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Abstract

The widespread availability of high-resolution lidar data provides an opportunity to capture micro-

topographic control on the partitioning and transport of water for incorporation in coupled sur-

face - sub-surface flow modeling. However, large-scale simulations of integrated flow at the lidar

data resolution are computationally expensive due to the density of the computational grid and the

iterative nature of the algorithms for solving nonlinearity. Here we present a distributed physically

based integrated flow model that couples two-dimensional overland flow and three-dimensional

variably saturated sub-surface flow on a GPU-based (Graphic Processing Unit) parallel computing

architecture. Alternating Direction Implicit (ADI) scheme modified for GPU structure is used for

numerical solutions in both models. Boundary condition switching approach is applied to par-

tition potential water fluxes into actual fluxes for the coupling between surface and sub-surface

models. The algorithms are verified using five benchmark problems that have been widely adopted

in literature. This is followed by a large-scale simulation using lidar data. We demonstrate that

the method is computationally efficient and produces physically consistent solutions. This com-

putational efficiency suggests the feasibility of GPU computing for fully distributed, physics-based

hydrologic models over large areas.
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1. Introduction1

The interaction between surface and sub-surface flow is an important component of the hydro-2

logic cycle (Winter et al., 1998; Sophocleous, 2002). Capturing these interactions in models is thus3

critical to predicting soil moisture states and the responses of ecohydrological processes to global4

change across various scales (Rodriguez-Iturbe, 2000). Several conjunctive hydrologic models have5

been developed to integrate surface and sub-surface flow and are being used to address a range of6

science questions (Paniconi & Wood, 1993; Morita & Yen, 2002; Panday & Huyakorn, 2004; Ivanov7

et al., 2004; Kumar et al., 2009; Camporese et al., 2010; Shen & Phanikumar, 2010). These models8

have evolved into a family of coupling schemes that can represent the relevant physical processes9

influencing hydrologic responses from small catchment to larger river basin scales (Maxwell et al.,10

2014). In addition, these conjunctive models are being coupled to vegetation-hydrology dynamics11

(Ivanov et al., 2008), solute transport (VanderKwaak & Sudicky, 1999; Weill et al., 2011), and12

land-surface and atmospheric models (Maxwell & Miller, 2005; Maxwell et al., 2007). However,13

existing models have not been applied to capture the micro-topographic controls revealed by light14

detection and ranging (lidar) digital elevation model (lDEM) data (Le & Kumar, 2014). The goal15

of this paper is to present numerical scheme suited for Graphic Processing Unit (GPU) based16

computation to enable studies using lDEM over large areas.17

The increasing availability of high-resolution topographic data from lidar technique has offered18

new opportunities for broader exploration of the control of landscape variability at fine scales19

such as water and nutrient dynamics (Lefsky et al., 2002; Schwarz, 2010; Ussyshkin & Theriault,20

2011; Le & Kumar, 2014) and to explore behavioral response (Kumar, 2011). Previous studies21

have shown that depressions arising from micro-topographic variability can have significant effects22

on streamflow generation (Dunne et al., 1991; Frei et al., 2010; Thompson et al., 2010; Loos &23

Elsenbeer, 2011), soil moisture dynamics (Simmons et al., 2011), and the surface - sub-surface24

flow interactions (Frei & Fleckenstein, 2014). Recent work has begun to identify and characterize25

the spatial distribution of topographic depressions as power laws for size and volume, using lidar26

data (Le & Kumar, 2014). Dynamics associated with these micro-topographic features need to be27

incorporated into conjunctive surface - sub-surface flow models to understand their impacts on the28

hydrologic and biogeochemical processes. This incorporation also leads to a significant increase in29

computational cost for numerical models due to the size of the computational grid and the iterative30
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nature of the algorithms in the coupled models.31

A number of effort have contributed to the development of parallel formulation for some existing32

surface - sub-surface flow (Hwang et al., 2014; Kollet et al., 2010; Maxwell, 2013) and other coupled33

hydrologic systems (Gasper et al., 2014; Hammond et al., 2014). This has established the feasibility34

of high-resolution simulations at regional and continental scales. In addition, several studies have35

dealt with the computational scaling issues ranging from multi-cores to thousands of CPU cores36

on supercomputing systems (Gasper et al., 2014; Hammond et al., 2014; Kollet et al., 2010). This37

has also established the feasibility of high performance CPU computing for a range of applications38

for hydrologic modeling.39

For the past few years, the graphics processing units (GPUs) have become increasingly pop-40

ular and an integral part of today’s mainstream computing systems (Owens et al., 2008). The41

increased capabilities and performance of recent GPU hardware in combination with high level42

GPU programming languages such as NVIDIA’s Compute Unified Device Architecture (CUDA)43

and Open Computing Language (OpenCL) has provided massively parallel processing power for44

numerically intensive scientific applications, and made general purpose GPU computing accessible45

to computational scientists. It also opens a possibility for simulations over larger computational46

grids, for example, detailed ecohydrologic modeling over large domains at lidar-data resolution and47

large-scale computational fluid dynamics (Vanka, 2013). In comparison with central processing48

units (CPUs), however, GPUs have a distinct architecture centered around a large number of fine-49

grained parallel processors (Kirk & Hwu, 2010). Therefore, numerical models must be specifically50

structured such that processes are executed concurrently across many fine-grained processors.51

This study aims to present an integrated flow model that couples two-dimensional overland52

flow and three-dimensional variably saturated sub-surface flow on a GPU-based parallel computing53

architecture (GCS-flow). The goal is to support simulations over large areas using fine resolution54

lDEM to reveal flow and accumulation associated with microtopographic features. Because the55

programmable units of GPU follow a single-instruction multiple-data (SIMD) model, we use finite56

difference alternating direction implicit (ADI) approach for discretizing independent tridiagonal57

linear systems and efficiently solving the governing equations. Though ADI for multi-dimensional58

nonlinear problems has been rarely used in favor of fully implicit methods using Krylov-based59

solvers with preconditioning due to stability, its has advantages over Krylov solvers in terms of60
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scalability for large domains and computational cost as tridiagonal linear systems can be solved61

directly. Since data parallelism in ADI is abundant, there is high potential for this scheme to be62

advantageous on the throughput-oriented design of GPU.63

The rest of the paper is organized as follows. In section 2, we provide an overview of the64

theory and numerical formulation of the GCS-flow model using ADI for GPU computing structure.65

Benchmark tests for model verification against other published solutions are presented in section 3.66

Results and analyses for simulations using lidar topographic data are shown in section 4. We67

demonstrate that the implemented model in GPU enables much faster execution than single-68

threaded performance in CPU. In section 5, the paper closes with the summary and discussion of69

the key points.70

2. Theory and numerical methods71

The theory of coupled surface - sub-surface flow has been an important area of research in the72

field of hydrology. Overview and details of the literature may be found in previous work (Paniconi73

& Wood, 1993; Morita & Yen, 2002; Panday & Huyakorn, 2004; Camporese et al., 2010; Sulis et al.,74

2010; Maxwell et al., 2014). We only provide a brief summary of the governing equations that form75

the basis for the set of coupled equations, the numerical method structured specifically for GPU76

architecture, and the coupling strategy between surface and sub-surface domains.77

2.1. Overland flow78

Overland flow is described by the depth-averaged flow equations commonly referred to as

St. Venant equations that consist of a continuity (mass conservation) and two momentum equa-

tions. The continuity equation is written as:

∂h

∂t
+∇ · (νh) + qe + qr = 0 (1)

where h is water depth on the surface [L], t is the time [T ], ν is depth averaged velocity vector

[L T−1], qe represents exchange fluxes between surface and sub-surface domains [L T−1], and qr

is a general source/sink term [L T−1] such as precipitation and evaporation. In diffusion flow, the

momentum equations for overland flow reduce to:

Sf,i = Sn (2)
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where Sf,i = ∂H/∂xi are friction slopes [-], i stands for the x- and y-directions, and Sn is the slope79

of the water [-] computed as
√

(∂H/∂x)2 + (∂H/∂y)2. The term H = h + z is the water above a80

datum [L] and z is ground elevation above a datum [L] (Lal, 1998a,b).81

Hromadka & Lai (1985) showed that Manning’s equation can be used to establish a flow depth-

discharge relationship:

νi = − h2/3

nb

√
Sn

∂H

∂xi
= −D

h

∂H

∂xi
(3)

in which D is the diffusion coefficient [L2 T−1] and described by:

D =

⎧

⎪

⎨

⎪

⎩

h5/3

nb

√
Sn

, for |Sn| > Smin and h > hmin

0, otherwise

(4)

where nb is the Manning’s coefficient [L−1/3 T ]. The condition h > hmin is used to facilitate wetting

and drying, and Smin is used to maintain D within finite limits (Lal, 1998a). Using Equation (3),

the governing continuity equation of the overland flow in two spatial dimensions can be expressed

as:
∂H

∂t
=

∂

∂x

(

D
∂H

∂x

)

+
∂

∂y

(

D
∂H

∂y

)

− qe − qr (5)

where x and y are the horizontal coordinates [L]. The termD is useful in linearizing and simplifying82

the diffusion flow equations. A variety of numerical algorithms can be used to solve the linearized83

diffusion overland flow equation (Lal, 1998a).84

2.2. Variably saturated groundwater flow85

The governing equation for variably saturated groundwater flow is represented on the basis of

the mixed form Richards equation (Richards, 1931) as:

Ss
θ

φ

∂ψ

∂t
+

∂θ

∂t
= ∇ ·K(θ)

[

∇ψ + k̂

]

+ qs + qe (6)

where ψ is the sub-surface pressure head [L], θ is the soil moisture [-], φ is the porosity [-], k̂86

is the unit-upward vector, Ss is the specific storage coefficient [L−1], K is unsaturated hydraulic87

conductivity [L T−1], qs is a general source/sink term representing pumping or injection [T−1], and88

qe represents the unit exchange fluxes between surface and sub-surface domains [T−1] The ratio89

θ/φ is known as the degree of saturation.90

The mixed form of the variably saturated flow equation has been shown to possess conservation

property to maintain mass balance (Allen & Murphy, 1985; Celia et al., 1990). Different numerical
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methods can be used for solving variably saturated groundwater flow (Huyakorn & Pinder, 1983).

In the mixed form Richards formulation presented here, a closed-form model by van Genuchten

(1980) is used to describe the constitutive relationships between θ, ψ, and K. The water retention

curve is given by:

Θ =
θ(ψ)− θr
θs − θr

=

[

1

1 + (αψ)n

]1−1/n

(7)

where Θ is the relative saturation [-], θr is residual water content [-], θs is saturated water content [-]

(often approximated by the porosity φ), n is the pore-size distribution [-], and α is a parameter

related to the inverse of the air entry suction [L−1]. The unsaturated hydraulic conductivity

function is given by (Mualem, 1976):

K(θ) = KsΘ
1

2

[

1−
(

1−Θ1− 1

n

)1− 1

n

]2

(8)

whereKs is the saturated hydraulic conductivity [L T−1] identified from soil physical properties.91

2.3. Discretization and numerical implementation92

The alternating direction implicit (ADI) method is used for numerical solutions in both surface93

and sub-surface flow models in GCS-flow. This approach has advantages over the fully implicit94

methods in terms of simplicity and cost (on a per iteration basis) because only tridiagonal linear sys-95

tems are required to provide direct solutions. In addition, the discretization of ADI is more scalable96

(O[N ]) than fully implicit approach (O[N d]) as the problem dimensions increase, in which N and d97

represent the size and the number of dimensions of the domain. An et al. (2011) have compared the98

performances between ADI and preconditioned conjugated gradient methods for multi-dimensional99

variably saturated flow implemented on CPU. They showed that ADI method is faster than fully100

implicit method while still yielding very similar results. However, the main disadvantage of ADI is101

the constrains in stability which requires smaller time steps than unconditionally stable fully im-102

plicit methods. ADI has better stability condition than explicit method without hard requirements103

on the time step. Morita & Yen (2002) showed the stability criterion of ADI for 2D overland flow,104

ξ1 = D∆t
(

∆x−2 +∆y−2
)

< 5, and 3D subsurface flow, ξ2 = K∆t
(

∆x−2 +∆y−2 +∆z−2
)

< 1.25,105

where ∆x, ∆y, ∆z are the grid spacing in their respective directions and D and K are shown in106

Equations (5) and (6), respectively.107

The mass balance condition with Crank-Nicolson type scheme forms the basis for the ADI

formulation in overland flow. Using the ADI method, Lal (1998a) showed that the continuity
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equation (1) for overland flow can be expressed in the following split formulation in sequence:

(1− δx)H
n+ 1

2

i,j =(1 + δy)H
n
i,j −

∆t

2
(qe + qr) (9a)

(1− δy)H
n+1
i,j =(1 + δx)H

n+ 1

2

i,j − ∆t

2
(qe + qr) (9b)

where n is the time step, (i, j) denotes spatial location, δx and δy are the standard second-108

order centered differencing operators in x and y direction, respectively. In our model, the coupled109

Equations (9) are solved as two 1-D problems for each row and column of the 2-D domain for110

tridiagonal matrices at every half time step ∆t
2 . Linearized implicit methods use D values of the111

previous time step (Lal, 1998a). Right-hand sides of these equation consist of entirely known112

values at the time of computation. The detailed derivation and numerical form of Equations (9)113

are presented in the Appendix A.114

A simple mass-conservative numerical approach based on the backward Euler scheme associated

with Picard iteration (Celia et al., 1990) is modified for 3-D sub-surface flow using the ADI method

in this study. Because the relationship between θ and ψ is highly non-linear, iterative calculation

and linearization are needed to solve these systems. The backward Euler approximation for 3-D

variably saturated groundwater flow can be written as:

Ss

φ
θn+1,m

[

ψn+1,m+1 − ψn

∆t

]

+

[

θn+1,m+1 − θn

∆t

]

=

∂

∂xi

(

Kn+1,m ∂ψn+1,m+1

∂xi

)

− ∂Kn+1,m

∂x3
+ qe + qs = 0 (10)

where m is the Picard iteration level. Values at level m are known while at level m+1 are unknown.115

Here xi denotes spatial coordinates.116

Using ADI, we sequentially solve Equation (10) at every ∆t
3 time step, keeping one direction

implicit and the other two explicit. The implicit direction is then changed to the next direction (or

axis), and so on until the next time step. The derivation and full numerical form of Equations (10)

separated in x, y, and z direction using ADI are presented in Appendix B. The iteration process

to solve Equations (10) continues until the difference between the calculated values of the pressure

head of two successive iteration levels become less than the user-defined tolerance for convergence:

∣

∣ψn+1,m+1 − ψn+1,m
∣

∣ ≤ εψ (11)
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Independent linear systems obtained from ADI for the two models are suitable for parallelizing in117

a large number of fine-grained processors in GPU devices.118

2.4. GPU Parallelization119

We implement the integrated surface - sub-surface flow model on a GPU parallel computing120

structure. The model supports the use of different generations and types of CUDA-capable GPUs,121

which consists of a sequential host program that may execute parallel programs known as kernels122

on a parallel device. While data processing is performed on the host using C++ programming123

language, all model computation is executed in parallel on NVIDIA’s GPUs (device) using CUDA124

programming language (Nickolls et al., 2008). CUDA virtualizes multiprocessors as blocks and125

processors as threads, which enables users to run a potentially large number of parallel threads126

and blocks across different generations of GPUs regardless of the number of physical processors127

(Zhang et al., 2010). Each thread runs the same scalar sequential program for solving tridiagonal128

linear systems (ADI solvers).129

We sequentially solve the 2-D overland flow and 3-D sub-surface flow sub-models in parallel130

using these ADI solvers and couple them through an iterative strategy presented in the next131

section. More specifically, for each model we set up and solve simultaneously a large number132

of systems of n linear equations of the form Ax = b, where A is the tridiagonal matrix, and x133

and b are vectors. This approach discretizes each governing equation for both sub-models into134

a number of independent tridiagonal linear systems which can be solved simultaneously using135

parallel cyclic reduction (PCR) method (Hockney & Jesshope, 1988) and the Thomas (TDMA)136

algorithm (Thomas, 1949). To efficiently solve these systems in parallel, we map the PCR solvers to137

the GPU’s two-level hierarchical architecture with systems mapped to blocks and equations mapped138

to threads to utilize shared memory. If matrix size is small enough (i.e. in vertical z direction),139

TDMA solvers are mapped directly to threads to utilize local and register memory (Figure 1). The140

number of systems for large simulation domain we solve is usually far larger than the number of141

multiprocessors, so that all multiprocessors are fully utilized.142

At the thread level, the total storage consists of five main vectors: three for the matrix diagonals,143

one for the right-hand side, and one for the solution vector. These five vectors store the data of all144

systems continuously, with the data of the first system stored at the beginning of the arrays, followed145

by the second system, the third system, and so on. For each system, we load the three diagonals146
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and right-hand side from global memory to register, local, or shared memories (Figure 1), solve147

and store the solution back to global memory on device. Therefore, global memory communication148

only occurs at the beginning and end of each time step in ADI solver. Other vectors (i.e. for149

the linearization of diffusion coefficients and van Genuchten relationship) can be generated in150

threads for the solutions of surface and sub-surface flow. As data is stored in global memory,151

no communication between CPU and GPU is needed as the direction (or axis) of calculation is152

changed.153

2.5. Coupled surface - sub-surface formulation154

A boundary condition switching procedure (Paniconi & Wood, 1993; Camporese et al., 2010;155

Sulis et al., 2010; Camporese et al., 2014) is used for coupling the surface and sub-surface flow156

in GCS-flow model. Specifically, the boundary condition at any surface ground nodes of the sub-157

surface domain is allowed to switch between a Dirichlet and a Neumann type, depending on the158

saturation (or pressure head) state of that node. A Neumann (or specified flux) boundary condition159

corresponds to atmosphere-controlled infiltration or exfiltration with the flux equal to the rainfall or160

potential evaporation rate given by the atmospheric input data. In contrast, a Dirichlet (specified161

head) boundary condition is activated when the surface node reaches a threshold level of saturation162

(and ponding) or lower moisture deficit and the infiltration and exfiltration processes become soil-163

limited. This switching algorithm is applied for both rainfall and evaporation cases. We refer to164

previous studies (Camporese et al., 2010, 2014) for further details on boundary condition switching165

approach.166

Flows between the sub-surface and overland flow domains are represented through the unit167

interactive flux qe across ground surface in Equations (1) and (6). Through this term, the coupling168

strategy we used partitions potential (atmospheric) fluxes into actual fluxes across the land surface169

and changes in surface storage. In the surface model, the surface to sub-surface contribution170

and water depth are determined after solving the overland flow equation for subsequent input to171

the sub-surface flow equation, while the sub-surface to surface contribution is determined after172

solving the sub-surface flow equation for subsequent procedure for the solution of the coupled173

equation. The atmospheric fluxes are resolved only in subsurface model. The exchange of flux174

performed via the switching algorithm in the sub-surface module and the simple mass balance175

calculation in the surface module resolves the coupling in the model without the need to introduce176
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new parameters representing an exchange process or an interface property but still guarantees the177

necessary continuity of flux and pressure head at the ground surface (Camporese et al., 2010).178

3. GPU computing performance179

To demonstrate the efficiency of GPU computing for ADI approach, we compared the per-180

formance of iterative ADI solvers in 5 simulations for unsaturated sub-surface flow between a181

single-threaded sedec-core CPUs (16 Intel Xeon 2.67 GHz processors, written in C++) and each182

of two NVIDA GPUs (Tesla C2070 and Tesla K40, written in CUDA C++). The simulation do-183

mains are isotropic, rectangular, and set at different dimensions (Nx ×My × Pz): (i) 78× 78× 10;184

(ii) 128 × 128 × 16; (iii) 256 × 256 × 16; (iv) 512 × 512 × 16, and (v) 1024 × 1024 × 16, where185

Nx,My, and Pz are the numbers of soil layers or grids in x, y, and z directions, respectively. The186

mesh discretization and time stepping are identical for all 5 cases: ∆x = 5 [m], ∆y = 5 [m],187

∆z = 0.2 [m], and ∆t = 0.05 [hr]. Simulations are run for 48 [hr]. Parameters for the closed-form188

equation for the soil water retention curve and unsaturated hydraulic conductivity function are189

obtained from previous study (Celia et al., 1990), where α = 0.0335 [cm−1], θs = 0.368, θr = 0.102,190

n = 2, K = 0.0332 [m/hr]. Initial and boundary conditions were taken as ψ(x, y, z, 0) = −5.0191

[m], ψ(x, y, Pz, t) = ψbottom = −3.0 [m], ψ(x, y, 0, t) = ψtop = −1.0 [m], no-flow boundaries are192

used for horizontal flow, and no source and sink terms are included. While C2070 devices (second-193

generation) have 448 CUDA cores and deliver up to 515 gigaflops of double-precision peak perfor-194

mance, K40 devices (third-generation) are configured with 2,880 CUDA cores and deliver up to195

1,430 gigaflops of double-precision peak performance (NVIDIA Corporation, 2011).196

Figure 2 shows the relative speed-up for solving ADI using tridiagonal matrix systems in two197

GPU devices over that in CPU. The average speed-up of the simulations for C2070 and K40 are198

26.3 and 83.2, respectively. The speedup comes from the ability of single instruction, multiple199

thread architecture (Kirk & Hwu, 2010) in GPUs to simultaneously execute thousands of linear200

systems solver. However, since each GPU core is clocked at as low as few hundreds Mhz, and201

latency due to fetching for matrix entries is limited by the memory subsystems, the speedup is not202

close to the number of GPU cores. Nevertheless, we achieve a performance typically seen in GPU203

computing (Lee et al., 2010). We also see a large difference between the two GPU generations in204

this comparison. The K40 device with improved architecture to accelerate computation, higher205
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theoretical peak-performance and number of processors is 3 to 6 times faster than the C2070 device.206

The discrepancy in performance is also found among the size of the computational grid. Larger207

domains of simulation tend to get better speed-up than smaller domains as the occupancy of GPUs208

processor is higher. Our scalable ADI solver implemented in this work is also expected to utilize209

the architecture improvement of next CUDA-capable GPU generations.210

4. Benchmark simulation tests211

Due to the lack of an analytical solution for coupled surface - sub-surface flow, we use a set212

of benchmark test cases summarized below to compare our model with those published by others213

for verification. We use direct value comparison method (Bennett et al., 2013) for measuring the214

quantitative performance among models in all test cases. Detailed information about these tests215

can be found in previous work (Gottardi & Venutelli, 1993; Panday & Huyakorn, 2004; Kollet &216

Maxwell, 2006; Kumar et al., 2009; Sulis et al., 2010; Maxwell et al., 2014). The test cases include:217

(i) tilted V-catchment, (ii) infiltration excess, (iii) saturation excess, (iv) slab tests, and (v) re-218

turn flow. These involve simple geometries associated with other features (topography, hydraulic219

and hydrogeological properties, and atmospheric forcing), but with complex physical responses220

designed to thoroughly compare model behavior (Maxwell et al., 2014). The test cases also feature221

step functions of rainfall followed by a recession period. The response variables analyzed include222

domain outflow, saturation conditions, and location of intersection between the water table and223

land surface (Maxwell et al., 2014). Model parameters used for these tests are similar to the224

set shown in two inter-comparison studies by Maxwell et al. (2014) and Sulis et al. (2010) and225

presented in Table 1. To avoid confusion, we only select four representative models based on simi-226

larities and differences for comparison in this paper: ParFlow (Parallel Flow) - uses fully implicit227

finite difference method for numerical solution (Kollet & Maxwell, 2006); Cathy (Catchment HY-228

drology) - uses finite element method and the boundary condition switching approach for coupling229

strategy (Paniconi & Wood, 1993; Paniconi & Putti, 1994); tRIBS+VEGGIE (Triangulated Irreg-230

ular Network (TIN)-Based Real Time Basin Simulator) - uses an irregular spatial discretization231

and first-order exchange for coupling strategy (Ivanov et al., 2004); and PAWS (Process-based232

Adaptive Watershed Simulator) - uses asynchronous linking and couples 1-D Richard equation in233

unsaturated zone with saturated domain (Shen & Phanikumar, 2010). Additional comparisons for234
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similar tests from other available models can be found in previous studies (Maxwell et al., 2014;235

Qu & Duffy, 2007).236

4.1. Tilted V-catchment237

The tilted V-catchment problem is a standard test case for the overland flow model. The238

domain consists of two inclined planar rectangles of width 800 [m] and length 1000 [m] connected239

together by a 20 [m] wide sloping channel as shown in Figure 3a & b. This test only considers the240

surface flow processes and is used to assess the behavior of the surface routing component without241

any contribution from the sub-surface by assuming that no infiltration occurs. The slope of the242

planes is 5% and the slope of the channel is 2%. The simulation consists of a 90 [min] rainfall243

event (at a uniform intensity of 1.8× 10−4 [m/min]) followed by 90 [min] of recession (Figure 3c).244

The comparisons of outflow result from GCS-flow with other four models in the tilted V-245

catchment test case are shown in Figure 3d. The GCS-flow model generally predicts quite similar246

behaviors to the four models selected. GCS-flow exhibits agreement with tRIBS-VEGGIE for247

rising limb, prediction of time to steady state, peak flow, and recession phases. However, the248

largest model differences during the rising phase are found in the predictions of GCS-flow and249

Parflow model. We have also found that outflow in GCS-flow occurs slightly earlier than all other250

models during the rising limb phase of the hydrograph. This discrepancy may be attributed to251

the time-splitting treatment of ADI for diffusive flow in comparison with other overland routing252

models. Nonetheless, there is a greater agreement among all models during the recession phase.253

4.2. Infiltration Excess254

The infiltration excess tests aim to investigate the Hortonian runoff produced before complete255

saturation of the soil column. This is achieved by specifying homogeneous saturated hydraulic256

conductivity Ks smaller than the rainfall rate. We test the model with two different low values of257

Ks as shown in Table 1. The domain is an inclined planar rectangle of width 400 [m] and length258

320 [m] (Figure 4a) with a uniform soil depth of 5 [m]. The slope of the planes in x−direction259

and y−direction are 0.05% and 0%, respectively. No-flow boundary is prescribed at bottom of the260

domain, and the initial water table is set at 1 [m] depth. A rainfall event 200 [min] in duration261

with a rate of 3.3×10−4 [m/min] was applied to generate runoff, followed by 100 [min] of recession262

period (Figure 4b). Model outflow is measured at the outlet of the grey strip of cells (Maxwell263

et al., 2014; Sulis et al., 2010).264
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Figure 4c shows the outflow rate of GCS-flow as a function of time from the infiltration excess265

test as compared with other models. In general, the four models produce very similar hydrograph266

behavior throughout all phases as well as the magnitude of the outflow for both values of Ks.267

For the lower Ks test case, the largest difference in outflow is found again between GCS-flow and268

Parflow during the rising limb phase. We observe that the outflow is larger than Parflow at the269

beginning but the two models tend to converge at the end of the rising limb. This discrepancy is270

similar to the overland V-catchment test case shown above. For the higher Ks test case, in which271

overland flow is less dominant, the outflow obtained from GCS-flow is in better agreement with the272

four models. However, we also see that the recession curve drops slightly faster than other models273

and most discrepancy is with Parflow in the last 60 [min] of the simulation time. Associated with274

overland flow, the sharper drop of the recession curve may be attributed to the infiltration that is275

treated using ADI and boundary switching algorithm in GCS-flow model.276

4.3. Saturation Excess277

The saturation excess tests are designed to investigate the Dunne runoff produced by ensuring278

complete saturation of the soil column from below and the intersection of the water table with the279

land surface. This is also achieved by specifying a homogeneous saturated hydraulic conductivity280

(Ksat = 6.94×10−4 [m/min]) which is larger than the rainfall rate (Table 1). Boundary conditions281

and domain of simulation are the same as the infiltration excess test (Figure 4a). However, we run282

the model for two different values of initial water table depth at: 0.5 [m] and 1.0 [m] as shown in283

Table 1. The test case with water table depth near the ground is expected to produce runoff earlier284

and will be associated with larger flow magnitude than the test with deeper water table level. As285

in the previous test, a rainfall event 200 [min] in duration with a rate of 3.3× 10−4 [m/min] was286

applied to generate runoff, followed by 100 [min] of recession Figure 4b.287

Figure 4d shows the outflow rate of GCS-flow as a function of time from the saturation excess288

test and how it compares with other four models. We observe that the hydrograph produced from289

GCS-flow model is in most agreement with tRIBS+VEGGIE and PAWS for both tests. In addition,290

difference between GCS-flow and Cathy and Parflow is smaller than in the infiltration excess test,291

especially for shallow water table case. Outflow occurs at very similar time for both shallow water292

table tests (∼20 [min]) and deep water table test (∼120 [min]). Peak flow is also found in good293

agreement with all models in the shallow test. For deep water table test case, GCS-flow is in largest294
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disagreement with Cathy during the rising limb. The difference in peak flow between GCS-flow295

and Cathy is about 1.1 [m3/min] (12%). This is quite surprising as the two models use the same296

boundary switching approach for calculating infiltration. But we note that Cathy has the lowest297

peak flow among all the models. The discrepancy may comes from the numerical method used for298

both overland and subsurface flow in the models that need further investigations.299

4.4. Slab Test300

The slab test illustrates the effect of spatial heterogeneity of soil hydraulic conductivity in301

the same domain as in the infiltration and saturation excess tests. In this simulation, the soil302

is generally uniform (with a Ks value of 6.94 × 10−4 [m/min]) except for a 100-m long, 0.05-303

m thick, very low conductivity slab with Ks = 6.94 × 10−6 [m/min] as shown in Figure 5a.304

The saturated hydraulic conductivity of the slab is designed to generate infiltration excess runoff305

while the hydraulic conductivity of the rest of the domain is large and will only generate surface306

runoff through saturation excess. Boundary conditions and domain of simulation are the same307

as the previous two tests, and water table is set at 1 [m] depth. As in the infiltration excess308

case, a rainfall event 200 [min] in duration with a rate of 3.3 × 10−4 [m/min] was applied to309

generate runoff, followed by 100 [min] of recession (Figure 5b). We expect the combination of both310

infiltration excess and saturation excess runoff in outflow for this test.311

The comparisons of outflow result from GCS-flow with other models in the slab test case are312

shown in Figure 5c. We found differences between the GCS-flow model and all others in this test.313

First, runoff occurs after 80 [min] which is later than tRIBS+VEGGIE model but earlier than314

PAWS, Parflow, and Cathy models. Second, During the rising limb phase, the hydrograph curve315

from GCS-flow is quite smooth while ones produced from other models are quite flat. Finally,316

the peak flow from GCS-flow model is closer to Cathy model (1.1 [m3/min]) and lower than the317

other two models. Both GCS-flow and Cathy models are similar in using the boundary condition318

switching approach, which might explain this similarity in the response of runoff. During the319

recession phase, similar to other tests, outflow in GCS-flow model is in much better agreement320

with other models.321

Snapshots of saturation profile obtained from GCS-flow model at: 0, 60, 90, and 150 [min]322

are presented in Figure 6. These moments of time, before the recession period, are chosen to323

show the complex physical responses of heterogeneous soil columns to infiltration, saturation, and324
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lateral unsaturated flow. While water table in soil columns with uniform Ks rises quickly due to325

saturation excess, water table in the soil columns with heterogenous Ks (slab on top) rises very326

slowly due to infiltration capacity limits. Lateral unsaturated flow is also observed due to gradient327

of moisture in the sub-surface. Saturation profile for other models can be found in Maxwell et328

al. (2014, see Figure 8). We also found some differences in saturation profiles among all models.329

These may likely be explained due to the different coupling strategies and numerical scheme for330

solving the models.331

4.5. Return flow332

This test case uses the same hillslope domain as for the infiltration and saturation excess tests333

(see Figure 4a) but with much higher values of hydraulic conductivity (6.94 × 10−2[m/min]) to334

allow rapid rise and fall of the water table. The water table is initially set at 0.5 [m] depth. Return335

flow is generated by an atmospheric forcing sequence formed by an initial 200 [min] rainfall event336

of uniform intensity 1.5 × 10−4[m/min] followed by 200 [min] of evaporation at a uniform rate337

of 5.4 × 10−6[m/min] (Figure 7a). Two hillslope inclinations are considered (0.5% and 5%) to338

highlight the effect of different characteristic times scales of the surface and subsurface processes339

(Maxwell et al., 2014; Sulis et al., 2010). The dynamics of return flow are evaluated by tracking340

the evolution of the intersection point between water table and the land surface. The model is also341

run with a uniform discretization comprising 100 vertical layers as done in other studies342

Figure 7b&c show the intersection point between the water table and the land surface as343

a function of time for hillslope inclination of 0.5% and 5%, respectively. For the 0.5% slope344

case, in which infiltration and subsurface flow remain predominant, although the prediction of345

time for steady state is similar for all models, we observe that water table along the hillslope346

obtained from GCS-flow rises and intersects the ground more uniformly than other models. During347

evaporation phase, the recession of the water table is slower than other models, except for Cathy348

(sheet flow). For the 5% inclination case, in which the catchment drains faster, we do see more349

disagreements among GCS-flow and others during all rising, quasi-steady equilibirum, and recession350

phases. Specifically, the intersection point in GCS-flow are closer to the upslope point during steady351

state than others which implies that the moisture gradient resulting from the surface slope was not352

captured well in GCS-flow. This could be due to the discretization of finite difference in ADI for353

solving the variably saturated equation. This issue may also explain the uniform rising of water354
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table before reaching steady state in both cases. The recession of the water table is faster than the355

gentler-slope case and exhibits better agreement with PAWS and Parflow.356

In general, the GCS-model performs quite similarly to other conjunctive models that have been357

published in literature. Although, we observe greater differences among models in more complex358

tests and owing to different numerical approach, all model are very consistent in more simple tests.359

These results support the rationale for the modeling scheme developed using GPUs for larger scale360

simulation presented in the next section.361

5. Simulations with lidar data362

We run the GCS-flow model for an observed topography in the Goose Creek watershed of363

the Sangamon River Basin, in central Illinois, USA (Figure 8). This watershed is intensively364

managed for agriculture and is part of the Critical Zone Observatory for Intesively Managed Land-365

scapes (http://imlczo.org). Lidar data used is available from the Illinois State Geological Survey366

(https://www.isgs.illinois.edu). The domain of simulation is 6.6 km × 7.4 km with 2.0m soil depth.367

Topographic resolution of the simulation domain is 1.2 m × 1.2 m (Figure 8c). This results in over368

35 million grid points on the surface and 350 million grid points over the entire subsurface domain.369

At this high resolution, micro-topographic features can be observed on the land surface such as370

road-side ditches, small depressions, etc. Topographic gradient in the study site is quite small as371

elevation variation is very small (from 205 to 222 [m] above sea level, average slope ≈ 0.25%). Soil372

physical properties are available from Soil Survey Geographic database (SSURGO) distributed by373

Natural Resources Conservation Service (http://websoilsurvey.sc.egov.usda.gov). The average val-374

ues of soil properties used in our simulation is follow: Ks = 0.0054 [m/min], θs = 0.37, θr = 0.10,375

α = 3.35 [cm−1], and n = 1.25.376

Observed atmospheric forcing data obtained from nearby Bondville flux tower is used to drive377

the GCS-flow model. We use precipitation collected at 30 min intervals during a three week period378

in May 2005 for running the simulations (Figure 9a). Evaporation rate is assumed at constant rate379

1 [mm/day] for the domain. Initial soil moisture is set uniformly at 0.26 over the entire domain. In380

surface domain, no-flow boundaries are applied at the lateral boundaries. In sub-surface domain, we381

use a fixed boundary pressure head at -4 [m] for the bottom and no-flow boundaries for the lateral382

interfaces. In term of computational efficiency, the simulation domain results in approximately 3.5383
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×108 unknowns (grid cells) for computation. The model takes about 19.6 [hr] on Tesla K40 GPUs384

for completion. Given using a single GPU device, this computational efficiency is significant and385

makes hydrologic simulations feasible over large areas.386

A smaller area (900 m×1080 m) within the simulation domain is chosen (red box in Figure 8c)387

to show for detailed illustration of the vertical variation of soil-moisture as impacted by micro-388

topographic features. The snapshot of overland spatial flow in this reduced area after 320 [h] is389

presented in Figure 9b. The model shows flow accumulation in topographic depressions and in the390

road-side ditches which carries significant flows in these agricultural landscapes. These features391

are often ignored in modeling with lower resolution and coarser computational grid. The profile392

of soil moisture over depth at the same time is shown in Figure 9c. While the top boundary of393

the domain is controlled by surface water availability and atmospheric fluxes, the low values of394

bottom boundary allow water to drain significantly to soil layers below the simulation domain.395

We however observe the positive correlation between micro-topographic depressions on the land396

surface and soil moisture distribution below-ground. Areas where water is accumulated due to low397

elevation on the landscape provide more moisture for infiltration than other area.398

6. Conclusion399

A formulation of coupled surface - sub-surface flow model using lidar-resolution topographic400

data that is implemented on GPU parallel computing architecture has been presented. The nu-401

merical solution for both overland flow and sub-surface flow model is based on the alternating402

direction implicit (ADI) method. While 2-D classic ADI is applied for overland flow model, an403

iterative ADI associated with Picard iteration approach is used for 3-D sub-surface model due to404

the non-linearity in the relationship in the mixed form of Richards equation. This approach com-405

bines benefits in simplicity and cost for computation because only tridiagonal linear systems are406

involved for providing direct solution and the ability to decompose into fine-grain tasks for GPU407

parallel structure. The model has been compared with others using several standard benchmark408

test cases. The results from benchmark tests generally show good agreements among all the model409

for a wide variety of benchmark test cases. Some model differences are found in complex tests due410

to different coupling strategies and numerical solution.411

The GCS-flow model has been used to simulate an intensively managed landscape in the Goose412
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Creek watershed, Illinois, USA. The lidar-derived topographic data at 1.2 m resolution is used413

for detailed hydrologic simulation. Results presented indicate that this performance is faster than414

CPU and has the potential to apply for detailed ecohydrologic modeling in large areas.415

We suggest that future work should aim to expand this model to understand the dynamics416

and linkages between soil moisture and microtopographic features on a range of applications in-417

cluding ecohydrology, agriculture, etc. In addition, with rapid advances in GPU computing, the418

model can be used as a starting point to explore: (i) possible alternative formulations (i.e. fully419

implicit scheme, iterative methods) based improved computational libraries for GPU developed by420

the community; (ii) new memory structures and capabilities released in the next GPU generations421

for parallel computing in general and for hydrologic modeling in particular; and (iii) implementa-422

tions and scaling behaviors of hydrologic and integrated flow modeling on multiple-GPUs. Such423

efforts will lead to an improved understanding and a more robust generation of integrated surface-424

subsurface flow modeling using high-performance GPU computing.425

Appendix A: ADI discretization for 2D overland flow426

The mass balance condition with Crank-Nicolson type scheme forms the basis for the ADI

formulation in overland flow model. Following a study by Lal (1998a), the discretization of overland

flow continuity equation may be written as:

Hn+1
i,j = Hn

i,j +∆t

[

α
Qnet(H

n+1)

∆x∆y
+ (1− α)

Qnet(H
n)

∆x∆y
− qe − qr

]

(A1)

in which α is the weighting factor for numerical scheme (α = 0.5 for Crank-Nicolson), n is the

time step, (i, j) denotes spatial location, and Qnet [L
3] is the net inflow to the cell as a function of

potential head, computed as:

Qnet = Di+ 1

2
,j(Hi+1,j −Hi,j) +Di− 1

2
,j(Hi−1,j −Hi,j)

+Di,j+ 1

2

(Hi,j+1 −Hi,j) +Di,j− 1

2

(Hi,j−1 −Hi,j) (A2)

whereD is diffusion coefficient [L2 T−1] (See equation (4) in the main text). The spatial differencing

operators used in the derivation are as follows:

δxH
n
i,j =0.5

∆t

∆x∆y

[

Di+ 1

2
,j(H

n
i+1,j −Hn

i,j) +Di− 1

2
,j(H

n
i−1,j −Hn

i,j)
]

(A3a)

δyH
n
i,j =0.5

∆t

∆x∆y

[

Di,j+ 1

2

(Hn
i,j+1 −Hn

i,j) +Di,j− 1

2

(Hn
i,j−1 −Hn

i,j)
]

(A3b)

18



427

After rearranging the unknown values to the left-hand side, Equations (A1) and (A2) can be

now expressed using the standard second-order centered differencing operators as:

(1− δx − δy)H
n+1
i,j = (1 + δx + δy)H

n
i,j − (qe + qr)∆t (A4)

By neglecting higher-order terms, Equation (A4) can also be split into sequences:

(1− δx)H
n+ 1

2

i,j =(1 + δy)H
n
i,j −

∆t

2
(qe + qr) (A5a)

(1− δy)H
n+1
i,j =(1 + δx)H

n+ 1

2

i,j − ∆t

2
(qe + qr) (A5b)

428

The ADI finite-difference expressions for the overland flow can be written as:

H
n+ 1

2

i,j − 0.5
∆t/2
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(
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(A7)

The coupled Equations (A6) and (A7) are solved as two 1D problems for each row and column429

of the 2D domain using the TDMA or PCR algorithms for tridiagonal matrices at half time step430

∆t
2 . Right-hand sides of these equation consist of entirely known values at the time of computation.431

The values of H
n+ 1

2

i,j are obtained from Equation (A6) in the first-half time step and then used to432

solve Equation (A7) in the second-half time step.433

Appendix B: ADI discretization for 3D variably saturated sub-surface flow434

The backward Euler scheme associated with Picard iteration is one of the most widely used

time approximation for the Richards equation and applied in this study. The two terms in the

left-hand side of the variably saturated sub-surface flow equation are approximated as:

Ss
θ

φ

∂ψ

∂t
+

∂θ

∂t
≈ Ss

φ
θn+1,m
i,j,k

[

ψn+1,m+1
i,j,k − ψn

i,j,k

∆t

]

+

[

θn+1,m+1
i,j,k − θni,j,k

∆t

]

(B1)
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Here, (i, j, k) denote spatial location in x, y, and z directions, respectively, n and m denote

the time and the Picard iteration levels, respectively. After Celia et al. (1990), moisture content

at new time step and a new iteration level θn+1,m+1
i,j,k is expanded using first-order truncated Taylor

series, in terms of pressure-head perturbation, about the expansion point ψn+1,m as follow:

θn+1,m+1
i,j,k = θn+1,m

i,j,k +
dθ

dψ

∣

∣

∣

∣

n+1,m

i,j,k

(ψn+1,m+1
i,j,k − ψn+1,m

i,j,k ) +O(δ2) (B2)

The specific water capacity function of the soil C(ψ) [L−1] is defined as:

C(ψ) =
dθ

dψ
(B3)

Using equation (B2) and (B3), the Equation (B1) can be expressed as:
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]

(B4)

Rearranging and use the increment in iteration: δm = ψn+1,m+1 − ψn+1,m, the finite difference435

alternating direction implicit formulation at every ∆t/3 can be written as follow:436

• Time splitting in z direction437
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• Time splitting in x direction438
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• Time splitting in y direction439
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]

+
1

∆z2

[

Kn+1,m

i,j,k+ 1

2

(ψn+1,m
i,j,k+1 − ψn+1,m

i,j,k )−Kn+1,m

i,j,k− 1

2

(ψn+1,m
i,j,k − ψn+1,m

i,j,k−1)

]

+
Kn+1,m

i,j,k+ 1

2

−Kn+1,m

i,j,k− 1

2

∆z
−

Ssθ
n+1,m
i,j,k

φ(∆t/3)

[

ψn+1,m
i,j,k − ψ

n+ 2

3
,m

i,j,k

]

−
θn+1,m
i,j,k − θ

n+ 2

3

i,j,k

(∆t/3)
(B7)

Similarly, the coupled Equations (B5), (B6), and (B7) are solved as three 1D problems for440

each directions of the 3D domain using the TDMA or PCR algorithms for tridiagonal matrices at441

one-third time step ∆t
3 . Right-hand sides of these equation consist of entirely known values at the442

time of computation.443
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Table 1: Parameters values for the Test Cases
Parameters V-catchment Infiltration Excess Saturation Excess Slab Case Return Flow

Horizontal mesh size, ∆x = ∆y [m] 5 20 20 1 5

Vertical mesh size, ∆z [m] n/a 0.2 0.2 0.05 0.05

Time step, ∆t [min] 0.1 0.1 0.1 0.1 0.1

Initial water table depth, wt [m] n/a 1.0 0.5, 1.0 1.0 0.5

Specific storage, Ss [m−1] n/a 5× 10−4 5× 10−4 5× 10−4 5× 10−4

Porosity, φ [-] n/a 0.4 0.4 0.4 0.4

Saturated hydraulic conductivity,
n/a

6.94× 10−5

6.94× 10−4
6.94× 10−4

6.94× 10−2

Ksat [m min−1] 6.94× 10−6 6.94× 10−6

Manning’s coefficients, nb [m−
1

3 min] n/a

- Hillslope 2.5× 10−4 3.31× 10−4 3.31× 10−4 3.31× 10−4 3.31× 10−4

- Channel 2.5× 10−3 na na na na

Rainfall rate [m min−1] 1.8× 10−4 3.3× 10−4 3.3× 10−4 3.3× 10−4 1.5× 10−4

Evaporation rate [m min−1] 0 0 0 0 5.4× 10−6

x-direction slope, Sx [%] 5.0 0.05 0.05 0.05 0.5, 5

y-direction slope, Sy [%] 2.0 0 0 0 0

vanGenuchten parameters

Alpha, α [cm−1] n/a 1.0 1.0 1.0 1.0

Pore-size distribution, n [-] n/a 2.0 2.0 2.0 2.0

Residual water content, θr [-] n/a 0.08 0.08 0.08 0.08

Saturated water content, θs [-] n/a 0.4 0.4 0.4 0.4
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Figure 1: Parallel implementation of the ADI solvers in GPU computing. (a) Computational grid domain in three-

dimensional space. (b) ADI approach discretizes the computational domain into 1-D problems involving independent

tridiagonal linear systems. Each is assigned into a single thread (system mapped to threads) or block (system mapped

to block) for numerical solution. A large number of fine-grained GPU processors can solve these systems in parallel.

(c) Illustration of actual speed-up in GPU parallel computing. Thread synchronization is required at all time step,

which reduces the speed-up from a linear trend for iterative ADI solver.
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Figure 3: Benchmarking outflow response using a tilted V-catchment for overland and channel flow [after Sulis et al.

(2010); Maxwell et al. (2014)]. (a) Tilted V-catchment domain - three-dimensional view. (b) Tilted V-catchment

domain - top view. (c) Rainfall series consists of a uniform rainfall event from 0 to 90 [min] followed by 90 [min] of

no rainfall. (d) Comparisons of overland and channel outflow at the outlet between GCS-flow and other models.
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Figure 4: Benchmarking outflow response using homogeneous sloping tests [after Sulis et al. (2010); Maxwell et al.

(2014)] (a) Illustration of the domain for sloping tests. Outflow is measured at the outlet of the grey strip of cells.

(b) Rainfall series consists of a uniform rainfall event from 0 to 200[ min] followed by 100 [min] of no rainfall. (c and

d) Comparisons of outflow at the outlet between GCS-flow and other models for two test cases: (c) Infiltration excess

with two different values of hydraulic conductivity; and (d) Saturation excess with two different values of water table

depth.
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Figure 5: Benchmarking flow response using heterogeneous (slab) sloping tests [after Sulis et al. (2010); Maxwell

et al. (2014)] (a) Domain and hydraulic conductivity distribution for slab test. (b) Rainfall series consists of a

uniform rainfall event from 0 to 200 [min] followed by 100 [min] of no rainfall. (c)Comparison of outflow at the

outlet between GCS-flow and other models.
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Figure 6: Saturation profile for the slab test at time 0, 60, 90, and 150 [min] obtained from GCS-flow model
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Figure 7: Benchmarking the evolution of the intersection point between the water table and the land surface [after

Sulis et al. (2010); Maxwell et al. (2014)]. (a) Atmospheric forcing consist of a uniform rainfall event from 0 to 200

[min] followed by 200 [min] of uniform evaporation in log scale. (b, c) Simulation results for the return flow test

using hillslope inclination of (b) 0.5% slope and (c) 5 % slope.
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Figure 8: Area of simulation used to illustrate the GCS-flow model at lidar-data resolution. (a and b) Map of Goose

Creek watershed of the Sangamon River Basin in central Illinois, USA. (c) Lidar data in Goose Creek watershed.

Red rectangle shows the area used in illustration in Figure 9.
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Figure 9: Profile of the spatial distribution of soil-moisture for the rectangle domain shown in Figure 8c. (a)

Precipitation time series used for the simulation period; (b) Water depth simulated on the study area by GCS-flow

at 320 hr; and (c) Corresponding soil moisture profile at layers over depth simulated by GCS-flow at 320 hr
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