Full-HD video resolutions,

being able to compress a Full-HD video sequence in real

time.

The fast coding/decoding process and the avoiding of

the use of motion estimation/motion compensation algo-

rithms, makes the 3D-LTW encoder a good candidate

for applications where the coding/decoding delay are crit-

ical for proper operation or for applications where a

frame must be reconstructed as soon as possible. 3D-

DWT based encoders could be an intermediate solution

between pure Intra encoders and complex Inter encoders.

Although the proposed 3D-LTW encoder has been

developed for natural video sequences where Daubechies

9/7F filter for the 3D-DWT stage has been widely used in

the literature, other bi-orthogonal filters could be applied,

depending on the final application. Even though longer fil-

ters capture better the frequency changes on an image,

differences on R/D for natural images are negligible with

respect to Daubechies 9/7F filter. This effect could be

extended to the temporal domain case. However, longer

filters introduce an increment on the DWT computa-

tion complexity because more operations per pixel must

be performed, making the encoder slower. Obviously, if

a longer filter is used in the DWT stage, the speed-up

will be greater, because more operations per pixel will be

performed in a parallel way.

As future study, we pretend to move other parts of the

coding stage, like the quantization stage to the GPU to

speed up evenmore the encoder. Furthermore, we pretend

to overlap the CPU computation stage with the GPU com-

putation of the 3D-DWT stage. Regarding quantization

step over GPU, our first attempts shows that the 3D-DWT

stage over GPU will be increased a 12% on average while

the coding stage will be reduced a 17% on average, which

makes our encoder even faster.
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