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Abstract

Hyperspace hashing which is often applied to NoSQL data-bases builds indexes by mapping objects with multiple attributes 

to a multidimensional space. It can accelerate processing queries of some secondary attributes in addition to just primary keys. 

In recent years, the rich computing resources of GPU provide opportunities for implementing high-performance HyperSpace 

Hash. In this study, we construct a fully concurrent dynamic hyperspace hash table for GPU. By using atomic operations 

instead of locking, we make our approach highly parallel and lock-free. We propose a special concurrency control strategy 

that ensures wait-free read operations. Our data structure is designed considering GPU specific hardware characteristics. 

We also propose a warp-level pre-combinations data sharing strategy to obtain high parallel acceleration. Experiments on 

an Nvidia RTX2080Ti GPU suggest that GHSH performs about 20-100X faster than its counterpart on CPU. Specifically, 

GHSH performs updates with up to 396 M updates/s and processes search queries with up to 995 M queries/s. Compared to 

other GPU hashes that cannot conduct queries on non-key attributes, GHSH demonstrates comparable building and retrieval 

performance.

Keywords Hyperspace hashing · Merge access · Warp-level pre-combinations data sharing · Atomic operations

1 Introduction

NoSQL databases such as key-value stores are increasingly 

prevalent in big data applications for their high through-

put and efficient lookup on primary keys. However, many 

applications also require queries on non-primary attributes. 

For instance, if a tweet has attributes such as tweet id, user 

id, and text, then it would be useful to be able to return 

all tweets of a user. But supporting secondary indexes in 

NoSQL databases is challenging because secondary index-

ing structures must be maintained during writes , while 

also managing the consistency between secondary indexes 

and data tables, which is a commonly supported feature in 

SQL databases but deficiently supported by NoSQL. For 

instance, if a tweet has attributes such as tweet id, user id, 

and text, then it would be useful to be able to return all 

(or the most recent) tweets of a user. However, support-

ing secondary indexes in NoSQL databases is challeng-

ing, because secondary indexing structures must be main-

tained during writes, while also managing the consistency 

between secondary indexes and data tables. To solve this 

issue, hyperspace hashing is proposed in HyperDex system 

[1] for distributed key-value stores that supports retrieving 

partially-specified secondary attribute searches in addition 

to primary keys. Compared to the method of stand-alone 

secondary indexes (e.g. table-based secondary index in 

Hbase [2]), hyperspace hashing can greatly save storage 

space, which is particularly important for in-memory data-

bases. Compared to the method of embedded secondary 

indexes like KD-tree [3], hyperspace hashing can quickly 

locate the hash bucket where the data is located, without 

judging each layer in order. Hyperspace hashing represents 

each table as an independent multidimensional space, where 

the dimension axis directly corresponds to the attributes of 

the table. An object is mapped to a deterministic coordinate 
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in space by hashing each attribute value of the object to a 

location on the corresponding axis. As shown in Fig. 1, one 

plane represents the plane perpendicular to the axis of the 

query for a single attribute through all points of last name 

= ‘Smith’, and the other plane through all points of first 

name =‘John’. Together, they represent a line formed by the 

intersection of two search criteria, meaning “John Smith”. 

So one can find “John Smith” by looking up the number 

of John Smith in the hash bucket that intersects this line. 

Nuno Diegues et al. [4] explore a performance model and 

propose a method for adaptively selecting the best solutions 

based on changing workloads. But it is also designed for 

the distributed implementation. However, in a centralized 

environment, GPU-accelerated implementation is impera-

tive, since the multicore of CPU cannot meet the demand 

of high data parallelism and high memory bandwidth. As 

a promising solution, GPU can greatly speed up key-value 

storage (and query) operations in memory due to inherent 

hardware features.

HyperDex is a distributed system which can relieve the 

performance issue of hyperspace hashing. But in a cen-

tralized environment, GPU-accelerated implementation is 

imperative. In this paper, we aim to crack the nut of improv-

ing the performance of hyperspace hashing on GPU for 

the first time. First, we perform a comprehensive analysis 

on Hyperspace hash and GPUs, and identify several gaps 

between characteristics of Hyperspace hash and the features 

of GPUs. By using the traditional hyperspace hash struc-

ture (Fig. 2), it is difficult to maximize memory throughput 

on GPU as the number of queried attributes can not be previ-

ously determined. Two concurrently executed queries may 

need to be performed in different hash buckets or need to 

query different attributes. It will lead to branch divergence, 

which will decrease the query performance tremendously 

when processed in the same GPU warp. Moreover, updat-

ing indexable attribute values will cause data relocation, 

which will further increase the complexity of concurrency. 

All these characteristics of HyperSpace hash mismatch the 

features of GPU, which impedes the performance of Hyper-

space hash on GPU.

Based on this observation, we propose a new hyperspace 

hash data structure (GHSH) to make hyperspace hashing 

better adapted to GPU. In GHSH, we use structure-of-

arrays instead of array-of-structures data layouts, in which 

keys, second attributes, and values are stored separately. 

The novel data structure is more suitable for the memory 

hierarchy of GPU and has good cache locality, which can 

avoid access to unrelated second attributes. Furthermore, 

for batch queries, we devise a warp-level pre-combination 

data sharing strategy that uses query classifications to reduce 

branch divergence. To further improve the performance of 

GHSH, we explore two other tailored optimizations, i.e., 

atomic operations instead of locking and a new concurrency 

control strategy.

The experiments performed on an Nvidia RTX2080Ti 

(Turing) GPU suggest that GHSH has advantages in both 

flexibility and performance. Compared with the CPU ver-

sion hyperspace hashing, GHSH outperforms it by 20-100 

times. Compared to other GPU hashes that cannot conduct 

queries on non-key attributes, GHSH demonstrates compa-

rable building and retrieval performance and achieves full 

concurrency. Our contributions are summarized as follows:

• We focus on the GPU-based hyperspace hashing tech-

nique for the first time and propose a novel hyperspace 

hash data structure that is well adaptive with the GPU 

memory hierarchy with the superior locality.

• We propose a warp pre-combination data sharing strategy 

to minimizes divergences, and we also propose a method 

of using atomic operations instead of locking and a tem-

porary repeated read strategy to improve the performance 

of GHSH to achieve lock-free full concurrency.

• Based on the above design, we further describe how 

GHSH handles common operations in a batch update 

scenario, including bulk-build, search by key, search by 

secondary attribute, modify, insert and delete.

2  Background and Related Work

2.1  General-Purpose GPUs

Executing general-purpose programs on heterogeneous 

GPU/CPU architectures is implemented through various 

application programming interfaces (APIs), such as CUDA 

(NVIDIA) [5] and OpenCL [6]. GPUs are massively parallel 

processors with thousands of active threads. The threads in 

a warp are executed in a single instruction multiple thread 

manner, and thus any branch statements that cause threads to 
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Fig. 1  Three-dimensional space hash
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run different instructions are serialized (branch divergence). 

A group of threads (multiple warps) is called a thread block 

and is scheduled to be run on different streaming processors 

(SMs) on the GPU. Maximizing achieved memory band-

width requires accessing consecutive memory indices within 

a warp (coalesced access). NVIDIA GPUs support a set of 

warp-wide instructions (e.g., shuffles and ballots) so that 

all threads within a warp can communicate with each other.

2.2  HyperSpace Hasing

Secondary IndexSeveral NoSQL databases have added sup-

port for secondary indexes. Mohiuddin et al. [7] perform 

a comparative study of secondary indexing techniques in 

NoSQL databases showing that the stand-alone indexes 

have higher maintenance cost in terms of time and space, 

and embedded indexes have slower query time. But hyper-

space hashing devised in HyperDex [1] can better balance 

the maintenance cost and query efficiency as an embedded 

secondary index. Nuno Diegues et al. [4] explore a perfor-

mance model and propose a method for adaptively selecting 

best solutions based on changing workloads. But it is also 

designed for the distributed implementation.

HyperSpace Hasing in HyperDexOne of the main goals 

of HyperDex is to support efficient partial searches by sec-

ondary attributes, mainly by reducing substantially the num-

ber of servers involved in each query. The main idea is to use 

hyperspace hashing, in which the system can deterministi-

cally calculate the smallest set of servers that may contain 

data matching a given query. Consider that the objects to 

be stored have � distinct attributes. A hyperspace in Hyper-

Dex is an Euclidean space with � dimensions, such that each 

dimension i is associated with an attribute A
i
∈ {A1,… , A

�
} . 

Hyperspace hashing maps an object in the hyperspace by 

applying a hashing function to the value of each attribute 

A
i
 of the object. In this way, we obtain a vector of � coordi-

nates that correspond to the point in the hyperspace where 

the object is located. But for this paper, we only study the 

hyperspatial hash index in the centralized form, and we treat 

disjoint regions in the multidimensional space as many cor-

responding hash buckets. Depending on the query criteria, 

the query involves different hash buckets.

A naive hyperspace construction, however, may suf-

fer from a well-known problem with multi-attribute 

data known as “curse of dimensionality [8].” With each 

additional secondary attribute, the hyperspace increases 

in volume exponentially. If constructed in this fashion, 

each server would be responsible for a large volume 

of the resulting hyperspace, which would in turn force 

search operations to contact a large number of servers, 

counteracting the benefits of hyperspace hashing. Hyper-

Dex addresses this problem by partitioning the data into 

smaller, limited size subspaces of fewer dimensions. In 

Fig.  3 we show three possible subspaces with the corre-

sponding regions (distributed to servers) and some points 

representing employees. Considering a query for employ-

ees in Beijing: using the subspace of Fig. 3a it is necessary 

to contact only 1 region, whereas in Fig. 3b it is neces-

sary to contact 3. If the query also specifies an additional 

requirement of salary 5000, only one region is contacted 

in both cases. Furthermore, if we consider a three-dimen-

sional subspace (see Fig. 3c), we need to specify three 

attributes in the query to have an efficient operation that 

contacts only one region. Note that, independently of the 

number of dimensions of a subspace, the strategy adopted 

in HyperDex is to divide each dimension of a subspace 

such that the total number of regions per subspace is close 

to a predefined value R. In our study, we have also real-

ized the subspace mode named adaptive indexing in the 

centralized GPU environment. It can predict query tasks 

based on historical query records, periodically adjust the 

hyperspace hash index automatically, and always maintain 

a high query rate.

2.3  GPU Hash

With the popularity of parallel hardware, significant 

efforts have been made to improve the insert and query 

performance of hash. There are multiple GPU-based static 

hash tables. Alcantara et al. [9] propose Cuckoo hashing 

which has good performance in batch construction and 

retrieval stages. It is adopted in the implementation of 

the CUDA data-parallel primitives library (CUDPP) [10]. 

However, for a large load factor requirements, the batch 

construction is likely to fail. Garcia et al. [11] propose a 

Robin hood-based hashing, focusing on higher load fac-

tors and take advantage of the spatial locality of graph-

ics applications, but the performance of this method is 

impacted. Khorasani et al. [12] propose Stadium Hashing 

(Stash), by extending the Cuckoo hashing for large hash 

tables. The key focus of Stash is to design an out-of-core 

hash table for the case that the data cannot be completely 

accommodated into a single GPU memory. In the research 

of GPU’s fully concurrent and dynamically updateable 

hash table, Misra and Chaudhuri [13] evaluate the accel-

eration of several lock-free data structures transplanted 

from CPU to GPU. However, the implementation is not 

completely dynamic. We can see from the experiments 

that node resource arrays are pre-allocated for future 

insertions (i.e., it must be known at compiling time), and 

cannot be dynamically allocated and released at runtime. 

One main objective of our proposed GHSH is to conquer 

this problem. Recently, Ashkiani et al. [14] propose a 

fully concurrent dynamic lock-free chained hash table on 

GPU named Slab Hash.
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2.4  Other structures on GPU

Cederman et  al. [15] perform experiments on various 

known lock-based and lock-free Queue implementations. 

They find that the parallel optimization of Queues on GPU 

is beneficial to performance improvement. Multi-core GPU 

technology can further improve data parallelism. Maksudul 

Alam et al [16] propose a novel parallel algorithms for fast 

Multi-GPU-Based generation of massive networks. Inspired 

by [13], Moscovici et al. [17] propose a GPU-friendly skip 

list (GFSL) based on fine-grained locks, mainly consider-

ing the preferred coalesced memory accesses of the GPU. 

In addition, Maksudul Alam et al. [18–20] propose a novel 

parallel algorithms for fast Multi-GPU-Based generation of 

massive networks. Brandon Tran et al. [21] present three 

GPU algorithm enhancement strategies (data structure reuse, 

metadata creation with various type alignment and a preal-

located memory pool) for executing queries of bitmap indi-

ces compressed using Word Aligned Hybrid compression. 

Harish Doraiswamy et al. [22] propose a new model that 

represents spatial data as geometric objects and define an 

algebra consisting of GPU-friendly composable operators 

that operate over these objects. These structures and models 

can not directly applied to GPU hyperspace hash.

3  GHSH Structure

In this study, we represent the element N  as 

(key, A1, A2,… , Ap, value) , where key is the primary key, 

A1, A2,… , Ap are indexable secondary attributes with the 

number of p, and value is a location ID or value. We build a 

hyperspace hash to assist the query processing of secondary 

attributes. Here, p secondary attributes require a hyperspace 

hash of p + 1 dimensions.

3.1  Data Structure

We adopt a linked list to handle hash collisions. Due to the 

variability of p, it is difficult for the accesses to be as coa-

lesced as in traditional methods (see Fig. 2). In this paper, 

we propose a new data structure—super node. As shown in 

Fig. 4, a super node contains a key node, p attribute nodes, 

and a value node. Each node in a super node stores corre-

sponding portions of multiple data for data alignment. We 

set pointers for each queryable attribute node and key node 

so that we can quickly traverse between them to find query-

ing targets. For a query task, we search in the hash buckets 

where the target may be stored based on our hash function. 

Each thread traverses the corresponding attribute chain in 

a hash bucket that it is responsible for, and finds the cor-

responding value from the corresponding value node after 

finding the target. The peak memory bandwidth is achieved 

when threads within each SIMD unit (i.e., a warp in GPUs) 

access consecutive memory indices with a certain fixed 

alignment (e.g., on NVIDIA GPUs, each thread fetches a 

32-bit word per memory access, i.e.,128 bytes per warp). To 

maximize memory throughput, the size of each node is set 

as 128 bytes. Thus a warp of 32 threads can access the entire 

contents of a node at once. We assume that each element 

and pointer take a memory space with a size of (p + 2)x and 

y bytes. Therefore, the number of elements stored in each 

super node is M = ⌊
128−y

x
⌋.

We use a universal hash function on each dimension, 

h(k;a, b) = ((ak + b) mod q)mod B, where a, b are random 

arbitrary integers and q is a random prime number. As a result, 

elements are expected to be distributed uniformly among Bp+1 

Fig. 2  Traditional data structure

Fig. 3  Three different configurations and corresponding visualization 
of a search specifying values for all attributes indexed by the sub-
space
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buckets with an average super node count of � = ⌈
n

MBp+1
⌉ 

super nodes per bucket, where n is the total number of ele-

ments in GHSH. When searching a secondary attribute, we 

perform � + F(0 ≤ F ≤ �) memory accesses, where F is the 

number of fetches required to read the values in a bucket. Pro-

cessing queries of keys (recall that keys are unique) can 

achieve slightly better performance, but have similar asymp-

totic behavior. In that case, we perform ⌈
n

Bp+1
∕⌊

128−y

(p+2)x
⌋⌉ mem-

ory accesses with the traditional data structure. It can be 

deduced from Eq. 1 that when n Bp+1
⋅ (p + 1) , our data struc-

ture can reduce the number of memory accesses. In our appli-

cation scenarios, n ≫ Bp+1
⋅ (p + 1) , so the proposed data 

structure is theoretically effective, in that it maximizes the 

throughput.

For open addressing hash tables, the memory utilization is 

equal to the load factor, i.e., the number of stored elements 

divided by the table size. In order to be able to compare our 

memory usage with open-addressing hash tables that do not 

use any pointers, we define the memory utilization to be the 

amount of memory actually used to store the data over the 

total amount of used memory (including pointers and unused 

empty slots), which is shown in Eq. 2. Assume k
i
 denotes the 

number of super nodes for bucket i. The maximum memory 

utilization can reach 
Mx

(Mx+y)
 . Intuitively, this case happens 

when all nodes in GHSH are full. According to Eq. 2, we can 

calculate the memory utilization of GHSH by the number of 

buckets, and set various memory utilization in the experi-

ments in Sect. 5.

(1)�optimized(x, y, p, B, n, F) = ⌈
n∕Bp+1

⌊
128−y

x
⌋
⌉ + F < ⌈

n∕Bp+1

⌊
128−y

(p+2)x
⌋
⌉

3.2  Supported Operations in GHSH

Suppose our GHSH maintains a set of tuples represented 

by S. We allow the secondary attributes to be non-unique, 

but the primary key is unique. We support the following 

operations. More details will be introduced in Sect. 4.1.1.

• Insert (key, A1, A2,… , Ap, value) ∶ S ← S ∪ < key, A1,

A2,… , Ap, value >,which represents inserting a tuple 

into GHSH.

• Search(key, val(key)): Returning < key, A1, A2,… , Ap,

value >∈ S , or ∅ if not found.

• Search(A
i
, val(A

i
)) : Returning all found instances of A

i
 

in the data structure ({<∗, A
i
= val(A

i
), ∗>} ∈ S) , or ∅ 

if not found.(1 ≤ i ≤ p)

• Modify (key, A1, A2,… , Ap, value) ∶ S ← (S − {< key,

∗>}) ∪ {< key, A1, A2,… , Ap, value >} , which represents 

inserting a new tuple and deleting the old one.

• Delete(key) ∶ S ← S − {< key, A1, A2,… , Ap, value >} , 

w h i c h  r e p r e s e n t s  d e l e t i n g  t h e  t u p l e 

< key, A1, A2,… , Ap, value >.

(2)

�(x, y, B, p) =
(p + 2)x

⌊ 128−y

x
⌋(p + 2)x + (p + 2)y

⋅

n

Bp+1∑
i=1

ki

≤

⌊ 128−y

x
⌋(p + 2)x

⌊ 128−y

x
⌋(p + 2)x + (p + 2)y

Fig. 4  Data structure in GHSH
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4  Implementation Details

4.1  Optimizations

4.1.1  Warp Pre-combination Data Sharing Strategy

Assume that the batch size of queries is b and 

there are p + 1 query types. We denote queries as 

Q = {key ∶ val(key), A1 ∶ val(A1),… , Ap ∶ val(Ap)} , where 

val(key) denotes the value of the key and val(A
i
) denotes 

the value of the secondary attribute A
i
 . GPU organizes 

threads in units of warps. Different query paths may incur 

warp divergence (see Fig. 5). A traditional solution is the 

warp-cooperative work sharing (WCWS) strategy [14], 

which forms a work queue of arbitrary requested operations 

from different threads within a warp. All threads within a 

warp cooperate to process these operations one at a time. 

However, a query operation of a hyperspace hash maps 

multiple query paths, which results in a sharp increase in 

the number of query tasks. The serialization of threads in 

a warp in WCWS severely hinders operation efficiency in 

hyperspace hashing. Considering the characteristics of our 

new hyperspace hash data structure, in this paper, we pro-

pose a new approach where threads in a warp read corre-

sponding data of nodes to shared memory. All threads in a 

warp can compare in parallel whether the current node has 

its target. We call this strategy warp pre-combination data 

sharing (WPDS). WPDS is particularly suitable in follow-

ing scenarios: (1) threads are assigned to independent and 

different tasks, which can avoid divergence within a warp; 

(2) each task requires an arbitrarily placed but vectorized 

memory access (accessing consecutive memory units); (3) 

it is possible to process each task in parallel within a warp 

using warp-wide communication (warp friendly). It is worth 

mentioning that WPDS is not suitable for situations where 

the branch divergence in a warp cannot be avoided through 

previous operations.

In our data structure context, query classifications are 

combined to reduce branch divergence. Take a secondary 

attribute query as an example. A query (A
i
, val(A

i
)) may exist 

in Bp buckets. Since the results are not unique, we need to 

traverse all nodes in these hash buckets. For query tasks of 

number b, classification is performed in two steps: classify 

by BucketID (CBB) and pre-combining by query type (PBQ). 

Each bucket i maintains a task queue TQi . In the CBB step, 

each task is parsed into p subtasks and added to the corre-

sponding TQi (see Fig. 6). This can be performed in parallel 

on GPU. The variety of query types in a warp makes mem-

ory divergence (see Fig. 7a), which would greatly impede 

the GPU performance. To eliminate the divergence, in the 

PBQ step, threads in each TQi are grouped in a warp accord-

ing to A
i
 (see Fig. 7b).

The total amount of time required for searching a batch 

of b elements in GHSH (n elements are stored in GHSH) is 

Tb
Search

(n, p) = Tb
CBB

+ Tb
PBQ

+ Tb
Tra

,where Tb

CBB
 is the time 

spent to classify a size b batch by bucketID, Tb

PBQ
 is the time 

spent to pre-combinate a size b batch by query type, and Tb

Tra
 

is the time spent to traversal in buckets. The time complexity 

is O(
n∕Bp+1

⌊(128−y)∕x⌋
) . Recall that the time complexity is O(n∕Bp+1) 

without using WPDS strategy.

4.1.2  Global Memory with CUDA Atomic Operations

The GPU memory structure is divided into three levels: 

global memory that can be accessed by all threads in the 

device, smaller but faster shared memory per thread block, 

and local registers for each thread in the thread block. 

Although GHSH allows the entire thread of the warp to 

Fig. 5  Query divergence
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cooperatively handle the same operation task, the opera-

tion between different thread blocks is still independent 

and completely concurrent. The shared memory is small 

and partitioned, so threads in different blocks cannot 

access the shared memory of other blocks. The GPU’s 

global memory capacity is large and can be accessed by 

all threads. Since millions of threads can execute GPU 

kernel functions simultaneously, but only a limited number 

of SMs exist, thread blocks need to be queued for SMs. 

Therefore, there is no way to synchronize all threads 

globally except when the kernel function ends. In order 

to achieve full concurrency between warps, GHSH uses 

global memory to ensure the sharing of all data states 

by each thread. GHSH controls concurrency optimisti-

cally. Common lock-free algorithms are generally based 

on atomic operations. For multiple atomic operations in 

GHSH, we set a lock tag on data items, and use atomic 

operations to change the lock tag to make the locking of 

data items atomic.

4.1.3  Temporary Repeated Read Strategy

The existing method employs reader-writer locks to allow 

concurrent read to hash table, which may cause conflicts to 

increase latency. In order to make GHSH free of structural 

locks, we design a “temporary repeated read” strategy. We 

split the bucket change operation and specifies a strict order. 

We first put new data into a new hash bucket, and then delete 

the data in the old bucket. This ensures all existing data will 

be read. Although it will cause a short-term duplication, it 

guarantees the valid values stored in the table can be read. 

If the query result for a key returns two values, either can 

be used. The “temporary repeated read” strategy guarantees 

the no-wait feature of reading operations, which can greatly 

improve the efficiency of reading operations in a concurrent 

situation. For read-intensive applications or applications 

with far more read operations than write operations. Improv-

ing read operation efficiency is very meaningful to improve 

overall operational efficiency.

Fig. 6  Classify by BucketID

Fig. 7  An example of memory access pattern for queries
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4.2  Operation Details

We use WPDS for bulk query and deletion concurrency. But 

we still use WCWS [14] for full concurrency of all opera-

tions of different types. Because branch divergence here is 

caused not only by query path divergence but also by differ-

ent instruction types. In WCWS, each thread has its assign-

ment, that is, update (insertion, modification, or deletion) 

or query (by key or by secondary attributes). We design the 

node size as 128 B, so that when a warp accesses a node 

each thread has exactly 1/32 of the node’s content. We use 

the term “lane” to denote the portion of a node that is read 

by the corresponding warp’s thread, and we denote lane 31 

as ADDRESS_LANE. We assume that the key and the sec-

ondary attributes each take 4 bytes, and the value takes 4 

bytes. For a node, we also need a 4-byte space to store a 

pointer. The remaining 124 bytes can be used to store a total 

number of 31 of keys or secondary attributes. Obviously, the 

spatial complexity of these operations is O(n).

4.2.1  Insertion

Bulk-Build. The batch building operation constructs a hyper-

space hash directly from the batch input of tuples. We first 

sort tuples by bucketID to ensure that data from a warp is 

most likely to be inserted into the same hash bucket. The first 

31 threads in a warp are responsible for writing the corre-

sponding part of the data, and the 32nd thread is responsible 

for putting the node into the linked list of the corresponding 

bucket. We assign a lock tag for each bucket. Only when a 

thread modifies the lock tag through atomic operations can 

it chain its data block into the bucket by header interpola-

tion. The different tasks of the last thread will cause divi-

sions, which is inevitable because the link operation must 

be executed after applying for memory. The first 31 threads 

can be parallelized, which is faster than the 32 thread tasks 

serialized in Slab hash. 

Incremental Insertion. As shown in Alg. 1, any thread 

that has an inserting operation to perform will set is_active 

to true. Following WCWS introduced earlier, all threads read 

the corresponding part of the target super node, and search 

for the empty point in the key node of the super node. If 

found, the thread uses an atomicCAS operation to insert its 

key, secondary attributes and value address into the cor-

responding node of the super node (Line 6). If the insertion 

succeeds, the thread marks its operation as resolved. If fails, 

it means that some other warps have been inserted into that 

blank spot. Then the whole process should be restarted. If 

no empty point is found, all threads will obtain the address 

of the next super node from the ADDRESS_LANE. If the 

address is not empty, we should read a new super node 

and repeat the insertion process. Otherwise, a new super 

node should be allocated. Then, the source thread uses 

atomicCAS to update the pointer of the previous super 

node. If atomicCAS succeeds, the entire insertion pro-

cess is repeated using the newly allocated super node. If 

not, it means that another warp has allocated and inserted a 

new super node. Then the super node allocated by this warp 

should be reassigned and the process should be restarted 

with the new super node.

4.2.2  Search and Deletion

We describe how queries are processed using hyperspace 

hashing. We define a search query Q as the set of attributes 

that the query accesses (and respective values). In the gen-

eral case, to execute a query it is necessary to obtain the 

information of the buckets(regions) where the data is located 

according to the subspace. For instance, in the example of 

Fig.  1b, a search Q =< city = Beijing, salary = 5000 > 

results in contacting only one bucket(region), but in a query 

for Q =< city = Beijing > in the subspace < city, salary > 

all three regions are contacted. In order to obtain the best 

throughput possible, HyperDex always executes a query on 

the subspace S
i
∈ S which yields the minimum number of 

regions. Note that HyperDex maintains a full copy of each 

object in each configured subspace.

Search by Key.Algorithm. 2 shows the pseudocode of 

searching in GHSH. We use WPDS to reduce query diver-

gence with high concurrency. During the query process, 

we first parse the query tasks and distribute the results to 

the queue to be queried for the corresponding hash bucket 

(Line 1). Query tasks with the same query attributes are 

aggregated (Line 3), and organized into warps, and query 

paths are shared to avoid warp divergence. Each thread in a 

warp determines the part of the data it should read according 

to the laneID it carries. Although the reading positions are 

different, each thread needs to make a conditional judgment 

on the data in the node, and thus it uses shuffle instruc-

tion. The address read by the first thread is distributed to 

other threads (Lines 5-6). When GHSH performs a search 

operation, it reads the corresponding position of the linked 

list node. When checking whether there is data equal to the 

target key, the ballots and ffs instructions are used to 

make a parallel judgment on the data held by all threads in 

the warp (Line 7). If the target is found, we read the cor-

responding value into myValue and mark the corresponding 

task as resolved (Lines 8-12). Otherwise,each thread reads 

the pointer marked by ADDRESS_LANE and finds the next 

key node until the pointer is empty (Lines 14-19).

Search by Secondary Attribute.The secondary attribute 

query is similar to the key query, except that since the sec-

ond attribute is not unique, a query may correspond to mul-

tiple values. Therefore, we need to traversal all the super 

nodes stored in a bucket. In our data structure, attributes are 

stored separately, and Each attribute node stores a pointer 
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to the next super node. Therefore, without accessing other 

attribute nodes, we can just query a linked list of the query 

attribute.

Deletion.Deletion is similar to search. If valid (match-

ing found), we use DELETE_DKEY  to overwrite the corre-

sponding element. If not found, the next pointer is updated. 

If the end of the list is reached, the target does not exist and 

the operation terminates successfully. Otherwise, we load 

the key node of the next super node and restart the process. 

In particular, if the data being modified is found, there may 

be two values returned, and both are deleted.

4.2.3  Modification

In GHSH, the modification is divided into two types. One is 

to change the non-queryable attribute value, and the other is 

to change the secondary attribute value. The former is rela-

tively simple, whose operation process is similar to a query, 

except that when the key value is found, the corresponding 

value is modified by using an atomic operation. The latter 

is more complicated. According to the updated value, the 

modified data may be or not be in the same hash bucket. If 

it involves a bucket change operation, we use the temporary 

repeated read strategy introduced earlier. Specifically, the 

data in the original bucket needs to be deleted, and the new 

value needs to be inserted into a new hash bucket. These two 

operations should be performed in an atomic fashion. Other-

wise, data errors will occur. So we design a lock tag on the 

data item, namely swap_lock , and modify it through atomic 

operations to ensure that data is not modified by other tasks 

while it is being modified. As shown in Alg. 3, for a modi-

fication (key, A1, A2,… , Ap, value) , we first search for key 

(lines 6), and if not found, it returns invalid task (line 23). If 

found without swap_lock , we mark swap_lock before insert-

ing the new value with swap_lock (lines 5-8). Afterward, 

we delete the found data and erase the lock tag (lines 9-21). 

Otherwise, we need to wait until key’s lock tag is erased.

5  Adaptive Indexing

In the high-dimensional Euclidean space constructed by the 

hyperspace hash index, our query needs to find some related 

buckets in parallel, and the number of these related buckets 

is closely related to our hyperspace dimension. However, 

for the case with many searchable attributes, the hyperspace 

may be very large because its capacity increases exponen-

tially with the number of dimensions. Even for large data 

center designs, covering a large space with a large number 

of hash buckets is not feasible. For example, a table with 9 

secondary attributes may require B 9 (B is the number of hash 

buckets per dimension) Buckets. Due to the limited GPU 

computing resources, this shortcoming greatly affects the 

search efficiency. In view of the above problems, inspired by 

the data partition strategy in Hyperdex [1], this paper pro-

poses an adaptive indexing strategy. We group the attributes 

to be queried to build a hyperspace hash. That is, the origi-

nal large hyperspace is divided into several low-dimensional 

spaces for simultaneous maintenance. The attribute division 

is shown in Fig. 8a. But how to store the divided search 

space hash has become our new problem. One method is to 

store only a part of the attributes of each hyperspace hash, 

although this method can minimize the storage space of each 

hyperspace hash because the attributes are not stored across 

space, which will lead to expensive search costs because 

Constructing data requires collaboration across hyperspaces. 

Instead, another design choice is to store the full value 

address of each key-value in each hyperspatial hash index, 

which will lead to faster search speeds. Because we store the 

value address, the basic operation of the super hash is based 

on the in-place update of the cuda atomic operation, so it 

does not involve data consistency issues.

Basic hyperspace hashing does not distinguish the key 

of data from its minor parts. This leads to two important 

issues when dealing with actual key-value stores. First, a 

key lookup is equivalent to a single property search. A single 

attribute search in a multidimensional space requires query-

ing multiple hash buckets. In this hypothetical scenario, the 

cost of a key operation would be strictly higher than that of 

a traditional key-value store. HyperDex provides efficient 

key-based operations that use one-dimensional subspaces 

for keys. Inspired by this, when we create a hyperspatial 

hash index in groups, we create a one-dimensional index 

of the keys separately, and this one-dimensional index will 

not change with the change of the data, because the keys are 

immutable.

When building in batches, considering the application 

scenario of the application, we can build a hyperspace hash 

index of the key and some auxiliary indexes, as shown in 

Fig. 8b. Considering the search locality of the application, 

our index can be adaptively adjusted based on historical que-

ries. Eradicate historical query records, calculate the attrib-

ute sets with more queries, combine attributes with high 

query attributes, and reconstruct the remaining hyperspatial 

hash indexes based on the one-dimensional hash index of 

the key.

6  Evaluation

We use an Nvidia RTX2080Ti (Turing) GPU for all experi-

ments on an 8-core server (Intel Xeon CPU Silver 4110 @ 

2.1 GHz, 64 G host memory). It has 68 SMs and an 11 GB 

GDDR6 memory with a peak bandwidth of 616  GB/s. 

The size of the share memory on each SM is 64 KB. All 

results are harmonic averages of rate or throughput. Our 
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implementation is compiled by CUDA 10 on Ubuntu 16.04 

using O3 optimization option. Because the existing GPU-

based index studies 4-byte keys and values for benchmark-

ing and large batches for scalability tests [3, 14], we follow 

the convention and employ similar simulation patterns and 

parameter settings. We use a simple universal hash func-

tion such as h(k;a, b) = ((ak + b) mod p) mod B , where a, 

b are random arbitrary integers and p is a random prime 

number. As a result, on average, keys are distributed uni-

formly among all buckets. Our experiment additionally sets 

two secondary attributes. As a result, GHSH can achieve a 

maximum memory utilization of 97% . For static hash tables, 

there are two main operations: (1) building the data struc-

ture given a fixed load factor (i.e., memory utilization) and 

an input array of tuples, and (2) searching for an array of 

queries and returning values. By providing GHSH with the 

same set of inputs (each thread reads a key-value pair and 

dynamically inserts it into the data structure), we can com-

pare GHSH with other static methods.

6.1  Memory Utilization

In order to study the impact of memory utilization, we com-

pared GHSH with CUDPP (the most representative static 

hash) and Slab Hash (the most advanced dynamic hash). 

For static hash tables, such as CUDPP’s cuckoo hash, there 

are two main operations: (1) batch construction stage, given 

a fixed load factor (which can be simply expressed in terms 

of pre-designed memory usage) and one An input array of 

key-value pairs is used to construct the entire data structure 

by batch insertion operations. If the insertion failure occurs 

during the construction phase, it needs to be reconstructed 

from scratch. (2) In the retrieval phase, after the end of the 

batch construction phase, the key array is used as the input, 

and the batch search operation is performed in the data struc-

ture, and the corresponding value returned is stored in the 

output array. By providing GHSH with the same set of inputs 

(each thread reads a key-value pair and dynamically inserts it 

into the data structure), we can build a hash table. Similarly, 

after building the hash table, each thread can read a query 

from the input array, search it dynamically in GHSH, and 

then store the search results in the output array. By doing 

this, we can compare GHSH with other static methods. Slab 

hash does the same.

For CUDPP, we can easily obtain a predetermined 

memory utilization, which is equal to the load factor, i.e., 

the number of stored elements divided by the table size. 

In contrast, we define the memory utilization of dynamic 

hash as the total amount of memory actually used to store 

data divided by the total amount of memory used. For Slab 

Fig. 8  Adaptive Indexing
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hash [14], If each element and pointer take x and y bytes of 

memory respectively, then each slab requires Mx + y bytes. 

As a result, the memory utilization of the Slab hash can be 

calculated according to Eq. 3, where k
i
 denotes the number 

of slabs for bucket i. Also, we give the definition and calcu-

lation of GHSH memory utilization in the previous Sect. 3.1.

Figures 9 and 10 respectively shows the building rate and 

query rate of several hash methods for various memory uti-

lization. n = 2
22 elements are stored in the table. At about 

60% memory utilization there is a sudden drop in perfor-

mance for both bulk building and searching operations. Our 

experimental scenarios below using uniform distributions 

as input data set with 60% memory utilization based on this 

result and existing work [14]. In the concurrent benchmark, 

we set the initial memory utilization to 50% because of the 

insertions in concurrent workload.

6.2  Baseline: CPU Hyperspace Hash

We compare the speed of GHSH with its counterpart on 

CPU. Since there is no existing open-sourced concurrent 

CPU hyperspace hashing in the centralized environment , 

we implemented one based on openMP [23]. Experimental 

results show that the building performs best with 8 threads 

and the searching for secondary attributes performs best 

with 12 threads on CPU. Thus, we use these settings as 

benchmarks to compare with GHSH. To evaluate bulk build-

ing and searching operations for HyperSpace hash on CPU 

and GPU, we evaluate multiple data structure sizes incre-

mentally. We choose an initial number of buckets so that its 

final memory utilization is 60% . The means of all operation 

rates for a given batch size of b is reported in Table 1. The 

mean of bulk building rates on GPU is 20.24 M elements/s, 

(3)
�_Slab(x, y, B, M) =

x

Mx + y
⋅

n

B−1
∑

i=0

ki

≤
Mx

Mx + y

which is 20x of CPU. The mean of searching rates on GPU 

is 28.17 M elements/s, which is 100x of CPU.

6.3  Impact of Different Design Choices

We evaluated the basic query operation with WCWS, 

CBB, and WPDS (CBB+PBQ). The results are shown 

in Fig. 15. We find that search efficiency can be greatly 

enhanced with CBB, but CBB is more time consuming as 

a preprocessing. Only with PBQ can a better optimization 

Table 1  Rates(M operation/s)for different bath-sized put and get on 
GPU and CPU

Bath size GPU (put) CPU (put) GPU (get) CPU (get)

210 6.81 1.02 9.72 0.30

211 14 1.23 17 0.27

212 26 1.23 40 0.23

213 47 1.17 69 0.25

214 86 1.05 146 0.27

215 151 0.9 211 0.28

Mean 20.24 1.09 28.17 0.26
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effect be achieved, which accelerates 1.25x on average. 

It is worth mentioning that branch divergence in a warp 

cannot be avoided, if directly perform PBQ without CBB 

and hence threads in a warp cannot be parallelized.

Figure 11 shows the effectiveness of our novel data 

structure and three techniques. Assume that all modi-

fications need bucket changing. We find that GHSH 

data structure can achieve performance improvement by 

3.92X. Based on our data structure, after replacing the 

locking with global memory and atomic operation, the 

bucket changing rate of GHSH increases significantly, by 

27% on average. This is because atomic operations greatly 

reduce the locking cost. Adding the temporary repeat read 

strategy to the lock-free version, the two techniques can 

improve the modification rate by 34% . However, with the 

increase in the number of elements, the acceleration effect 

is not obvious due to the limitation of the SM’s number.

6.4  Baseline: Operations of GPU Hash for Keys

We compared GHSH with CUDPP (the most repre-

sentative static hash) and Slab Hash (the most advanced 

dynamic hash). This experimental benchmark takes 

throughput (total number of operations/execution time) as 

an index to measure the performance of the data structure. 

The fixed memory utilization is 0.65. The hash function 

of each data structure also remains the same. The total 

number of operations is taken as the abscissa. The number 

of threads in the GPU data structure is equal to the total 

number of operations. After determining the number of 

threads in the GPU data structure, you need to determine 

the number of threads per thread block (number of thread 

blocks = total number of threads/number of threads per 

thread block)

6.4.1  Bulk-Build

For many data structures, the performance cost of support-

ing incremental mutable operations is very high: static data 

structures often provide better batch builds and query rates 

than similar data structures that support incremental mutable 

operations. However, we will see that the performance cost 

of supporting these additional operations in GHSH is mod-

est. Figure 12 shows the building rate (M elements/s) versus 

the total number of elements (n) in table. We can see that 

when the table size is very small, CUDPP’s building perfor-

mance is particularly high, since most atomic operations can 

be done at cache level. Static data structures often sustain 

considerably better bulk-building and querying rates when 

compared to structures that additionally support incremental 

mutable operations. However, the cost of these additional 

operations in GHSH is modest. Slab hash and GHSH will 

make GPU resources reach 220 ≤ n ≤ 2
24 . The build rate of 

GHSH is up to 1.32x that as those on Slab hash, since the 

basic nodes of GHSH store almost twice the data of Slab 

hash. Besides, data allocation in GHSH can be performed 

in parallel, which improves data parallelism.

6.4.2  Search Query

For key search queries, we generate two sets of random que-

ries: (1) all queries exist in GHSH; (2) none of the queries 

exist. The two scenarios are important as they represent the 

best and worst case. The harmonic averages are 838 M/s 

and 732 M/s for search-all and search-null (see Fig. 13). 

The speedups of CUDPP over the GHSH are 1.27x, 1.16x, 

and 0.86x for bulk building, search-all, and search-none, 

respectively. The speedups of Slab hash over the GHSH 

are 0.84x, 1.01x, and 1.02x for bulk building, search-all, 

and search-none, respectively. GHSH’s key query speed is 

slightly lower than Slab hash, which is the cost of support-

ing non-key queries. It is necessary for secondary attribute 
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queries to traverse the complete linked list, which is equiva-

lent to the worst case of key queries.

6.4.3  Incremental Insertion

Suppose we periodically add a new batch of elements to a 

hash table. For CUDPP, this means building from scratch 

every time. For the Slab hash and GHSH, this means dynam-

ically inserting new elements into the same data structure. 

Figure  14 shows both methods in inserting new batches of 

different sizes (32 k, 64 k, and 128 k) until there are 2 million 

elements stored in the hash table. For CUDPP, we use a fixed 

60% load factor. For the Slab hash and GHSH, we choose 

the initial number of buckets so that its final memory utili-

zation (after inserting all batches) is 60% . As expected, the 

GHSH significantly outperforms cuckoo hashing by reaching 

the final speedup of 18.3x, 27.3x, and 32.5x for batches of 

size 128k, 64k, and 32k. As the number of inserted batches 

increases (as with smaller batches), the performance gap 

increases. In contrast, the performance improvement effect 

of GHSH for Slab Hash is not as obvious as for CUDPP. For 

batch processing of 128k, 64k, and 32k, the final speedup of 

GHSH is 2.8x, 2.4x, and 1.8x, respectively, which is better 

than the Slab hash.

6.5  Concurrency Performance of GHSH

Benchmark setup A significant feature of GHSH is that it 

can perform true concurrent query and update operations 

without dividing different operations into different calcu-

lation stages. To evaluate the concurrency characteristics, 

we designed the following benchmarks. Suppose we build 

a hash table with an initial number of elements. We then 

proceed to perform operations in one of the following four 

categories: (a) inserting a new element, (b) deleting a previ-

ously inserted element, (c) searching for an existing element 

by secondary attribute, (d) modifying a element to a new 

bucket. We define an operation distribution Γ = (a, b, c, d) , 

such that every item is nonnegative and a + b + c + d = 1 . 

Given any Γ , we can construct a random workload where, for 

instance, a denotes the fraction of new insertions compared 

to all other operations. Operations are run in parallel and 

randomly assigned to each thread (one operation per thread) 

such that all four operations may occur within a single warp. 

We consider three scenarios as shown in Table 2. In order to 

evaluate the value range of keys and secondary attributes, 

four different integer ranges, [0,100], [1,1000], [0,10000], 

and [0,100000], are designed for each operation combina-

tion. The total number of operations is fixed at 100,000. The 

operation sequence for each test is pre-generated based on 

the mix ratio and total number, and the operation keys are 

randomly generated from the range of keys being evaluated. 

The number of threads on the GPU is determined based on 

the total number of operations per test.

SemanticsWe support concurrent operations, which 

guarantees that the results of the batch operation include all 

pre-existing keys in the hash table, as long as they are not 

updated in the batch. However, the result of the operation 

on the updated keys in the batch will depend on the hard-

ware scheduling of the block and the switch between warps. 

For example, a batch process might include inserts, deletes, 

and queries on keys already stored in the data structure. All 

three operations will complete, but the order in which they 

complete is undefined. Many applications may choose to 
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Table 2  Three scenarios of concurrent benchmarks

Name Workload Operation distribution

A 100%updates,0%searches Γ
0
 = (0.4, 0.4, 0, 0.2)

B 50%updates,50%searches Γ
1
 = (0.2, 0.2, 0.5, 0.1)

C 30%updates,70%searches Γ
2
 = (0.1, 0.1, 0.7, 0.1)
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solve this problem in a phased operation, where changes to 

the data structure (insert, delete) and the query of the data 

structure belong to different batches. However, strict serial 

semantics are not compatible with the implementation of 

hyperspace hashing.

Result Fig. 16 shows performance of GHSH for three sce-

narios and different key ranges. Since updates are computa-

tionally more expensive than searches, given a fixed memory 

utilization, performance becomes better with fewer updates 

( Γ
0
< Γ

1
< Γ

2
 ). From the experimental results, we can see 

that the key range does not have much impact on perfor-

mance. Comparing against bulk benchmark in Fig. 16, it is 

clear that GHSH performs slightly worse in our concurrent 

benchmark (e.g., Γ
0
 in Figs. 12 and  16). There are two main 

reasons: (1) We assign multiple operations per thread and 

hide potential memory-related latencies, as it is assumed that 

in static situations all operations are available, and (2) we 

run four different procedures (one for each operation type) 

in concurrent benchmarks, but the bulk benchmark runs 

just one. As discussed in Sect. 2, the Slab hash is currently 

the most representative fully concurrent dynamic lock-free 

chained hash table on GPU. However, the slab hash does 

not support queries for secondary attributes, and the update 

operations involved are all updated in-situ, without data relo-

cation to maintain the index. Therefore, the Slab hash is not 

suitable for the concurrency scenarios we design.

7  Conclusion

Through a comprehensive analysis of the characteristics of 

hyperspace hashing and the features of GPU, we identify 

some gaps between hyperspace hashing and GPU, such as 

the gap in memory access requirement, memory divergence, 

and query divergence. Based on the analysis, we propose 

a novel hyperspace hash data structure, where the query 

attributes are stored separately. Hence, GHSH can make full 

use of the GPU memory hierarchy to reduce the number of 

high-latency memory accesses via cache access on GPU. We 

also propose three optimizations in GHSH to alleviate the 

different divergences on GPU to improve resource utiliza-

tion: warp pre-combination data sharing strategy, a method 

of using atomic operations instead of locking and temporary 

repeated read strategy. Experimental results suggest that our 

dynamic hyperspace hash table for GPU can gain advantages 

in both flexibility and performance.
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