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Abstract

Frequency domain volume rendering (FVR) is a vol-

ume rendering technique with lower computational com-

plexity as compared to other techniques. In this pa-

per the FVR algorithm is accelerated by factor of 17

by mapping the rendering stage to the GPU. The over-

all hardware-accelerated pipeline is discussed and the

changes according to previous work are pointed out. The

three-dimensional transformation into frequency domain

is done in a pre-processing step. The rendering step is

computed completely on the GPU. First the projection

slice is extracted. Four different interpolation schemes

are used for resampling the slice from the data repre-

sented by a 3D texture. The extracted slice is trans-

formed back into the spatial domain using the inverse

Fast Fourier or Fast Hartley Transform. The rendering

stage is implemented through shader programs running

on programmable graphics hardware achieving highly in-

teractive framerates.

CR Categories: I.3.1 [Computer Graphics]: Hard-

ware Architecture—Graphics Processors; I.3.3 [Com-

puter Graphics]: Picture/Image Generation—Viewing al-

gorithms; I.4.5 [Image Processing and Computer Vi-

sion]: Reconstruction—Transform Methods

Keywords: Fourier Volume Rendering, Fourier Trans-

form, Hartley Transform, Hardware Acceleration

1 Introduction

Volume rendering are techniques for visualizing three-

dimensional data sets. These techniques can be divided
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into several categories. One group uses an intermedi-

ate representation (i.e., a polygonal surface) for render-

ing. According to a user defined iso-value a surface is

resampled from the data. Well known techniques are

Marching Tetrahedra and Marching Cubes [Lorensen and

Cline 1987]. The extracted iso-surface is rendered using

traditional surface rendering techniques. In contrast to

surface rendering, direct volume rendering (DVR) does

not extract surfaces before rendering, but directly ren-

ders images from given three-dimensional samples. DVR

techniques fall into two main classes: image-order and

object-order techniques. Ray-casting [Levoy 1987] is a

typical representative of an image-order approach, where

rays are sent from the eye-point via the image plane

through the volume data. On the other hand object-order

techniques, e.g., splatting [Westover 1990], traverse the

volume samples and project them onto the image plane.

All these techniques are at least of computational com-

plexity O(N3) for an N ×N ×N data array.

Frequency domain volume rendering (also known as

Fourier volume rendering (FVR) [Malzbender 1993]) is

a volume rendering technique based on a completely

different idea, i.e., the projection slice theorem [Levoy

1992]. The goal is to compute projections of the volumet-

ric data (complexity O(N3)). Projections in the spatial

domain correspond to slicing in the frequency domain

(complexity O(M2) for a M × M reconstructed slice).

Therefore slicing is used in frequency domain volume

rendering to reduce the computational complexity of pro-

jections in spatial domain.

Three-dimensional data are first transformed from the

spatial domain into the frequency domain. This can

be done by using a three-dimensional Fourier or Hart-

ley Transform. The discrete one-dimensional forward

and inverse Fourier Transforms are given by equations 1

and 2.

F [ω ] =
N−1

∑
x=0

f [x] · e−i2πωx/N (1)

f [x] =
1

N

N−1

∑
ω=0

F[ω ] · ei2πωx/N (2)

where f is the discrete function given by N samples and

F is its frequency spectrum.

After the pre-processing step of complexity

O(N3 logN), slices are resampled along a plane oriented

perpendicular to the viewing direction. Afterwards an



inverse two-dimensional transform of the resulting slice

is done. The method has a computational complexity

of O(M2 logM), which is lower as compared to other

volume rendering methods.

The method, however, has certain limitations: only

parallel projection is possible and hidden surface removal

is not included. The reason is the nature of the function

that FVR computes, which is an order independent linear

projection. This results in X-ray images. Currently ray-

casting is considered as the method that produces the best

image quality. Ray-casting gains performance by early-

ray termination, displaying only some surfaces from the

data. FVR displays the entire volumetric data set. Be-

cause of the computational complexity, FVR will gain

importance when the resolution of data sets will increase.

As described earlier, the performance of FVR does not

explicitly depend on the size of the input volume. The

factor that directly influences the rendering performance

is the number of samples contributing to the projection

slice (in the previous text M×M). The resolution of the

projection slice should be high enough to prevent alias-

ing. This shows as overlapping of copies of the rendered

data in the result image. Progressive refinement strate-

gies can be realized by adjusting the projection slice reso-

lution to achieve a desired performance. Also the resam-

pling area can be reduced to low frequencies around the

origin only. This will result in blurry preview images, but

no frequency overlapping artifacts will occur. Our im-

plementation does not include a progressive refinement

mode. Highly interactive framerates are achieved even

when slicing the entire data set with sufficient slice reso-

lution.

This paper presents mapping of FVR algorithm to

GPU in order to significantly accelerate the render-

ing performance. An overall pipeline of hardware-

accelerated frequency domain volume rendering is pre-

sented. The data set is transformed into frequency do-

main in a pre-processing step. Then the projection slice

is resampled using the following interpolation schemes:

nearest neighbor interpolation, tri-linear interpolation,

tri-cubic interpolation, and interpolation using windowed

sinc with window of width four. In addition we demon-

strate that current graphics hardware provides enough

precision to perform FVR at high quality. Furthermore

the GPU-based multi-dimensional Fast Hartley Trans-

form [Bracewell et al. 1986; Hao and Bracewell 1987]

is presented as an alternative to the wide spread Fourier

Transform. The rendering results are compared accord-

ing to image quality as well as performance. The perfor-

mance is compared to a software implementation using

the highly optimized FFTW library [Frigo and Johnson

1998].

Section 2 describes previous work related to FVR and

its mapping towards GPU. The overall rendering pipeline

is discussed in section 3. First, the stage performed on

the CPU is presented, followed by the on-the-fly render-

ing stage on the GPU. The slicing in the frequency do-

main is discussed in sub-section 3.1. The following part,

i.e., inverse transform to the spatial domain, is shown in

sub-section 3.2. Afterwards we show the results in sec-

tion 4 and discuss future work and conclusions in sec-

tions 5 and 6.

2 Related Work

Frequency domain volume rendering was introduced by

Levoy [1992] and Malzbender [1993]. Malzbender pro-

poses various filters for high-quality resampling in fre-

quency domain. Totsuka and Levoy [1993] extended this

work with depth cues and shading performing calcula-

tions in the frequency domain during slice extraction. Il-

lumination models for FVR were studied in the work of

Entezari et al. [2002]. They describe methods to inte-

grate diffuse lighting into FVR. One approach is based on

gamma corrected hemispherical shading and is suitable

for interactive rendering of fixed light sources. Another

technique uses spherical harmonic functions and allows

lighting using varying light sources. These shading tech-

niques, however, require a large amount of memory and

are not well suited for visualization of large data sets.

Another approach that produces images which are

similar to FVR is based on importance sampling and

Monte Carlo integration [Csébfalvi and Szirmay-Kalos

2003] thus the samples are not aligned on a regular grid.

This technique overcomes the limitation of parallel pro-

jection and the overall computational complexity O(N 2)
is better than in case of FVR.

A straightforward implementation of the Fourier trans-

form is not suitable for high-performance FVR. The in-

verse two-dimensional transform must be computed at

high speed to achieve interactive framerates. There-

fore fast variants of the Fourier Transform are used in

FVR implementations. The original idea of the Fast

Fourier Transform (FFT) was introduced by Cooley and

Tukey [1965]. Their algorithm decomposes the Discrete

Fourier Transform (DFT) into log2 N passes, where N is

the size of the input array. Each of these passes consists

of N/2 butterfly computations. Each butterfly operation

takes two complex numbers a and b and computes two

numbers, a+wb and a−wb, where w is a complex num-

ber, called principal Nth root of unity [Cooley and Tukey

1965]. The complex number w corresponds to the ex-

ponential term from equations 1 and 2. Butterfly oper-

ations are based on an efficient reordering of intermedi-

ate results, which are used multiple times. After log2 N

passes the butterfly operations result into the transformed

data. One of the fastest implementations available, is the

FFTW library [Frigo and Johnson 1998].

The Fast Hartley Transform (FHT) was proposed by

Bracewell [1986] as an alternative to FFT. The transform



produces real output for a real input, and is its own in-

verse. Therefore for FVR the FHT is more efficient in

terms of memory consumption. The one-dimensional

forward and inverse Hartley transform is described by

equation 3:

H[ω ] =
N−1

∑
x=0

h[x] ·

(

cos
2πωx

N
+ sin

2πωx

N

)

(3)

where h is the discrete function given by N samples and

H is its Hartley transform. The Multi-dimensional Hart-

ley Transform, however, is not separable, i.e., the N-

dimensional transform cannot be computed as a product

of N one-dimensional transforms. Bracewell and Hao

propose a solution to this problem [Bracewell et al. 1986;

Hao and Bracewell 1987]. They suggest to perform N

one-dimensional transformations in each orthogonal di-

rection followed by an additional pass that corrects the

result to correspond to the N-dimensional Hartley trans-

form. The correction pass for 2D and 3D respectively is

described by equations 4 and 5.

H[u,v] = 1
2
(T [u,v]+ T [L−u,v]+

T [u,M− v]−T [L−u,M− v])

(4)

H[u,v,w] = 1
2LMN

(T [L−u,v,w]+

T [u,M− v,w]+ T [u,v,N −w]

−T [L−u,M− v,N −w])

(5)

H is the multi-dimensional transform, T is the product

of one-dimensional transforms in two respectively three

orthogonal directions, and L, M, and N describe the size

in each particular direction.

Many approaches exist to exploit the capabilities of

modern graphics accelerators for volume rendering. Fast

processing and a large number of flexible features are the

main reasons that make current graphics hardware attrac-

tive. Texture-based volume rendering using one 3D tex-

ture or a stack of 2D textures for volumetric data repre-

sentation gained considerable interest [Cabral et al. 1994;

Rezk-Salama et al. 2000]. These techniques perform

very fast. They however, also compute a huge number

of operations that do not contribute to the final image.

A new approach was presented by Roettger et al. [2003]

and Krüger and Westermann [2003a]. They propose to

use front-to-back ray-casting with early ray termination.

The Z-buffer is used for opacity accumulation. An early

Z-test rejects fragments when the accumulated opacity

reaches a certain threshold. Besides the standard vol-

ume rendering approach based on transfer function spec-

ification, also other rendering modes like MIP, contour

enhancement or tone shading have been ported to GPU-

based implementations [Hadwiger et al. 2003].

Flexibility of the latest graphics hardware is also used

for various other general purpose computations [GPGPU

2003]. Moreland and Angel [2003] have implemented

a two-dimensional FFT running on NVidia GeForceFX

GPUs [NVIDIA 2003]. Their implementation is using

the Cg high-level shading language [Mark et al. 2003]

and is based on the Decimation in Time algorithm [Coo-

ley and Tukey 1965]. Unfortunately this implementation

performs slower than the software reference [Frigo and

Johnson 1998], which is running on a standard CPU.

Another FFT implementation was done by Hart [Engel

2003]. His implementation performs much faster than

the previously mentioned implementation and runs on

ATI GPUs [ATI 2003].

Recently, algorithms for numerical simulation exploit

the processing power of current GPUs. Bolz et al. [2003]

implemented sparse matrix conjugate gradient solver and

a regular-grid multi-grid solver. Similar work was pre-

sented by Krüger and Westermann [2003b]. Hillesland

et al. [2003] have turned the nonlinear optimization for

image-based modeling into a streaming process acceler-

ated on GPU.

An important aspect of FVR is interpolation, since the

samples in the projection slice, in general, do not coin-

cide with samples of the transformed input data. Current

graphics hardware natively supports nearest neighbor in-

terpolation for all texture formats. Linear interpolation

is supported only for fixed-point formats. Unfortunately

higher-order interpolation schemes are not natively sup-

ported at all. A general approach for GPU-based linear

filtering was presented by Hadwiger et al. [2002]. Their

work can be applied to arbitrary filter kernels, gaining

speed-ups from various kernel properties like symmetry

and separability. The filter kernel is sampled at high-

resolution and stored as a texture. A particular sample

that contributes to the new resampling point is convolved

with a kernel tile. Their framework implements various

higher-order reconstruction filters like cubic B-spline fil-

ters, Catmull-Rom spline filters or windowed sinc filters.

As Malzbender [1993] has shown, careful filter design

for reconstruction in the frequency domain is crucial for

good image quality.

3 Mapping FVR on GPU

Frequency domain volume rendering can be divided into

two stages. In the first stage the original scalar data is

transformed from the spatial domain into the frequency

domain. Before doing this, we have to rearrange the spa-

tial data to set the origin of the data from the corner [0,

0, 0] of the data cube to the center. This wrap-around

operation followed by a 3D FFT is usually done off-line

for each data set in a pre-processing step. Although a

GPU-based implementation of a three-dimensional trans-

form is currently possible, the performance cannot com-
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Figure 1: Frequency domain volume rendering pipeline. Instead of projecting the data in the spatial domain (O(N 3)),
slicing in frequency domain is performed followed by inverse transform (O(M 2 logM)) after an off-line pre-processing

step.

pete with optimized software implementations. This is

due to limitations in handling 3D textures. Another as-

pect is that during the transform always two copies of the

data have to be present in the graphics hardware mem-

ory, i.e., one as source another as destination array. This

limits the size of the rendered data set to be half of the

available graphics memory resources. Since the three-

dimensional transform is done only once per data set, the

FFTW library [Frigo and Johnson 1998] is used to trans-

form the data on the CPU. The transformed data is rear-

ranged via wrap-around operation once again to set the

low frequencies to the center of the data set. After this

step the data is uploaded to the graphics hardware mem-

ory. All the following on-the-fly computation is done on

GPU. The uploaded array of complex numbers is repre-

sented as a two-channel 32-bit floating-point 3D texture.

Although FVR does not require the dimensions of the in-

put data to be a power of two, current hardware limits

dimensions of 3D textures to be a power of two. If the

volume resolution is not a power of two, zero-padding in

frequency domain is done. Without loss of generality we

use the OpenGL API [OpenGL 2003] in our implemen-

tation. Even though implementation details are related

to this API, porting the code to other APIs is straightfor-

ward.

After the data upload the algorithm proceeds to the

rendering stage. This stage can also be divided into two

parts, i.e., slicing in the frequency domain and the in-

verse Fourier transform. Slicing refers to resampling the

projection slice from the 3D frequency data. Transform-

ing the resampled frequency slice back to the spatial do-

main results in the projection of accumulated intensities.

These two parts will now be focused on and discussed in

more detail. The FVR pipeline is sketched in figure 1.

3.1 Slicing in Frequency Domain

In the first part of the rendering stage the resampling of

the projection slice is performed. The slice is perpendic-

ular to the viewing direction intersecting the frequency

volume in the origin of the frequency spectrum. This is

in fact the central sample of the 3D texture. The setup

of this rendering part maps the 3D texture onto a proxy

geometry, which is a single quad. Texture coordinates

are set to cover the entire 3D texture under any viewing

direction, i.e., slicing along the diagonal determines the

maximal coverage of the 3D texture. The proxy geom-

etry is stretched over the whole rendering target, i.e., a

buffer where the results of the rendering pass are stored.

When changing the viewing direction, the texture is ro-

tated around the frequency volume origin. The setup is

illustrated in figure 2.

3D TEXTURE MAPPED 

TO QUAD

QUAD STRETCHED OVER THE 

RENDERING TARGET

Figure 2: Setup for the resampling part shows relation-

ship between 3D texture, proxy slice geometry and ren-

dering target.

To avoid aliasing the resolution of the rendering target

must meet the Nyquist criterion. Also the reconstruction

quality of the projection slice strongly influences the fi-



nal rendering quality. Low resampling quality introduces

artifacts like ghosts or frequencies that are not present

in the original data. To avoid this, it is necessary to use

higher order interpolation schemes, or at least tri-linear

interpolation. The hardware does not natively support

higher order interpolation schemes, so floating-point tex-

tures can be fetched only using nearest neighbor interpo-

lation. We additionally support three other types of in-

terpolation. The first custom filter type is tri-linear inter-

polation. The second interpolation scheme is tri-cubic in-

terpolation using cardinal or BC-splines. The last scheme

is windowed sinc of width four. Tri-cubic interpolation

as well as windowed sinc interpolation are based on the

texture-based approach of Hadwiger et al. [2002]. The

following subsections describe in more detail the map-

ping of these custom filters onto GPU. After describing

the interpolation schemes various hardware implementa-

tion issues of slicing are presented.

3.1.1 Tri-linear interpolation

Our implementation of tri-linear interpolation is based on

the LRP instruction, where the abbreviation LRP refers

to linear interpolation. First the eight nearest neighbors

of a resampling point are fetched with nearest neighbor

interpolation. The addresses of the neighbors are pre-

computed in the per-vertex stage for each vertex of the

rendering pass. These are then stored in eight available

texture-coordinate vertex-attributes. The addresses be-

tween the vertices are interpolated ”for free” during the

rasterization. The values of the neighbors are fetched

using pre-computed addresses in the per-fragment stage

from the source 3D frequency texture.

The problem is how to estimate the blending factors

for all three directions. Although it is not explicitly given,

they can be retrieved from the three-dimensional texture

coordinates of the resampling point. These describe the

offset from a corner of the 3D texture in the range [0,1]
for each coordinate. Obviously the coordinates of the

opposite corner are [1.0,1.0,1.0]. The multiplication of

texture coordinates of a given resampling point with the

original texture resolution results in coordinates where

the distance between two texels is equal to 1.0. The frac-

tional parts of these new coordinates are the blending fac-

tors we are looking for. We illustrate the blending factor

estimation in figure 3.

3.1.2 Higher-order interpolation

Higher-order interpolation schemes in our implementa-

tion are using textures for storing a discretized recon-

struction kernel. The kernel is represented via a high

number of samples. All reconstruction filters, which are

used in our implementation, are separable. This allows

to store the kernel in a 1D texture instead of storing it

[0, 0]

[1, 1]

[X, Y] [8X, 8Y]

fra
c

(8
Y

)

frac(8X)

Figure 3: Blending factor estimation. The resolution of

the original texture is 8 × 8. The texture coordinates

are multiplied with the original resolution. The blend-

ing factors are equal to the fractional parts of these new

coordinates.

in 3D textures and multiplying the 3D kernel tile on-the-

fly. A tile corresponds to a part of the kernel in the in-

terval between two integral numbers. The width of the

kernel thus determines the number of tiles that cover the

whole reconstruction kernel. Our implementation sup-

ports kernels of width four, so the 1D kernel is divided

into four tiles similar to the method proposed by Had-

wiger et al. [2002]. But instead of storing the kernel in

several textures, we use a single four-channel 1D texture

using each channel to store one kernel tile. This reduces

the number of texture fetch instructions and increases the

resampling performance. Figure 4 shows how the kernel

tiles are stored in a four-channel 1D texture.

0 1

R

G

A

B

X

Figure 4: Filter kernel of width four and corresponding

1D floating-point RGBA texture storing the discretized

kernel. Each channel stores one kernel tile. A single

texture fetch at position X returns 4 weight values.

The filtering is divided into four passes, where each

pass is computing the contribution of sixteen neighbor-

ing samples. These intermediate results are summed to-

gether resulting in the value of the resampling point. The

straightforward method to sum-up intermediate results

would be to set the blending operation to addition. Un-

fortunately current hardware does not support blending

with floating-point precision. The blending is done af-

ter four intermediate passes in a separate pass in which

four sub-results are summed together. After the blending

pass the filtered slice is stored in a texture, ready to be

processed with the inverse FFT.



3.1.3 Hardware implementation strategies

This section deals with the current state of graphics hard-

ware. Recent interesting features are discussed, which

are relevant to resampling the data from a 3D texture onto

a slice.

Currently only ATI GPUs support floating-point 3D

textures, so our implementation is running on these type

of cards. Supporting NVidia hardware would require to

store the floating-point value of every sample in a four-

channel fixed-point 3D texture. The slicing part will then

include an additional conversion in order to reconstruct

the original floating-point value. This must be done be-

fore interpolation for every sample contributing to the re-

sampling point on the projection slice. The rest of the

pipeline remains unchanged. Additionally the implemen-

tation of texture-based higher-order interpolation is di-

vided into four passes. This is due to limitations of the

fragment program length on ATI hardware. NVidia sup-

ports much longer fragment programs, i.e., the multi-pass

approach can be folded into a single pass.

The multi-pass approach discussed before, as well as

FVR in general, renders an intermediate image that is

used in the next pass as input. This is done by changing

the rendering target to a texture and vice versa. The ren-

dering target is any kind of buffer that can be bound as

a 2D texture, which is in current OpenGL specification

invisible rendering target called Pbuffer.

3.2 Inverse Two-Dimensional Fast

Fourier Transform

The second part of the rendering stage receives the re-

sampled projection slice as 2D input texture. The inverse

two-dimensional Fourier transform transforms the data

back to the spatial domain and the final result is rendered

into the framebuffer. The transform used in our imple-

mentation is based on a method implemented by Hart et

al. [Engel 2003].

Both transforms, i.e., forward and inverse, can exploit

the separability property in the multi-dimensional case.

In the case of a two-dimensional array first the rows

are transformed as stack of independent one-dimensional

arrays. These frequency arrays are then transformed

column-wise, where each column is also handled sepa-

rately. In case of the three-dimensional transform, the

third dimension is handled analogously.

The two-dimensional Fourier transform is split in two

almost identical parts. Each of these passes consists first

of reordering the input data, also called scrambling. This

pass prepares the data for log2 N butterfly passes where

N is the number of columns or rows respectively. Scram-

bling means swapping two samples, where one sample is

at position x and the other sample is at position y. The

relationship between x and y is that y is the reverse in

the bit order of x. For example a sample at position x=4

(bit pattern 100) is exchanged with the sample at position

y=1 (bit pattern 001). This reverse order function can be

efficiently done using a pre-computed scramble lookup

texture.

The scramble pass is followed by log2 N butterfly

passes. The butterfly passes are performed ping-pong-

wise. One buffer is bound as the source 2D texture, an-

other one as the rendering target. In the next pass the

first buffer changes to be bound as the rendering target

and the second buffer (the rendering target from the pre-

vious pass) is bound as the source texture. Each butterfly

pass first performs a texture fetch into a lookup texture,

which determines addresses of two samples a and b that

contribute to the currently processed fragment. The value

of the principal Nth root of unity w is also contained in

this fetch. Afterwards, a complex multiplication and two

additions are performed as described in section 2.

After performing one scramble pass and log2 N butter-

fly passes in one dimension, the algorithm analogously

performs the same operations to the other dimension. In

case of the inverse transform the values are finally scaled

down by the factor N−1 (see equation 2) in the last pass

and the output is written to the framebuffer. The pro-

cess of a two-dimensional FFT is illustrated in figure 5.

The interested reader is referred to Hart’s implementa-

tion [Engel 2003] for further details.

SCRAMBLE

HORIZONTAL DIRECTION

BUTTERFLY

BUTTERFLY

VERTICAL DIRECTION

SCRAMBLE

INPUT IMAGE

INVERSE 

TRANSFORM 

NORMALIZATION

Figure 5: State diagram of GPU-based FFT.

To reduce the memory requirements by one half, the

Hartley transform can be used instead of Fourier trans-

form. The GPU-based implementation of the Fast Hart-

ley Transform (FHT) is quite similar to the FFT. The

biggest difference is the necessity of a double butterfly.

In case of the FFT the butterfly texture stores the com-

plex number w, addresses to values contributing on the

butterfly and a sign that determines which butterfly re-

sult should be written to the current fragment. The FHT

needs to store five values, therefore it is necessary to have

two lookup textures instead of a single one. One possibil-

ity is to store three addresses of samples that contribute

to the final butterfly result in one three-channel texture.

Precomputed weights of cos and sin terms are stored

in another two-channel texture. The cos and sin terms

are then multiplied with the corresponding input values

and summed together. More details on the FHT can

be found in the referenced literature [Bracewell 1986].



In the multi-dimensional case, the last pass corrects the

product of one-dimensional transforms for each direction

to the multi-dimensional transform. The shader performs

four texture fetches, sums them together and performs

correction according to equations 4 and 5.

4 Results

Our implementation was tested on the ATI Radeon 9800

XT [ATI 2003] with 256 MB of memory. The test data

set was the X-mas Tree [Kanitsar et al. 2002] of size

2563. The rendering performance was tested at two dif-

ferent projection slice resolutions, i.e., 2562 and 5122

pixels. The slice was resampled using four different in-

terpolation schemes: nearest neighbor interpolation, tri-

linear interpolation, tri-cubic interpolation, and interpo-

lation using windowed sinc. The window function was

a Blackman window of width four [Theußl et al. 2000].

The framerates are shown in table 1 below. The tri-cubic

and windowed sinc interpolation are using the same prin-

ciple. Therefore they achieve exactly the same perfor-

mance. The discretized kernel for the higher-order inter-

polation schemes has resolution of 64 samples per filter

tile. The corresponding images are shown in figure 7.

It is clearly visible that the nearest neighbor interpola-

tion has similar performance to tri-linear interpolation,

however, the rendering quality using nearest neighbor re-

construction is rather poor. The results of tri-linear re-

construction seem to be of acceptable quality. The cubic

B-spline filter is an approximative filter, which can be

considered as a low pass filter. The image where the pro-

jection slice was reconstructed using this filter exhibits

less noise as compared to windowed sinc and other re-

construction schemes. All images clearly show copies of

the dataset. This is due to the absence of zero-padding

in the spatial domain [Levoy 1992]. Further datasets ren-

dered using the GPU-based FVR approach are shown in

figure 8.

Resolution NN TL TC IFFT 2D

256×256 1450 1050 180 153

512×512 500 350 45 35

Table 1: Framerates of GPU-based FVR: The first three

columns show framerates of three different interpolation

schemes in the slicing stage: Nearest Neighbor (NN), tri-

linear (TL), and tri-cubic (TC). The fourth column shows

the performance of the inverse transform. The rows de-

scribe the size of the projection slice.

The quality of the image is also strongly influenced by

the resolution of the projection slice. This is shown in fig-

ure 6. This dataset has resolution 2563, which means that

the resolution of the projection slice should be at least

512 × 512. If this condition is not fulfilled overlapping

(a) (b)

Figure 6: Quality comparison using the bonsai tree

dataset (2563). Projection slice resolution is 256 × 256

(a) and 512 × 512 (b). Low projection slice resolution

results in an image distorted by overlapping copies. This

effect is removed when using a sufficient resampling res-

olution.

artifacts appear.

The software FVR using the highly optimized FFTW

library [Frigo and Johnson 1998] was running on an

AMD Athlon XP 2200+ processor with 1.0 GB of RAM

(2×512 DDR, 133 MHz, CL2) and VIA Apollo KT333

chipset. The software implementation is using tri-linear

interpolation, a projection slice of size of 256×256 and

the same test data set of size 2563. The performance of

slicing was 17 frames per second (fps). Wrap-around re-

ordering is running at 45 fps and inverse 2D transform at

26 fps. Note that wrap-around reordering does not take

additional time in the GPU implementation. Using the

algorithm mapped on the GPU, a speed-up factor of ap-

proximately 17 is achieved.

5 Future work

The depth cues proposed by Totsuka and Levoy [1993]

can be also integrated into our framework to improve the

spatial perception. Also additional filters proposed by

Malzbender [1993] will improve the quality of the result-

ing images.

Future work also includes mapping to other platforms,

e.g., NVidia GPUs as well as a high level shading imple-

mentation using the Cg [NVIDIA 2003] respectively the

OpenGL Shading Language [OpenGL 2003].

6 Summary and Conclusions

The mapping of frequency domain volume rendering

onto GPU is presented. The GPU-based rendering



stage results in highly interactive framerates, achieving

a speed-up factor of 17 compared to the CPU-based ap-

proach. We discussed the overall hardware-accelerated

pipeline: The data set is first pre-processed on the CPU.

Then the frequency dataset is uploaded to graphics hard-

ware for the on-the-fly rendering stage. This consists of

two sub-stages slicing and inverse transform. The qual-

ity of the rendered results is strongly influenced by the

used interpolation scheme. Four different interpolation

schemes are presented. The difference between these

interpolation schemes is shown with respect to perfor-

mance and quality.

The performance of frequency domain volume render-

ing does not explicitly depend on the data set resolution.

It depends on the number of resampling points which are

given by the resolution of the projection slice. The data

set resolution influences the texture cache efficiency, i.e.,

the higher the resolution is, the higher is the number of

cache misses. This can lead to slight differences in ren-

dering performance, which is usually ± 2 fps in case of

a 512×512 projection slice resolution.
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(a) (b)

(c) (d)

Figure 7: Result of rendering the X-mas tree test data set. The images show the rendering quality according to the used

interpolation scheme. Nearest neighbor interpolation (a) exhibits noticeable artifacts, which are eliminated by tri-linear

interpolation (b), respectively by higher-order interpolation schemes like tri-cubic interpolation using a cubic B-spline

filter (c) or windowed sinc filter using a Blackman window of width four (d).

Figure 8: Other datasets rendered with projection slice resolution 512 × 512 using a tri-cubic B-spline reconstruction

filter.


