
Vol.:(0123456789)1 3

Data Science and Engineering (2021) 6:265–279

https://doi.org/10.1007/s41019-021-00161-5

GPU-Based Dynamic Hyperspace Hash with Full Concurrency

Zhuo Ren1 · Yu Gu1 · Chuanwen Li1 · FangFang Li1 · Ge Yu1

Received: 19 January 2021 / Revised: 16 March 2021 / Accepted: 18 April 2021 / Published online: 17 June 2021

© The Author(s) 2021

Abstract

Hyperspace hashing which is often applied to NoSQL data-bases builds indexes by mapping objects with multiple attributes

to a multidimensional space. It can accelerate processing queries of some secondary attributes in addition to just primary keys.

In recent years, the rich computing resources of GPU provide opportunities for implementing high-performance HyperSpace

Hash. In this study, we construct a fully concurrent dynamic hyperspace hash table for GPU. By using atomic operations

instead of locking, we make our approach highly parallel and lock-free. We propose a special concurrency control strategy

that ensures wait-free read operations. Our data structure is designed considering GPU specific hardware characteristics.

We also propose a warp-level pre-combinations data sharing strategy to obtain high parallel acceleration. Experiments on

an Nvidia RTX2080Ti GPU suggest that GHSH performs about 20-100X faster than its counterpart on CPU. Specifically,

GHSH performs updates with up to 396 M updates/s and processes search queries with up to 995 M queries/s. Compared to

other GPU hashes that cannot conduct queries on non-key attributes, GHSH demonstrates comparable building and retrieval

performance.

Keywords Hyperspace hashing · Merge access · Warp-level pre-combinations data sharing · Atomic operations

1 Introduction

NoSQL databases such as key-value stores are increasingly

prevalent in big data applications for their high through-

put and efficient lookup on primary keys. However, many

applications also require queries on non-primary attributes.

For instance, if a tweet has attributes such as tweet id, user

id, and text, then it would be useful to be able to return

all tweets of a user. But supporting secondary indexes in

NoSQL databases is challenging because secondary index-

ing structures must be maintained during writes , while

also managing the consistency between secondary indexes

and data tables, which is a commonly supported feature in

SQL databases but deficiently supported by NoSQL. For

instance, if a tweet has attributes such as tweet id, user id,

and text, then it would be useful to be able to return all

(or the most recent) tweets of a user. However, support-

ing secondary indexes in NoSQL databases is challeng-

ing, because secondary indexing structures must be main-

tained during writes, while also managing the consistency

between secondary indexes and data tables. To solve this

issue, hyperspace hashing is proposed in HyperDex system

[1] for distributed key-value stores that supports retrieving

partially-specified secondary attribute searches in addition

to primary keys. Compared to the method of stand-alone

secondary indexes (e.g. table-based secondary index in

Hbase [2]), hyperspace hashing can greatly save storage

space, which is particularly important for in-memory data-

bases. Compared to the method of embedded secondary

indexes like KD-tree [3], hyperspace hashing can quickly

locate the hash bucket where the data is located, without

judging each layer in order. Hyperspace hashing represents

each table as an independent multidimensional space, where

the dimension axis directly corresponds to the attributes of

the table. An object is mapped to a deterministic coordinate

 * Zhuo Ren
 1801807@stu.neu.edu.cn

 Yu Gu
 guyu@mail.neu.edu.cn

 Chuanwen Li
 lichuanwen@mail.neu.edu.cn

 FangFang Li
 lifangfasng@mail.neu.edu.cn

 Ge Yu
 yuge@mail.neu.edu.cn

1 School of Computer Science and Engineering, Northeastern
University, Shenyang 110819, Liaoning, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-021-00161-5&domain=pdf

266 Z. Ren et al.

1 3

in space by hashing each attribute value of the object to a

location on the corresponding axis. As shown in Fig. 1, one

plane represents the plane perpendicular to the axis of the

query for a single attribute through all points of last name

= ‘Smith’, and the other plane through all points of first

name =‘John’. Together, they represent a line formed by the

intersection of two search criteria, meaning “John Smith”.

So one can find “John Smith” by looking up the number

of John Smith in the hash bucket that intersects this line.

Nuno Diegues et al. [4] explore a performance model and

propose a method for adaptively selecting the best solutions

based on changing workloads. But it is also designed for

the distributed implementation. However, in a centralized

environment, GPU-accelerated implementation is impera-

tive, since the multicore of CPU cannot meet the demand

of high data parallelism and high memory bandwidth. As

a promising solution, GPU can greatly speed up key-value

storage (and query) operations in memory due to inherent

hardware features.

HyperDex is a distributed system which can relieve the

performance issue of hyperspace hashing. But in a cen-

tralized environment, GPU-accelerated implementation is

imperative. In this paper, we aim to crack the nut of improv-

ing the performance of hyperspace hashing on GPU for

the first time. First, we perform a comprehensive analysis

on Hyperspace hash and GPUs, and identify several gaps

between characteristics of Hyperspace hash and the features

of GPUs. By using the traditional hyperspace hash struc-

ture (Fig. 2), it is difficult to maximize memory throughput

on GPU as the number of queried attributes can not be previ-

ously determined. Two concurrently executed queries may

need to be performed in different hash buckets or need to

query different attributes. It will lead to branch divergence,

which will decrease the query performance tremendously

when processed in the same GPU warp. Moreover, updat-

ing indexable attribute values will cause data relocation,

which will further increase the complexity of concurrency.

All these characteristics of HyperSpace hash mismatch the

features of GPU, which impedes the performance of Hyper-

space hash on GPU.

Based on this observation, we propose a new hyperspace

hash data structure (GHSH) to make hyperspace hashing

better adapted to GPU. In GHSH, we use structure-of-

arrays instead of array-of-structures data layouts, in which

keys, second attributes, and values are stored separately.

The novel data structure is more suitable for the memory

hierarchy of GPU and has good cache locality, which can

avoid access to unrelated second attributes. Furthermore,

for batch queries, we devise a warp-level pre-combination

data sharing strategy that uses query classifications to reduce

branch divergence. To further improve the performance of

GHSH, we explore two other tailored optimizations, i.e.,

atomic operations instead of locking and a new concurrency

control strategy.

The experiments performed on an Nvidia RTX2080Ti

(Turing) GPU suggest that GHSH has advantages in both

flexibility and performance. Compared with the CPU ver-

sion hyperspace hashing, GHSH outperforms it by 20-100

times. Compared to other GPU hashes that cannot conduct

queries on non-key attributes, GHSH demonstrates compa-

rable building and retrieval performance and achieves full

concurrency. Our contributions are summarized as follows:

• We focus on the GPU-based hyperspace hashing tech-

nique for the first time and propose a novel hyperspace

hash data structure that is well adaptive with the GPU

memory hierarchy with the superior locality.

• We propose a warp pre-combination data sharing strategy

to minimizes divergences, and we also propose a method

of using atomic operations instead of locking and a tem-

porary repeated read strategy to improve the performance

of GHSH to achieve lock-free full concurrency.

• Based on the above design, we further describe how

GHSH handles common operations in a batch update

scenario, including bulk-build, search by key, search by

secondary attribute, modify, insert and delete.

2 Background and Related Work

2.1 General-Purpose GPUs

Executing general-purpose programs on heterogeneous

GPU/CPU architectures is implemented through various

application programming interfaces (APIs), such as CUDA

(NVIDIA) [5] and OpenCL [6]. GPUs are massively parallel

processors with thousands of active threads. The threads in

a warp are executed in a single instruction multiple thread

manner, and thus any branch statements that cause threads to

Last Name

First Name

Phone Number

John

John Smith

Smith

Fig. 1 Three-dimensional space hash

267GPU-Based Dynamic Hyperspace Hash with Full Concurrency

1 3

run different instructions are serialized (branch divergence).

A group of threads (multiple warps) is called a thread block

and is scheduled to be run on different streaming processors

(SMs) on the GPU. Maximizing achieved memory band-

width requires accessing consecutive memory indices within

a warp (coalesced access). NVIDIA GPUs support a set of

warp-wide instructions (e.g., shuffles and ballots) so that

all threads within a warp can communicate with each other.

2.2 HyperSpace Hasing

Secondary IndexSeveral NoSQL databases have added sup-

port for secondary indexes. Mohiuddin et al. [7] perform

a comparative study of secondary indexing techniques in

NoSQL databases showing that the stand-alone indexes

have higher maintenance cost in terms of time and space,

and embedded indexes have slower query time. But hyper-

space hashing devised in HyperDex [1] can better balance

the maintenance cost and query efficiency as an embedded

secondary index. Nuno Diegues et al. [4] explore a perfor-

mance model and propose a method for adaptively selecting

best solutions based on changing workloads. But it is also

designed for the distributed implementation.

HyperSpace Hasing in HyperDexOne of the main goals

of HyperDex is to support efficient partial searches by sec-

ondary attributes, mainly by reducing substantially the num-

ber of servers involved in each query. The main idea is to use

hyperspace hashing, in which the system can deterministi-

cally calculate the smallest set of servers that may contain

data matching a given query. Consider that the objects to

be stored have � distinct attributes. A hyperspace in Hyper-

Dex is an Euclidean space with � dimensions, such that each

dimension i is associated with an attribute A
i
∈ {A1,… , A

�
} .

Hyperspace hashing maps an object in the hyperspace by

applying a hashing function to the value of each attribute

A
i
 of the object. In this way, we obtain a vector of � coordi-

nates that correspond to the point in the hyperspace where

the object is located. But for this paper, we only study the

hyperspatial hash index in the centralized form, and we treat

disjoint regions in the multidimensional space as many cor-

responding hash buckets. Depending on the query criteria,

the query involves different hash buckets.

A naive hyperspace construction, however, may suf-

fer from a well-known problem with multi-attribute

data known as “curse of dimensionality [8].” With each

additional secondary attribute, the hyperspace increases

in volume exponentially. If constructed in this fashion,

each server would be responsible for a large volume

of the resulting hyperspace, which would in turn force

search operations to contact a large number of servers,

counteracting the benefits of hyperspace hashing. Hyper-

Dex addresses this problem by partitioning the data into

smaller, limited size subspaces of fewer dimensions. In

Fig. 3 we show three possible subspaces with the corre-

sponding regions (distributed to servers) and some points

representing employees. Considering a query for employ-

ees in Beijing: using the subspace of Fig. 3a it is necessary

to contact only 1 region, whereas in Fig. 3b it is neces-

sary to contact 3. If the query also specifies an additional

requirement of salary 5000, only one region is contacted

in both cases. Furthermore, if we consider a three-dimen-

sional subspace (see Fig. 3c), we need to specify three

attributes in the query to have an efficient operation that

contacts only one region. Note that, independently of the

number of dimensions of a subspace, the strategy adopted

in HyperDex is to divide each dimension of a subspace

such that the total number of regions per subspace is close

to a predefined value R. In our study, we have also real-

ized the subspace mode named adaptive indexing in the

centralized GPU environment. It can predict query tasks

based on historical query records, periodically adjust the

hyperspace hash index automatically, and always maintain

a high query rate.

2.3 GPU Hash

With the popularity of parallel hardware, significant

efforts have been made to improve the insert and query

performance of hash. There are multiple GPU-based static

hash tables. Alcantara et al. [9] propose Cuckoo hashing

which has good performance in batch construction and

retrieval stages. It is adopted in the implementation of

the CUDA data-parallel primitives library (CUDPP) [10].

However, for a large load factor requirements, the batch

construction is likely to fail. Garcia et al. [11] propose a

Robin hood-based hashing, focusing on higher load fac-

tors and take advantage of the spatial locality of graph-

ics applications, but the performance of this method is

impacted. Khorasani et al. [12] propose Stadium Hashing

(Stash), by extending the Cuckoo hashing for large hash

tables. The key focus of Stash is to design an out-of-core

hash table for the case that the data cannot be completely

accommodated into a single GPU memory. In the research

of GPU’s fully concurrent and dynamically updateable

hash table, Misra and Chaudhuri [13] evaluate the accel-

eration of several lock-free data structures transplanted

from CPU to GPU. However, the implementation is not

completely dynamic. We can see from the experiments

that node resource arrays are pre-allocated for future

insertions (i.e., it must be known at compiling time), and

cannot be dynamically allocated and released at runtime.

One main objective of our proposed GHSH is to conquer

this problem. Recently, Ashkiani et al. [14] propose a

fully concurrent dynamic lock-free chained hash table on

GPU named Slab Hash.

268 Z. Ren et al.

1 3

2.4 Other structures on GPU

Cederman et al. [15] perform experiments on various

known lock-based and lock-free Queue implementations.

They find that the parallel optimization of Queues on GPU

is beneficial to performance improvement. Multi-core GPU

technology can further improve data parallelism. Maksudul

Alam et al [16] propose a novel parallel algorithms for fast

Multi-GPU-Based generation of massive networks. Inspired

by [13], Moscovici et al. [17] propose a GPU-friendly skip

list (GFSL) based on fine-grained locks, mainly consider-

ing the preferred coalesced memory accesses of the GPU.

In addition, Maksudul Alam et al. [18–20] propose a novel

parallel algorithms for fast Multi-GPU-Based generation of

massive networks. Brandon Tran et al. [21] present three

GPU algorithm enhancement strategies (data structure reuse,

metadata creation with various type alignment and a preal-

located memory pool) for executing queries of bitmap indi-

ces compressed using Word Aligned Hybrid compression.

Harish Doraiswamy et al. [22] propose a new model that

represents spatial data as geometric objects and define an

algebra consisting of GPU-friendly composable operators

that operate over these objects. These structures and models

can not directly applied to GPU hyperspace hash.

3 GHSH Structure

In this study, we represent the element N as

(key, A1, A2,… , Ap, value) , where key is the primary key,

A1, A2,… , Ap are indexable secondary attributes with the

number of p, and value is a location ID or value. We build a

hyperspace hash to assist the query processing of secondary

attributes. Here, p secondary attributes require a hyperspace

hash of p + 1 dimensions.

3.1 Data Structure

We adopt a linked list to handle hash collisions. Due to the

variability of p, it is difficult for the accesses to be as coa-

lesced as in traditional methods (see Fig. 2). In this paper,

we propose a new data structure—super node. As shown in

Fig. 4, a super node contains a key node, p attribute nodes,

and a value node. Each node in a super node stores corre-

sponding portions of multiple data for data alignment. We

set pointers for each queryable attribute node and key node

so that we can quickly traverse between them to find query-

ing targets. For a query task, we search in the hash buckets

where the target may be stored based on our hash function.

Each thread traverses the corresponding attribute chain in

a hash bucket that it is responsible for, and finds the cor-

responding value from the corresponding value node after

finding the target. The peak memory bandwidth is achieved

when threads within each SIMD unit (i.e., a warp in GPUs)

access consecutive memory indices with a certain fixed

alignment (e.g., on NVIDIA GPUs, each thread fetches a

32-bit word per memory access, i.e.,128 bytes per warp). To

maximize memory throughput, the size of each node is set

as 128 bytes. Thus a warp of 32 threads can access the entire

contents of a node at once. We assume that each element

and pointer take a memory space with a size of (p + 2)x and

y bytes. Therefore, the number of elements stored in each

super node is M = ⌊
128−y

x
⌋.

We use a universal hash function on each dimension,

h(k;a, b) = ((ak + b) mod q)mod B, where a, b are random

arbitrary integers and q is a random prime number. As a result,

elements are expected to be distributed uniformly among Bp+1

Fig. 2 Traditional data structure

Fig. 3 Three different configurations and corresponding visualization
of a search specifying values for all attributes indexed by the sub-
space

269GPU-Based Dynamic Hyperspace Hash with Full Concurrency

1 3

buckets with an average super node count of � = ⌈
n

MBp+1
⌉

super nodes per bucket, where n is the total number of ele-

ments in GHSH. When searching a secondary attribute, we

perform � + F(0 ≤ F ≤ �) memory accesses, where F is the

number of fetches required to read the values in a bucket. Pro-

cessing queries of keys (recall that keys are unique) can

achieve slightly better performance, but have similar asymp-

totic behavior. In that case, we perform ⌈
n

Bp+1
∕⌊

128−y

(p+2)x
⌋⌉ mem-

ory accesses with the traditional data structure. It can be

deduced from Eq. 1 that when n Bp+1
⋅ (p + 1) , our data struc-

ture can reduce the number of memory accesses. In our appli-

cation scenarios, n ≫ Bp+1
⋅ (p + 1) , so the proposed data

structure is theoretically effective, in that it maximizes the

throughput.

For open addressing hash tables, the memory utilization is

equal to the load factor, i.e., the number of stored elements

divided by the table size. In order to be able to compare our

memory usage with open-addressing hash tables that do not

use any pointers, we define the memory utilization to be the

amount of memory actually used to store the data over the

total amount of used memory (including pointers and unused

empty slots), which is shown in Eq. 2. Assume k
i
 denotes the

number of super nodes for bucket i. The maximum memory

utilization can reach
Mx

(Mx+y)
 . Intuitively, this case happens

when all nodes in GHSH are full. According to Eq. 2, we can

calculate the memory utilization of GHSH by the number of

buckets, and set various memory utilization in the experi-

ments in Sect. 5.

(1)�optimized(x, y, p, B, n, F) = ⌈
n∕Bp+1

⌊
128−y

x
⌋
⌉ + F < ⌈

n∕Bp+1

⌊
128−y

(p+2)x
⌋
⌉

3.2 Supported Operations in GHSH

Suppose our GHSH maintains a set of tuples represented

by S. We allow the secondary attributes to be non-unique,

but the primary key is unique. We support the following

operations. More details will be introduced in Sect. 4.1.1.

• Insert (key, A1, A2,… , Ap, value) ∶ S ← S ∪ < key, A1,

A2,… , Ap, value >,which represents inserting a tuple

into GHSH.

• Search(key, val(key)): Returning < key, A1, A2,… , Ap,

value >∈ S , or ∅ if not found.

• Search(A
i
, val(A

i
)) : Returning all found instances of A

i

in the data structure ({<∗, A
i
= val(A

i
), ∗>} ∈ S) , or ∅

if not found.(1 ≤ i ≤ p)

• Modify (key, A1, A2,… , Ap, value) ∶ S ← (S − {< key,

∗>}) ∪ {< key, A1, A2,… , Ap, value >} , which represents

inserting a new tuple and deleting the old one.

• Delete(key) ∶ S ← S − {< key, A1, A2,… , Ap, value >} ,

w h i c h r e p r e s e n t s d e l e t i n g t h e t u p l e

< key, A1, A2,… , Ap, value >.

(2)

�(x, y, B, p) =
(p + 2)x

⌊ 128−y

x
⌋(p + 2)x + (p + 2)y

⋅

n

Bp+1∑
i=1

ki

≤

⌊ 128−y

x
⌋(p + 2)x

⌊ 128−y

x
⌋(p + 2)x + (p + 2)y

Fig. 4 Data structure in GHSH

270 Z. Ren et al.

1 3

4 Implementation Details

4.1 Optimizations

4.1.1 Warp Pre-combination Data Sharing Strategy

Assume that the batch size of queries is b and

there are p + 1 query types. We denote queries as

Q = {key ∶ val(key), A1 ∶ val(A1),… , Ap ∶ val(Ap)} , where

val(key) denotes the value of the key and val(A
i
) denotes

the value of the secondary attribute A
i
 . GPU organizes

threads in units of warps. Different query paths may incur

warp divergence (see Fig. 5). A traditional solution is the

warp-cooperative work sharing (WCWS) strategy [14],

which forms a work queue of arbitrary requested operations

from different threads within a warp. All threads within a

warp cooperate to process these operations one at a time.

However, a query operation of a hyperspace hash maps

multiple query paths, which results in a sharp increase in

the number of query tasks. The serialization of threads in

a warp in WCWS severely hinders operation efficiency in

hyperspace hashing. Considering the characteristics of our

new hyperspace hash data structure, in this paper, we pro-

pose a new approach where threads in a warp read corre-

sponding data of nodes to shared memory. All threads in a

warp can compare in parallel whether the current node has

its target. We call this strategy warp pre-combination data

sharing (WPDS). WPDS is particularly suitable in follow-

ing scenarios: (1) threads are assigned to independent and

different tasks, which can avoid divergence within a warp;

(2) each task requires an arbitrarily placed but vectorized

memory access (accessing consecutive memory units); (3)

it is possible to process each task in parallel within a warp

using warp-wide communication (warp friendly). It is worth

mentioning that WPDS is not suitable for situations where

the branch divergence in a warp cannot be avoided through

previous operations.

In our data structure context, query classifications are

combined to reduce branch divergence. Take a secondary

attribute query as an example. A query (A
i
, val(A

i
)) may exist

in Bp buckets. Since the results are not unique, we need to

traverse all nodes in these hash buckets. For query tasks of

number b, classification is performed in two steps: classify

by BucketID (CBB) and pre-combining by query type (PBQ).

Each bucket i maintains a task queue TQi . In the CBB step,

each task is parsed into p subtasks and added to the corre-

sponding TQi (see Fig. 6). This can be performed in parallel

on GPU. The variety of query types in a warp makes mem-

ory divergence (see Fig. 7a), which would greatly impede

the GPU performance. To eliminate the divergence, in the

PBQ step, threads in each TQi are grouped in a warp accord-

ing to A
i
 (see Fig. 7b).

The total amount of time required for searching a batch

of b elements in GHSH (n elements are stored in GHSH) is

Tb
Search

(n, p) = Tb
CBB

+ Tb
PBQ

+ Tb
Tra

,where Tb

CBB
 is the time

spent to classify a size b batch by bucketID, Tb

PBQ
 is the time

spent to pre-combinate a size b batch by query type, and Tb

Tra

is the time spent to traversal in buckets. The time complexity

is O(
n∕Bp+1

⌊(128−y)∕x⌋
) . Recall that the time complexity is O(n∕Bp+1)

without using WPDS strategy.

4.1.2 Global Memory with CUDA Atomic Operations

The GPU memory structure is divided into three levels:

global memory that can be accessed by all threads in the

device, smaller but faster shared memory per thread block,

and local registers for each thread in the thread block.

Although GHSH allows the entire thread of the warp to

Fig. 5 Query divergence

271GPU-Based Dynamic Hyperspace Hash with Full Concurrency

1 3

cooperatively handle the same operation task, the opera-

tion between different thread blocks is still independent

and completely concurrent. The shared memory is small

and partitioned, so threads in different blocks cannot

access the shared memory of other blocks. The GPU’s

global memory capacity is large and can be accessed by

all threads. Since millions of threads can execute GPU

kernel functions simultaneously, but only a limited number

of SMs exist, thread blocks need to be queued for SMs.

Therefore, there is no way to synchronize all threads

globally except when the kernel function ends. In order

to achieve full concurrency between warps, GHSH uses

global memory to ensure the sharing of all data states

by each thread. GHSH controls concurrency optimisti-

cally. Common lock-free algorithms are generally based

on atomic operations. For multiple atomic operations in

GHSH, we set a lock tag on data items, and use atomic

operations to change the lock tag to make the locking of

data items atomic.

4.1.3 Temporary Repeated Read Strategy

The existing method employs reader-writer locks to allow

concurrent read to hash table, which may cause conflicts to

increase latency. In order to make GHSH free of structural

locks, we design a “temporary repeated read” strategy. We

split the bucket change operation and specifies a strict order.

We first put new data into a new hash bucket, and then delete

the data in the old bucket. This ensures all existing data will

be read. Although it will cause a short-term duplication, it

guarantees the valid values stored in the table can be read.

If the query result for a key returns two values, either can

be used. The “temporary repeated read” strategy guarantees

the no-wait feature of reading operations, which can greatly

improve the efficiency of reading operations in a concurrent

situation. For read-intensive applications or applications

with far more read operations than write operations. Improv-

ing read operation efficiency is very meaningful to improve

overall operational efficiency.

Fig. 6 Classify by BucketID

Fig. 7 An example of memory access pattern for queries

272 Z. Ren et al.

1 3

4.2 Operation Details

We use WPDS for bulk query and deletion concurrency. But

we still use WCWS [14] for full concurrency of all opera-

tions of different types. Because branch divergence here is

caused not only by query path divergence but also by differ-

ent instruction types. In WCWS, each thread has its assign-

ment, that is, update (insertion, modification, or deletion)

or query (by key or by secondary attributes). We design the

node size as 128 B, so that when a warp accesses a node

each thread has exactly 1/32 of the node’s content. We use

the term “lane” to denote the portion of a node that is read

by the corresponding warp’s thread, and we denote lane 31

as ADDRESS_LANE. We assume that the key and the sec-

ondary attributes each take 4 bytes, and the value takes 4

bytes. For a node, we also need a 4-byte space to store a

pointer. The remaining 124 bytes can be used to store a total

number of 31 of keys or secondary attributes. Obviously, the

spatial complexity of these operations is O(n).

4.2.1 Insertion

Bulk-Build. The batch building operation constructs a hyper-

space hash directly from the batch input of tuples. We first

sort tuples by bucketID to ensure that data from a warp is

most likely to be inserted into the same hash bucket. The first

31 threads in a warp are responsible for writing the corre-

sponding part of the data, and the 32nd thread is responsible

for putting the node into the linked list of the corresponding

bucket. We assign a lock tag for each bucket. Only when a

thread modifies the lock tag through atomic operations can

it chain its data block into the bucket by header interpola-

tion. The different tasks of the last thread will cause divi-

sions, which is inevitable because the link operation must

be executed after applying for memory. The first 31 threads

can be parallelized, which is faster than the 32 thread tasks

serialized in Slab hash.

Incremental Insertion. As shown in Alg. 1, any thread

that has an inserting operation to perform will set is_active

to true. Following WCWS introduced earlier, all threads read

the corresponding part of the target super node, and search

for the empty point in the key node of the super node. If

found, the thread uses an atomicCAS operation to insert its

key, secondary attributes and value address into the cor-

responding node of the super node (Line 6). If the insertion

succeeds, the thread marks its operation as resolved. If fails,

it means that some other warps have been inserted into that

blank spot. Then the whole process should be restarted. If

no empty point is found, all threads will obtain the address

of the next super node from the ADDRESS_LANE. If the

address is not empty, we should read a new super node

and repeat the insertion process. Otherwise, a new super

node should be allocated. Then, the source thread uses

atomicCAS to update the pointer of the previous super

node. If atomicCAS succeeds, the entire insertion pro-

cess is repeated using the newly allocated super node. If

not, it means that another warp has allocated and inserted a

new super node. Then the super node allocated by this warp

should be reassigned and the process should be restarted

with the new super node.

4.2.2 Search and Deletion

We describe how queries are processed using hyperspace

hashing. We define a search query Q as the set of attributes

that the query accesses (and respective values). In the gen-

eral case, to execute a query it is necessary to obtain the

information of the buckets(regions) where the data is located

according to the subspace. For instance, in the example of

Fig. 1b, a search Q =< city = Beijing, salary = 5000 >

results in contacting only one bucket(region), but in a query

for Q =< city = Beijing > in the subspace < city, salary >

all three regions are contacted. In order to obtain the best

throughput possible, HyperDex always executes a query on

the subspace S
i
∈ S which yields the minimum number of

regions. Note that HyperDex maintains a full copy of each

object in each configured subspace.

Search by Key.Algorithm. 2 shows the pseudocode of

searching in GHSH. We use WPDS to reduce query diver-

gence with high concurrency. During the query process,

we first parse the query tasks and distribute the results to

the queue to be queried for the corresponding hash bucket

(Line 1). Query tasks with the same query attributes are

aggregated (Line 3), and organized into warps, and query

paths are shared to avoid warp divergence. Each thread in a

warp determines the part of the data it should read according

to the laneID it carries. Although the reading positions are

different, each thread needs to make a conditional judgment

on the data in the node, and thus it uses shuffle instruc-

tion. The address read by the first thread is distributed to

other threads (Lines 5-6). When GHSH performs a search

operation, it reads the corresponding position of the linked

list node. When checking whether there is data equal to the

target key, the ballots and ffs instructions are used to

make a parallel judgment on the data held by all threads in

the warp (Line 7). If the target is found, we read the cor-

responding value into myValue and mark the corresponding

task as resolved (Lines 8-12). Otherwise,each thread reads

the pointer marked by ADDRESS_LANE and finds the next

key node until the pointer is empty (Lines 14-19).

Search by Secondary Attribute.The secondary attribute

query is similar to the key query, except that since the sec-

ond attribute is not unique, a query may correspond to mul-

tiple values. Therefore, we need to traversal all the super

nodes stored in a bucket. In our data structure, attributes are

stored separately, and Each attribute node stores a pointer

273GPU-Based Dynamic Hyperspace Hash with Full Concurrency

1 3

to the next super node. Therefore, without accessing other

attribute nodes, we can just query a linked list of the query

attribute.

Deletion.Deletion is similar to search. If valid (match-

ing found), we use DELETE_DKEY to overwrite the corre-

sponding element. If not found, the next pointer is updated.

If the end of the list is reached, the target does not exist and

the operation terminates successfully. Otherwise, we load

the key node of the next super node and restart the process.

In particular, if the data being modified is found, there may

be two values returned, and both are deleted.

4.2.3 Modification

In GHSH, the modification is divided into two types. One is

to change the non-queryable attribute value, and the other is

to change the secondary attribute value. The former is rela-

tively simple, whose operation process is similar to a query,

except that when the key value is found, the corresponding

value is modified by using an atomic operation. The latter

is more complicated. According to the updated value, the

modified data may be or not be in the same hash bucket. If

it involves a bucket change operation, we use the temporary

repeated read strategy introduced earlier. Specifically, the

data in the original bucket needs to be deleted, and the new

value needs to be inserted into a new hash bucket. These two

operations should be performed in an atomic fashion. Other-

wise, data errors will occur. So we design a lock tag on the

data item, namely swap_lock , and modify it through atomic

operations to ensure that data is not modified by other tasks

while it is being modified. As shown in Alg. 3, for a modi-

fication (key, A1, A2,… , Ap, value) , we first search for key

(lines 6), and if not found, it returns invalid task (line 23). If

found without swap_lock , we mark swap_lock before insert-

ing the new value with swap_lock (lines 5-8). Afterward,

we delete the found data and erase the lock tag (lines 9-21).

Otherwise, we need to wait until key’s lock tag is erased.

5 Adaptive Indexing

In the high-dimensional Euclidean space constructed by the

hyperspace hash index, our query needs to find some related

buckets in parallel, and the number of these related buckets

is closely related to our hyperspace dimension. However,

for the case with many searchable attributes, the hyperspace

may be very large because its capacity increases exponen-

tially with the number of dimensions. Even for large data

center designs, covering a large space with a large number

of hash buckets is not feasible. For example, a table with 9

secondary attributes may require B 9 (B is the number of hash

buckets per dimension) Buckets. Due to the limited GPU

computing resources, this shortcoming greatly affects the

search efficiency. In view of the above problems, inspired by

the data partition strategy in Hyperdex [1], this paper pro-

poses an adaptive indexing strategy. We group the attributes

to be queried to build a hyperspace hash. That is, the origi-

nal large hyperspace is divided into several low-dimensional

spaces for simultaneous maintenance. The attribute division

is shown in Fig. 8a. But how to store the divided search

space hash has become our new problem. One method is to

store only a part of the attributes of each hyperspace hash,

although this method can minimize the storage space of each

hyperspace hash because the attributes are not stored across

space, which will lead to expensive search costs because

Constructing data requires collaboration across hyperspaces.

Instead, another design choice is to store the full value

address of each key-value in each hyperspatial hash index,

which will lead to faster search speeds. Because we store the

value address, the basic operation of the super hash is based

on the in-place update of the cuda atomic operation, so it

does not involve data consistency issues.

Basic hyperspace hashing does not distinguish the key

of data from its minor parts. This leads to two important

issues when dealing with actual key-value stores. First, a

key lookup is equivalent to a single property search. A single

attribute search in a multidimensional space requires query-

ing multiple hash buckets. In this hypothetical scenario, the

cost of a key operation would be strictly higher than that of

a traditional key-value store. HyperDex provides efficient

key-based operations that use one-dimensional subspaces

for keys. Inspired by this, when we create a hyperspatial

hash index in groups, we create a one-dimensional index

of the keys separately, and this one-dimensional index will

not change with the change of the data, because the keys are

immutable.

When building in batches, considering the application

scenario of the application, we can build a hyperspace hash

index of the key and some auxiliary indexes, as shown in

Fig. 8b. Considering the search locality of the application,

our index can be adaptively adjusted based on historical que-

ries. Eradicate historical query records, calculate the attrib-

ute sets with more queries, combine attributes with high

query attributes, and reconstruct the remaining hyperspatial

hash indexes based on the one-dimensional hash index of

the key.

6 Evaluation

We use an Nvidia RTX2080Ti (Turing) GPU for all experi-

ments on an 8-core server (Intel Xeon CPU Silver 4110 @

2.1 GHz, 64 G host memory). It has 68 SMs and an 11 GB

GDDR6 memory with a peak bandwidth of 616 GB/s.

The size of the share memory on each SM is 64 KB. All

results are harmonic averages of rate or throughput. Our

274 Z. Ren et al.

1 3

implementation is compiled by CUDA 10 on Ubuntu 16.04

using O3 optimization option. Because the existing GPU-

based index studies 4-byte keys and values for benchmark-

ing and large batches for scalability tests [3, 14], we follow

the convention and employ similar simulation patterns and

parameter settings. We use a simple universal hash func-

tion such as h(k;a, b) = ((ak + b) mod p) mod B , where a,

b are random arbitrary integers and p is a random prime

number. As a result, on average, keys are distributed uni-

formly among all buckets. Our experiment additionally sets

two secondary attributes. As a result, GHSH can achieve a

maximum memory utilization of 97% . For static hash tables,

there are two main operations: (1) building the data struc-

ture given a fixed load factor (i.e., memory utilization) and

an input array of tuples, and (2) searching for an array of

queries and returning values. By providing GHSH with the

same set of inputs (each thread reads a key-value pair and

dynamically inserts it into the data structure), we can com-

pare GHSH with other static methods.

6.1 Memory Utilization

In order to study the impact of memory utilization, we com-

pared GHSH with CUDPP (the most representative static

hash) and Slab Hash (the most advanced dynamic hash).

For static hash tables, such as CUDPP’s cuckoo hash, there

are two main operations: (1) batch construction stage, given

a fixed load factor (which can be simply expressed in terms

of pre-designed memory usage) and one An input array of

key-value pairs is used to construct the entire data structure

by batch insertion operations. If the insertion failure occurs

during the construction phase, it needs to be reconstructed

from scratch. (2) In the retrieval phase, after the end of the

batch construction phase, the key array is used as the input,

and the batch search operation is performed in the data struc-

ture, and the corresponding value returned is stored in the

output array. By providing GHSH with the same set of inputs

(each thread reads a key-value pair and dynamically inserts it

into the data structure), we can build a hash table. Similarly,

after building the hash table, each thread can read a query

from the input array, search it dynamically in GHSH, and

then store the search results in the output array. By doing

this, we can compare GHSH with other static methods. Slab

hash does the same.

For CUDPP, we can easily obtain a predetermined

memory utilization, which is equal to the load factor, i.e.,

the number of stored elements divided by the table size.

In contrast, we define the memory utilization of dynamic

hash as the total amount of memory actually used to store

data divided by the total amount of memory used. For Slab

Fig. 8 Adaptive Indexing

275GPU-Based Dynamic Hyperspace Hash with Full Concurrency

1 3

hash [14], If each element and pointer take x and y bytes of

memory respectively, then each slab requires Mx + y bytes.

As a result, the memory utilization of the Slab hash can be

calculated according to Eq. 3, where k
i
 denotes the number

of slabs for bucket i. Also, we give the definition and calcu-

lation of GHSH memory utilization in the previous Sect. 3.1.

Figures 9 and 10 respectively shows the building rate and

query rate of several hash methods for various memory uti-

lization. n = 2
22 elements are stored in the table. At about

60% memory utilization there is a sudden drop in perfor-

mance for both bulk building and searching operations. Our

experimental scenarios below using uniform distributions

as input data set with 60% memory utilization based on this

result and existing work [14]. In the concurrent benchmark,

we set the initial memory utilization to 50% because of the

insertions in concurrent workload.

6.2 Baseline: CPU Hyperspace Hash

We compare the speed of GHSH with its counterpart on

CPU. Since there is no existing open-sourced concurrent

CPU hyperspace hashing in the centralized environment ,

we implemented one based on openMP [23]. Experimental

results show that the building performs best with 8 threads

and the searching for secondary attributes performs best

with 12 threads on CPU. Thus, we use these settings as

benchmarks to compare with GHSH. To evaluate bulk build-

ing and searching operations for HyperSpace hash on CPU

and GPU, we evaluate multiple data structure sizes incre-

mentally. We choose an initial number of buckets so that its

final memory utilization is 60% . The means of all operation

rates for a given batch size of b is reported in Table 1. The

mean of bulk building rates on GPU is 20.24 M elements/s,

(3)
�_Slab(x, y, B, M) =

x

Mx + y
⋅

n

B−1
∑

i=0

ki

≤
Mx

Mx + y

which is 20x of CPU. The mean of searching rates on GPU

is 28.17 M elements/s, which is 100x of CPU.

6.3 Impact of Different Design Choices

We evaluated the basic query operation with WCWS,

CBB, and WPDS (CBB+PBQ). The results are shown

in Fig. 15. We find that search efficiency can be greatly

enhanced with CBB, but CBB is more time consuming as

a preprocessing. Only with PBQ can a better optimization

Table 1 Rates(M operation/s)for different bath-sized put and get on
GPU and CPU

Bath size GPU (put) CPU (put) GPU (get) CPU (get)

210 6.81 1.02 9.72 0.30

211 14 1.23 17 0.27

212 26 1.23 40 0.23

213 47 1.17 69 0.25

214 86 1.05 146 0.27

215 151 0.9 211 0.28

Mean 20.24 1.09 28.17 0.26

0

100

200

300

400

500

600

700

800

0.1 0.3 0.5 0.6 0.7 0.8

O
p

e
ra

ti
o

n
 r

a
te

(M
 o

p
s
/s

)

Memory Utilization

CUDPP-bulid

SlabHash-build

GHSH-build

Fig. 9 Build rate vars memory utilization

0

200

400

600

800

1000

1200

1400

0.1 0.3 0.5 0.6 0.7 0.8

O
p

e
ra

ti
o

n
 r

a
te

(M
 o

p
s
/s

)

Memory Utilization

CUDPP-search

SlabHash-search

GHSH-search

Fig. 10 Search rate vars memory utilization

276 Z. Ren et al.

1 3

effect be achieved, which accelerates 1.25x on average.

It is worth mentioning that branch divergence in a warp

cannot be avoided, if directly perform PBQ without CBB

and hence threads in a warp cannot be parallelized.

Figure 11 shows the effectiveness of our novel data

structure and three techniques. Assume that all modi-

fications need bucket changing. We find that GHSH

data structure can achieve performance improvement by

3.92X. Based on our data structure, after replacing the

locking with global memory and atomic operation, the

bucket changing rate of GHSH increases significantly, by

27% on average. This is because atomic operations greatly

reduce the locking cost. Adding the temporary repeat read

strategy to the lock-free version, the two techniques can

improve the modification rate by 34% . However, with the

increase in the number of elements, the acceleration effect

is not obvious due to the limitation of the SM’s number.

6.4 Baseline: Operations of GPU Hash for Keys

We compared GHSH with CUDPP (the most repre-

sentative static hash) and Slab Hash (the most advanced

dynamic hash). This experimental benchmark takes

throughput (total number of operations/execution time) as

an index to measure the performance of the data structure.

The fixed memory utilization is 0.65. The hash function

of each data structure also remains the same. The total

number of operations is taken as the abscissa. The number

of threads in the GPU data structure is equal to the total

number of operations. After determining the number of

threads in the GPU data structure, you need to determine

the number of threads per thread block (number of thread

blocks = total number of threads/number of threads per

thread block)

6.4.1 Bulk-Build

For many data structures, the performance cost of support-

ing incremental mutable operations is very high: static data

structures often provide better batch builds and query rates

than similar data structures that support incremental mutable

operations. However, we will see that the performance cost

of supporting these additional operations in GHSH is mod-

est. Figure 12 shows the building rate (M elements/s) versus

the total number of elements (n) in table. We can see that

when the table size is very small, CUDPP’s building perfor-

mance is particularly high, since most atomic operations can

be done at cache level. Static data structures often sustain

considerably better bulk-building and querying rates when

compared to structures that additionally support incremental

mutable operations. However, the cost of these additional

operations in GHSH is modest. Slab hash and GHSH will

make GPU resources reach 220 ≤ n ≤ 2
24 . The build rate of

GHSH is up to 1.32x that as those on Slab hash, since the

basic nodes of GHSH store almost twice the data of Slab

hash. Besides, data allocation in GHSH can be performed

in parallel, which improves data parallelism.

6.4.2 Search Query

For key search queries, we generate two sets of random que-

ries: (1) all queries exist in GHSH; (2) none of the queries

exist. The two scenarios are important as they represent the

best and worst case. The harmonic averages are 838 M/s

and 732 M/s for search-all and search-null (see Fig. 13).

The speedups of CUDPP over the GHSH are 1.27x, 1.16x,

and 0.86x for bulk building, search-all, and search-none,

respectively. The speedups of Slab hash over the GHSH

are 0.84x, 1.01x, and 1.02x for bulk building, search-all,

and search-none, respectively. GHSH’s key query speed is

slightly lower than Slab hash, which is the cost of support-

ing non-key queries. It is necessary for secondary attribute

0

50

100

150

200

250

300

350

400

17 18 19 20 21 22 23 24 25 26 27

O
p

e
ra

ti
o

n
 r

a
te

(M
 o

p
s

/s
)

Number of elements(2^n)

Traditional Data Strucure+WCWS

GHSH+WCWS

GHSH+WPDS

GHSH+WPDS+Free-Lock

GHSH+Free-Lock+Temporary Repeated Read

Fig. 11 Modification rate

0

100

200

300

400

500

600

700

800

900

1000

16 17 18 19 20 21 22 23 24 25 26 27

O
p

e
ra

ti
o

n
 r

a
te

 (
M

 o
p

s
/s

)

Number of elements(2^n)

GHSH

CUDPP

SlabHash

Fig. 12 Build rate

277GPU-Based Dynamic Hyperspace Hash with Full Concurrency

1 3

queries to traverse the complete linked list, which is equiva-

lent to the worst case of key queries.

6.4.3 Incremental Insertion

Suppose we periodically add a new batch of elements to a

hash table. For CUDPP, this means building from scratch

every time. For the Slab hash and GHSH, this means dynam-

ically inserting new elements into the same data structure.

Figure 14 shows both methods in inserting new batches of

different sizes (32 k, 64 k, and 128 k) until there are 2 million

elements stored in the hash table. For CUDPP, we use a fixed

60% load factor. For the Slab hash and GHSH, we choose

the initial number of buckets so that its final memory utili-

zation (after inserting all batches) is 60% . As expected, the

GHSH significantly outperforms cuckoo hashing by reaching

the final speedup of 18.3x, 27.3x, and 32.5x for batches of

size 128k, 64k, and 32k. As the number of inserted batches

increases (as with smaller batches), the performance gap

increases. In contrast, the performance improvement effect

of GHSH for Slab Hash is not as obvious as for CUDPP. For

batch processing of 128k, 64k, and 32k, the final speedup of

GHSH is 2.8x, 2.4x, and 1.8x, respectively, which is better

than the Slab hash.

6.5 Concurrency Performance of GHSH

Benchmark setup A significant feature of GHSH is that it

can perform true concurrent query and update operations

without dividing different operations into different calcu-

lation stages. To evaluate the concurrency characteristics,

we designed the following benchmarks. Suppose we build

a hash table with an initial number of elements. We then

proceed to perform operations in one of the following four

categories: (a) inserting a new element, (b) deleting a previ-

ously inserted element, (c) searching for an existing element

by secondary attribute, (d) modifying a element to a new

bucket. We define an operation distribution Γ = (a, b, c, d) ,

such that every item is nonnegative and a + b + c + d = 1 .

Given any Γ , we can construct a random workload where, for

instance, a denotes the fraction of new insertions compared

to all other operations. Operations are run in parallel and

randomly assigned to each thread (one operation per thread)

such that all four operations may occur within a single warp.

We consider three scenarios as shown in Table 2. In order to

evaluate the value range of keys and secondary attributes,

four different integer ranges, [0,100], [1,1000], [0,10000],

and [0,100000], are designed for each operation combina-

tion. The total number of operations is fixed at 100,000. The

operation sequence for each test is pre-generated based on

the mix ratio and total number, and the operation keys are

randomly generated from the range of keys being evaluated.

The number of threads on the GPU is determined based on

the total number of operations per test.

SemanticsWe support concurrent operations, which

guarantees that the results of the batch operation include all

pre-existing keys in the hash table, as long as they are not

updated in the batch. However, the result of the operation

on the updated keys in the batch will depend on the hard-

ware scheduling of the block and the switch between warps.

For example, a batch process might include inserts, deletes,

and queries on keys already stored in the data structure. All

three operations will complete, but the order in which they

complete is undefined. Many applications may choose to

0

500

1000

1500

2000

2500

16 17 18 19 20 21 22 23 24 25 26 27

O
p

e
ra

ti
o

n
 r

a
te

 (
M

 o
p

s
/s

)

Number of elements(2^n)

GHSH-none

GHSH-all

CUDPP-none

SlabHash-none

CUDPP-all

SlabHash-all

Fig. 13 Search rate

0.1

1

10

100

1000

500000 1000000 1500000 2000000

T
im

e
 (

m
/s

)

Number of elements

32k-SlabHash 64k-SlabHash 128k-SlabHash

32k-CUDPP 64k-CUDPP 128k-CUDPP

32k-GHSH 64k-GHSH 128k-GHSH

Fig. 14 Incremental insertion

Table 2 Three scenarios of concurrent benchmarks

Name Workload Operation distribution

A 100%updates,0%searches Γ
0
 = (0.4, 0.4, 0, 0.2)

B 50%updates,50%searches Γ
1
 = (0.2, 0.2, 0.5, 0.1)

C 30%updates,70%searches Γ
2
 = (0.1, 0.1, 0.7, 0.1)

278 Z. Ren et al.

1 3

solve this problem in a phased operation, where changes to

the data structure (insert, delete) and the query of the data

structure belong to different batches. However, strict serial

semantics are not compatible with the implementation of

hyperspace hashing.

Result Fig. 16 shows performance of GHSH for three sce-

narios and different key ranges. Since updates are computa-

tionally more expensive than searches, given a fixed memory

utilization, performance becomes better with fewer updates

(Γ
0
< Γ

1
< Γ

2
). From the experimental results, we can see

that the key range does not have much impact on perfor-

mance. Comparing against bulk benchmark in Fig. 16, it is

clear that GHSH performs slightly worse in our concurrent

benchmark (e.g., Γ
0
 in Figs. 12 and 16). There are two main

reasons: (1) We assign multiple operations per thread and

hide potential memory-related latencies, as it is assumed that

in static situations all operations are available, and (2) we

run four different procedures (one for each operation type)

in concurrent benchmarks, but the bulk benchmark runs

just one. As discussed in Sect. 2, the Slab hash is currently

the most representative fully concurrent dynamic lock-free

chained hash table on GPU. However, the slab hash does

not support queries for secondary attributes, and the update

operations involved are all updated in-situ, without data relo-

cation to maintain the index. Therefore, the Slab hash is not

suitable for the concurrency scenarios we design.

7 Conclusion

Through a comprehensive analysis of the characteristics of

hyperspace hashing and the features of GPU, we identify

some gaps between hyperspace hashing and GPU, such as

the gap in memory access requirement, memory divergence,

and query divergence. Based on the analysis, we propose

a novel hyperspace hash data structure, where the query

attributes are stored separately. Hence, GHSH can make full

use of the GPU memory hierarchy to reduce the number of

high-latency memory accesses via cache access on GPU. We

also propose three optimizations in GHSH to alleviate the

different divergences on GPU to improve resource utiliza-

tion: warp pre-combination data sharing strategy, a method

of using atomic operations instead of locking and temporary

repeated read strategy. Experimental results suggest that our

dynamic hyperspace hash table for GPU can gain advantages

in both flexibility and performance.

Acknowledgements This work is supported by the National Key R&D
Program of China (2018YFB1003400), the National Natural Sci-
ence Foundation of China (62072083, 61872071), the Fundamental
Research Funds for the Central Universities (N180716010,N2116008)
and Liao Ning Revitalization Talents Program (XLYC1807158). The
preliminary version of this article has been published in APWeb-WAIM
2020 [24].

Fig. 15 Impact of WPDS

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7

search time CBB time PBQ time

N
o

rm
a

li
z
e

d
 t

im
e

b
asic

C
B

B

C
B

B
+
P
B

Q

b
asic

C
B

B

C
B

B
+
P
B

Q

b
asic

C
B

B

C
B

B
+
P
B

Q

b
asic

C
B

B

C
B

B
+
P
B

Q

b
asic

C
B

B

C
B

B
+
P
B

Q

b
asic

C
B

B

C
B

B
+
P
B

Q

b
asic

C
B

B

C
B

B
+
P
B

Q

 18 19 20 21 22 23 24

Number of elements(2^n)

0

100

200

300

400

500

600

700

[0,100] [0,1000] [0,10000] [0,100000]

O
p

e
ra

ti
o

n
 r

a
te

(M
 o

p
s
/s

)

key range

Scenario A Scenario B Scenario C

Fig. 16 Concurrency Performance of GHSH

279GPU-Based Dynamic Hyperspace Hash with Full Concurrency

1 3

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Escriva R, Wong B, Gün Sirer E (2012) Hyperdex: a distributed,
searchable key-value store. In: PrACM SIGCOMM. ACM, pp
25–36

 2. D’silva JV (2017) Roger Ruiz-Carrillo, and Cong Yu. Two rings
to rule them all. In: DOLAP, Secondary indexing techniques for
key-value stores

 3. Pedro H, Matheus N, de Almeida Eduardo C (2018) Cracking kd-
tree: the first multidimensional adaptive indexing (position paper).
In: EDDY

 4. Diegues N, Orazov M, Paiva J, Rodrigues L, Romano P (2014)
Optimizing hyperspace hashing via analytical modelling and
adaptation. ACM SIGAPP Appl Comput Rev 14(2):23–35

 5. Guide Design (2013) Cuda c programming guide. In: NVIDIA
 6. Munshi A, Gaster B, Mattson TG, Ginsburg D (2011) OpenCL

programming guide. Pearson Education, New York
 7. Abdul QM, Shiwen C (2018) A comparative study of secondary

indexing techniques in lsm-based nosql database. In: SIGMOD.
pp 551–566

 8. Kneale Samuel G (1958) Dynamic programming: by richard bell-
man. 342 pages, 6 ×[formula omitted] in Princeton. Princeton uni-
versity press, 1957. price, \$6.75. J Franklin Inst 265(2):157–158

 9. Alcantara Dan A, Andrei S, Fatemeh A, Shubhabrata S, Michael
M, Owens John D (2009) Amenta Nina Real-time parallel hashing
on the gpu. ACM Trans Graph (TOG) 28(5):154

 10. Harris M, Owens J, Sengupta S, Zhang Y, Davidson A (2007)
Cuda data parallel primitives library. Cudpp, New York

 11. Ismael G, Sylvain L, Samuel H, Anass L (2011) Coherent parallel
hashing. In: TOG, vol. 30. ACM, pp 161

 12. Farzad K, Mehmet BE, Rajiv G (2015) Stadium hashing: scalable
and flexible hashing on gpus. In: PACT. IEEE, pp 63–74

 13. Prabhakar M, Mainak C (2012) Performance evaluation of con-
current lock-free data structures on gpus. In: ICPADS. IEEE, pp
53–60

 14. Saman A, Martin F-C, John OD (2018) A dynamic hash table for
the gpu. In: IPDPS. IEEE, pp 419–429

 15. Daniel C, Bapi C, Philippas T (2012) Understanding the perfor-
mance of concurrent data structures on graphics processors. In:
Euro-Par. Springer, pp 883–894

 16. Maksudul A, Kalyan PS, Peter S (2019) Novel parallel algo-
rithms for fast multi-gpu-based generation of massive scale-free
networks. Data Sci Eng 4(1):61–75

 17. Moscovici N, Cohen N, Petrank E (2017) Poster: a gpu-friendly
skiplist algorithm. PPOPP 52(8):449–450

 18. Pawan H, Narayanan PJ (2007) Accelerating large graph algo-
rithms on the gpu using cuda. In: HPCS. Springer, pp 197–208

 19. Zhong J, He B (2013) Medusa: simplified graph processing on
gpus. TPDS 25(6):1543–1552

 20. Merrill D, Garland M, Grimshaw A (2015) High-performance and
scalable gpu graph traversal. TOPC 1(2):14

 21. Brandon T, Brennan S, Jason S, Joseph MM, David C (2020)
Increasing the efficiency of gpu bitmap index query processing.
In: International conference on database systems for advanced
applications. Springer, pp 339–355

 22. Harish D, Juliana F (2020) A gpu-friendly geometric data model
and algebra for spatial queries. In: Proceedings of the 2020 ACM
SIGMOD international conference on management of data. pp
1875–1885

 23. Chandra R, Dagum L, Kohr D, Maydan D, McDonald J (2001)
Parallel programming in OpenMP. Morgan kaufmann, Ramesh
Menon

 24. Ren Z, Gu Y, Li C, Li F, Yu G (2020) Ghsh: dynamic hyperspace
hashing on gpu. In: Wang X, Zhang R, Lee Y-K, Sun L, Moon
Y-S (eds) Web and big data. Springer, Cham, pp 409–424

http://creativecommons.org/licenses/by/4.0/

	GPU-Based Dynamic Hyperspace Hash with Full Concurrency
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 General-Purpose GPUs
	2.2 HyperSpace Hasing
	2.3 GPU Hash
	2.4 Other structures on GPU

	3 GHSH Structure
	3.1 Data Structure
	3.2 Supported Operations in GHSH

	4 Implementation Details
	4.1 Optimizations
	4.1.1 Warp Pre-combination Data Sharing Strategy
	4.1.2 Global Memory with CUDA Atomic Operations
	4.1.3 Temporary Repeated Read Strategy

	4.2 Operation Details
	4.2.1 Insertion
	4.2.2 Search and Deletion
	4.2.3 Modification

	5 Adaptive Indexing
	6 Evaluation
	6.1 Memory Utilization
	6.2 Baseline: CPU Hyperspace Hash
	6.3 Impact of Different Design Choices
	6.4 Baseline: Operations of GPU Hash for Keys
	6.4.1 Bulk-Build
	6.4.2 Search Query
	6.4.3 Incremental Insertion

	6.5 Concurrency Performance of GHSH

	7 Conclusion
	Acknowledgements
	References

