
Department of Electrical & Computer Engineering

GPU-based Parallel Computing for Nonlinear

Finite Element Deformation Analysis

GPU-BASED PARALLEL COMPUTING FOR NONLINEAR FINITE

ELEMENT DEFORMATION ANALYSIS

BY

RAMIN MAFI, M.A.Sc

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

AND THE SCHOOL OF GRADUATE STUDIES

OF MCMASTER UNIVERSITY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

© Copyright by Ramin Mafi, December 2013

All Rights Reserved

Master of Applied Science (2013) McMaster University

(Electrical & Computer Engineering) Hamilton, Ontario, Canada

TITLE: GPU-based Parallel Computing for Nonlinear Finite

Element Deformation Analysis

AUTHOR: Ramin Mafi

M.A.Sc., Electrical Engineering

McMaster University, Hamilton, Canada

B.Sc., Biomedical Engineering

B.Sc., Electrical Engineering

Amirkabir University, Tehran, Iran

SUPERVISOR: Dr. Shahin Sirouspour

NUMBER OF PAGES: xv, 156

ii

to my parents,

for their endless love,

support and encouragement

ABSTRACT

Computer-based surgical simulation and non-rigid medical image registration in

image-guided interventions are examples of applications that would benefit from

real-time deformation simulation of soft tissues. The physics of deformation for

biological soft-tissue is best described by nonlinear continuum mechanics-based

models which then can be discretized by the Finite Element Method (FEM) for a

numerical solution. Computational complexity of nonlinear FEM-based models

has limited their use in applications requiring real-time or fast response. However,

the data-parallel nature and intense arithmetic operations in nonlinear FEM mod-

els are suitable for massive parallelization of the computations, in order to meet

the response time requirements in such applications. Modern GPU architectures

with large number of computing cores and a high memory bandwidth offer a cost

effective hardware platform in compact form factor for carrying out these types of

computations.

This thesis is concerned with computational aspects of complex nonlinear de-

formation analysis problems with an emphasis on the speed of response using

a parallel computing philosophy. It proposes a novel Graphic Processing Unit

(GPU)-based implementation of the total Lagrangian FEM using implicit time inte-

gration for dynamic nonlinear deformation analysis. This is a general formulation

iv

of the deformation analysis. It is valid for large deformations and strains and can

account for material nonlinearities. A penalty method is used to satisfy the phys-

ical boundary constraints due to contact between deformable objects, and a local

mesh refinement data structure and algorithm is proposed to produce a finer mesh

at the contact boundaries.

The proposed GPU-based solution addresses computational challenges in con-

structing nonlinear FEM matrices, as well as solving the linear system of equa-

tions resulting from implicit time integration. The proposed set of optimized GPU

kernels for computing the FEM matrices achieves more than 100 giga floating-

point operations per second (GFLOPS) and up to 28× speed-up on a GTX 470 GPU

device compared to a sequential implementation on an Intel core i7-3770 CPU.

Two different designs based on the element-by-element and conventional Precon-

ditioned Conjugate Gradients (PCG) algorithms are presented and compared for

solving the FEM equations arising in deformation analysis. The use of a novel vec-

tor assembly kernel and memory optimization strategies result in a performance

gain of up to 25 GFLOPS in the PCG computations.

In summary, this thesis presents a fast, accurate and scalable solution for simu-

lation of soft-tissue deformation. The speed-up achieved with the proposed paral-

lel implementations of the algorithms will be instrumental in the development of

advanced surgical simulators and medical image registration methods involving

soft-tissue deformation.

v

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Dr. Shahin Sirous-

pour for his invaluable suggestions, support and encouragement throughout my

graduate program at McMaster university. In addition, I give my special thanks

to Dr. Alexandru Patriciu for his immense knowledge on GPU computing and

insightful comments and suggestions throughout my Ph.D. research program. I

also would like to thank my other committee members, Dr. Nicola Nicolici and Dr.

Aleksandar Jeremic for their interest in my work.

My deepest gratitude goes to my parents, grandmother, sister and brother for

their unwavering love and encouragement throughout my life. I’d like to acknowl-

edge my late uncle, Vahab Montazery, whom without his encouragement and sup-

port, my ambition to pursue graduate studies abroad could hardly be realized.

Although no longer with us, he is always in our hearts and thoughts. I’d also like

to give my sincere thanks to my uncle Esfandiar Mafi and his kind family for their

love, caring and occasional visits.

I was fortunate to know many interesting people and make great friends during

my graduate program in Canada. I would like to acknowledge all my friends,

specially Fabiola De Vierna, who taught me to discover the joy of exploring and

trying new things. Peyman Setoodeh for all the great moments and fun movie

vi

nights, Sadegh Dadash whom we shared lots of joy and sweat of volleyball, gym

workout and chess games together! Alireza Azami for the ping-pong challenges,

Mahboob Bolandi for the music band and Ali Khalatpour for the foosball games!

Additionally, thanks to all my lab-mates at McMaster Telerobotics, Haptics

and Computational Vision Laboratory: Bahram Marami, Hamed Mousazadeh,

Pawel Malysz, Behzad Mahdavikhah, Behzad Iranpanah, Sajad Salmanipour and

Saman Rahnamaei for the stimulating discussions and making a great working

environment. I greatly appreciate the partial funding of my research provided by

Ontario Graduate Scholarships (OGS) and Natural Sciences and Engineering Re-

search Council of Canada (NSERC).

vii

NOTATION

τ and t current and next time-steps respectively
u or U displacement vector
F deformation gradient tensor
J determinant of the deformation gradient
I Identity tensor
E Green-Lagrange or Green strain tensor
ε Engineering strain tensor
η quadratic term of the Green strain tensor
σ Cauchy stress tensor
S second Piola-Kirchhoff stress tensor
C elastic modulus (material) tensor
Cr right Cauchy-Green deformation tensor
IC , IIC , IIIC first, second and third invariants of right Cauchy-Green tensor
Ψ strain energy density function
λ and µ Lamé constants
e right superscript e denotes the quantity is defined over a finite element
KL and KN linear and non-linear components of the stiffness matrix
Kα contribution of the penalty-based contact model in the stiffness matrix
F vector of nodal internal forces due to internal stresses
R vector of external forces
Rc vector of contact forces
BL and BN linear and nonlinear strain-displacement matrices
p, t and pt nodal position, elemental and nodal-elemental matrices of the mesh data
⊎

assembly operator of the finite element vectors/matrices
g gap between a contact pair
fc contact force magnitude
α penalty parameter

viii

CONTENTS

Abstract iv

Acknowledgements vi

Notation viii

Contents ix

List of Figures xiii

1 Introduction 1

1.1 Problem Statement . 3

1.1.1 Accurate Physical Modeling . 4

1.1.2 Deformable Contact Simulation 8

1.1.3 Numerical Solution of Linear System of Equations 9

1.2 Parallel Computing . 10

1.3 Thesis Contributions . 12

1.4 Thesis Outline . 15

1.5 Related Publications . 17

ix

2 Literature Review 18

2.1 Deformable Models . 19

2.1.1 Mass-Spring Systems . 20

2.1.2 Finite Element Method . 21

2.1.3 Other Methods . 23

2.2 Contact Models for Deformable Objects Modeling 24

2.3 Parallel Computing in Deformable Models 27

2.3.1 Parallel Implementation of the Mass-Spring Systems 27

2.3.2 Parallel Computing for the Finite Element Method 28

2.4 Solving Linear System of Equations . 29

3 Physics of Deformation Based on Continuum Mechanics 33

3.1 Deformation Description . 34

3.2 Strain Measures . 38

3.3 Stress Measures . 40

3.4 Constitutive Equations . 43

3.4.1 Linear Elasticity . 43

3.4.2 Hyperelastic Material Model . 44

3.5 Principle of Virtual Displacement . 46

4 FEM Formulation 48

4.1 General Overview . 49

4.2 Derivation of FEM Matrices . 52

4.2.1 The Differential Equation . 53

4.2.2 Incremental Stress and Strain Terms 54

x

4.2.3 FEM Discretization . 55

4.2.4 Steady-state Equilibrium Equation 57

4.3 Computational Cost . 58

5 FEM in Presence of Contact 60

5.1 Discretized Contact Surface . 61

5.2 Penalty-based Formulation of Contacts 64

5.3 Mesh Refinement . 68

5.3.1 A Note on Data Storage Scheme 70

5.3.2 Marking Elements for Refinement 72

5.3.3 Updating Elemental Matrix . 75

6 GPU Parallel Computing for Solving a Linear System of Equations 78

6.1 Direct Solvers . 79

6.2 Iterative Solvers . 81

6.3 Preconditioning Methods . 82

6.4 Conventional and Element-by-Element PCG 83

7 GPU-based Compute Platform for Deformation Analysis 88

7.1 GPU Kernels for FEM Matrix Construction 93

7.2 Shared Memory and Registers in FEM Computations 95

7.3 Memory Coalescing . 99

7.4 GPU Kernels for Solving Large System of Linear Equations 100

7.5 Assembly Process on GPU . 102

7.6 Optimized Vector Assembly on GPU . 104

xi

8 Results 107

8.1 Performance in Computation of FEM Matrices 108

8.2 Computing Performance of the Conjugate Gradients Method 113

9 Conclusions and Future Work 119

9.1 Conclusions . 119

9.2 Future Work . 121

Appendix A Voigt Notation 124

Appendix B Newmark time integration 127

Appendix C Gaussian Quadrature Integration 129

Appendix D Shape Functions 131

Appendix E Technical Specifications of GTX 470 134

Bibliography 136

xii

LIST OF FIGURES

1.1 Factors for interest in computer-based medical simulation. 2

1.2 Block diagram of interactive simulation of deformable objects. 5

1.3 Different sources of nonlinearity. 7

1.4 Static and dynamic FEM. 7

1.5 Computing diagram: (a) Nonlinear FEM (b) CG algorithm 13

1.6 Objectives and methodology. 14

3.1 Displacement of a particle in two different states. 34

3.2 Deformation of a line segment in two different states. 35

3.3 Change of infinitesimal volume. 36

3.4 Change of infinitesimal surface area. 37

4.1 General steps in the finite element method. 50

4.2 Configuration of a deformable body at different time increments. 51

4.3 Nonlinear FEM formuation . 53

5.1 Contact pair nodes . 61

5.2 Contact between two non-rigid objects. 64

5.3 Contact in discrete form. 65

5.4 Mesh matrices . 70

5.5 Removing hanging node in an adjacent element. 72

xiii

5.6 Different scenarios for triangle refinement. 73

5.7 Refinement of contact and neighbor elements. 73

5.8 Marking edges of contact and adjacent mesh elements for refinement. . . 74

5.9 Updating mesh data for bisected elements 75

5.10 Updating mesh data for the general case . 77

6.1 Pseudo-code for PCG method . 84

6.2 Pseudo-code for element-by-element PCG method 85

6.3 Kernels for elemental matrix by vector multiplication 86

7.1 CPU and GPU architectures. 89

7.2 Grid and blocks structure in CUDA. 90

7.3 CUDA memory structure, lifetime and scope. 91

7.4 General heterogeneous scheme of CPU/GPU computing 92

7.5 Shared memory and registers for matrix multiplication 98

7.6 Memory coalescing . 99

7.7 Local to global mapping of an elemental matrix 102

7.8 Memory contention in assembly . 103

7.9 Vector assembly on GPU . 105

7.10 Comparison of two kernels for vector assembly 106

8.1 Model test cases . 108

8.2 GPU performance in FEM computations . 109

8.3 GPU performance in computing strain-displacement matrix 109

8.4 GPU performance in computing Green strain matrix 110

8.5 GPU performance in computing linear stiffness matrix 110

8.6 GPU performance in computing nonlinear stiffness matrix 110

xiv

8.7 Examples of contact deformation in 2D models. 112

8.8 An example of the local mesh refinement . 113

8.9 GPU performance in CG computations . 114

8.10 Timing distribution of GPU kernels . 115

8.11 GFLOPS of matrix-vector multiplication . 115

8.12 Execution time of CG and EbE CG methods 116

8.13 Examples of deformation of 3D models . 117

8.14 Heterogenuous FEM computing . 118

8.15 Transparent scalability in CUDA . 118

C.1 Gaussian quadrature integration . 130

D.1 Three node triangle in local and global coordinates systems. 131

E.2 Fermi architecture. 135

xv

C
H

A
P

T
E

R

1
INTRODUCTION

Advanced surgical simulation systems and intraoperative image registration al-

gorithms are examples of applications that require fast/real-time analysis of non-

rigid body deformation. Virtual reality (VR)-based simulators are emerging as a

promising alternative to the conventional means of training in the medical field [1,

2]. They allow surgeons to practice on virtual patients as they would operate on

real patients with realistic sensory feedback.

Research studies on the role of human errors in the medical field [3, 4] point to

a need for sufficient theoretical knowledge as well as proficient fine manipulation

skills for reducing such errors. Computer-based simulation offers a safe and reli-

able environment for medical trainees to learn, repeatedly practice and improve

their manual skills without placing patients at risk of harm. Computer-based sim-

ulation allows proper training of rare clinical cases by replicating those scenarios.

1

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

In this approach, the trainee’s progress can be quantitatively evaluated and the

task difficulty level can be adjusted accordingly. Fig. 1.1 summarizes some factors

contributing to the growing interest in computer-based medical simulation tech-

niques [5].

Figure 1.1: Different factors affecting interest in computer-based medical simula-
tion.

The ability to compute soft-tissue deformation in real-time is an indispensable

component in a computer-based surgical simulation. There has been considerable

research in developing high-fidelity deformation models where fidelity refers to

the extent of similarity of appearance and behavior of the model to the real sys-

tem [6]. One main challenge in this regard is to find a good balance between the

computation speed and accuracy of the model.

Fast deformation analysis using a physical model of soft tissue can also be use-

ful in the development of deformable medical image registration algorithms for

interventional and diagnostic purposes [7]. Deformable registration consists of

deriving a nonlinear local transformation to minimize the difference between two

images [8]. The main idea is to register low-resolution intraoperative images to

2

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

high-resolution preoperative images in order to guide the surgeon through the

procedure. This technique is in particular very useful in minimally invasive surg-

eries where only a small incision is made and the surgeon may not rely on direct

visualization of the surgical site.

Non-rigid registration in image-guided surgery is challenging. A physical de-

formable model can be useful as a constraint for performing non-rigid registration.

To account for the organ motion and deformation, the boundary displacement of

the deformed body is used as an input to the deformable model [9]. One example

of use of deformable models in image-guided surgery is in assessing brain shift

in minimally invasive neurosurgery [10, 11]. In this procedure, the brain is sub-

ject to deformation due to changes in boundary constraints. Another example is

in percutaneous therapy, where pre-operative intervention plans often have to be

monitored and revised in real-time to account for soft-tissue deformation due to

needle insertion as well as organ movement and respiratory motion. Independent

of the imaging modality used, intra-operative images can be registered to a pre-

operative surgical plan in order to provide the operator with real-time feedback as

the procedure unfolds [12].

In summary, in computer-based surgical simulations and image-guided surg-

eries of soft tissues, it is essential to have a realistic and reliable mechanical model

to simulate interactions with deformable organs in real-time.

1.1 Problem Statement

Realistic modeling of deformable interactions can be computationally expensive.

An ideal solution for applications involving fast or real-time deformation analysis

3

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

should address both accuracy and speed to the required level. The goal in this

thesis is to step toward such a solution by proposing an efficient and highly parallel

computation scheme based on Graphic Processing Unit (GPU) devices.

In real-time or fast applications, strict constrains on the computation time make

deformation analysis a daunting task. Interactive simulation systems require a

refresh rate of around 30 Hz for smooth graphics rendering. Additionally, if force

feedback (haptics) is employed, the update rate should be in the range of 100-1000

Hz [12]. Violating these timing constraints could degrade the simulation quality

and even cause physical instability when haptic feedback is involved.

In general, deformable interaction analysis demands a common framework to

address a number of issues involving (a) realistic graphics rendering, (b) handling

collisions, (c) accurate physical modeling, (d) deformable contact simulation and

(e) numerical solution of a large system of equations. Fig. 1.2 presents a block di-

agram of these computing tasks. Note that an optional haptic device can enable

bidirectional interaction between the user and the deformable tissue model. This

thesis is concerned with the tasks (c) to (e), which involve massive computing op-

erations on large sets of data. A more detailed discussion of each of these problems

follows.

1.1.1 Accurate Physical Modeling

The response of the deformable model to external loads is characterized by stiffness

property. There has been significant research in modeling the stiffness of non-

rigid objects [13]. Heuristic mass-spring models [1] are easy to develop but not

accurate [14]. On the other hand, methods based on computational continuum

4

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

Physical Modeling

- Large deformation/rotation
- Material nonlinearity

Boundary Constraints

Fixed load/displacement

(d) Imposed by contact

Position Data

Contact Nodes

Normal Vectors

(e) Numerical Solver

Force Data

Deformation Data

(a) Graphics Display

Haptic Device

(b) Collision
Detection
Module

Finite Element Model(c)

=x

?
?

...

?

...

Update for the
Next Time-step

Discrete domain equations

- Haptic tool
- Deformable surfaces

Figure 1.2: Different computing tasks involved in interactive simulation of de-
formable objects.

mechanics such as the finite element method (FEM) have gained popularity since

they can potentially produce accurate results [15]. FEM can specify stiffness of

the model using few material parameters as opposed to the mass-spring model,

which requires adjusting a large number of spring constants [16]. However FEM is

computationally expensive, making its use in real-time applications challenging.

Stiffness of a deformable object depends on the model geometry, material prop-

erty and boundary constraints. In a linear model, changes in these factors are con-

sidered to be small throughout the deformation analysis and the stiffness remains

unchanged. However, this is not a valid assumption in many real-life examples

such as in surgical simulation involving biological soft tissue. In such cases, a

5

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

nonlinear finite element analysis should be considered. Nonlinearity adds more

complexity to the finite element analysis since in general, actual geometry, bound-

ary conditions and material properties are unknown a priori and an incremental

procedure should be followed to find the solution [17]. Generally there are two

types of nonlinearity in the area of solid mechanics, namely geometric and material

nonlinearity [18].

• Geometric nonlinearity is attributed to large strains, or small strains but large

rotation. Examples of such nonlinearity can be found in modeling of metal

forming or rubber-like materials exposed to large strains [19]. The latter is a

common case in soft tissue modeling in surgical simulation. Geometric non-

linearity also includes deformation dependant load or displacement bound-

ary constraints.

• Material nonlinearity occurs when the stiffness varies due to the changes in

material property. This is often expressed by a nonlinear constitutive equa-

tion relating stress and strain. Examples of such nonlinearity include but

not limited to hyperelasticity, plasticity and viscoelasticity. The latter is time-

dependent.

Fig. 1.3 displays a general procedure for deriving the stiffness model of a de-

formable object and different sources of nonlinearity in the model. Large deforma-

tion/rotation is considered in the definition of a nonlinear strain term and material

nonlinearity is included in the stress-strain relationship. There is also boundary

condition nonlinearity imposed by contact interaction, which will be discussed in

Section 1.1.2.

6

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

Displacement Strain Stress

Boundary Constraints

Stiffness
Geometric
nonlinearity
due to large
deformations

Material
nonlinearity

Nonlinearity due to
contact boundary
constraints

displacement , load

Figure 1.3: Different sources of nonlinearity.

Implicit

Static
Explicit

Finite Element Analysis

Dynamic

Figure 1.4: Static and dynamic FEM.

Linear or nonlinear finite element equations can be derived for steady-state or

transient analysis. In structural mechanics, the former is referred to as static anal-

ysis and is time independent. The latter is known as dynamic analysis and is time

dependent. In dynamic analysis, inertial effects and velocity-dependent damp-

ing forces are also considered. In this case, spatial discretization is followed by

temporal discretization using explicit or implicit integration methods [20]. Implicit

integration is computationally costly, since it involves solving a large linear system

of equations per time-step, similar to the one in static analysis; however it allows

for larger time increments without causing numerical instability. Explicit integra-

tion significantly reduces the computations per time step as it does not involve

numerical solution of a large system of equations. However it suffers from stabil-

ity issues and may require prohibitively small time steps to satisfy the numerical

7

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

stability criteria. The diagram in Fig. 1.4 shows that both implicit dynamic analysis

and static analysis lead to a set of linear equations for finding the unknown object

deformation.

1.1.2 Deformable Contact Simulation

Contact analysis is required for any mechanical system involving interaction be-

tween different bodies. Boundary constraint imposed by contact should prevent

physical interpenetration between surfaces in contact. There are different approaches

to apply contact boundary constraints on the problem. Simplified systems of in-

teractive deformation analysis consider only single-point contacts, for example in

simulation of a surgical tool tip in contact with a deformable tissue. However,

for accurate results in a more general case, contact between deformable surfaces

should be considered. Interaction of deformable organs with each other in a surgi-

cal simulation is an example of a case requiring such contact modeling.

Contact can be between two (or more) objects at equilibrium state, known as

static contact, or in transient state, known as dynamic contact. The latter is more

complex to model. Friction at contact surfaces increases the complexity of the con-

tact behavior. Contact analysis between two or multiple objects is an inherently

nonlinear problem, since the contact region and displacement boundary condi-

tions imposed by contact are unknown before solving for the deformation [21].

Since contact nonlinearity is associated with the geometry at the surface area, it

can be considered as one form of geometric nonlinearity [18].

8

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

1.1.3 Numerical Solution of Linear System of Equations

The linear system of equations arising from the static or implicit dynamic FEM,

depending on the size of the model, can be quite large. Solving this system of

equations is the most time consuming task in the simulation loop for interactive

deformable objects in Fig. 1.2. The system of equations can be expressed in matrix

form Ax = b, where matrix A has a sparse symmetric structure. There are different

algorithms to solve Ax = b. These algorithms are grouped into direct and iterative

methods. In solving a large sparse system of equations, iterative methods can offer

better savings in terms of memory usage and computing time compared to direct

methods [22]. Preconditioned Conjugate Gradient (PCG) [23] is one of the most

popular iterative methods. Owing to its robust numerical behavior and relatively

low computational complexity, PCG is widely used in solving the FEM discrete

system of equations [24].

In summary, nonlinear finite element analysis using implicit integration of de-

formation in applications requiring fast/real-time response is very challenging. In

past, two general approaches have been pursued to solve this complex computa-

tional problem. In the first approach, the models are greatly simplified to reduce

the computation time, but at the expense of reduced accuracy [25, 26]. Another

approach relies on achieving high performance computing through parallel exe-

cution of instructions on computer clusters or special-purpose many-core acceler-

ators. Nodal and elemental computations in FEM are mostly data independent

and hence are well-suited for parallel implementation.

9

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

1.2 Parallel Computing

In the last decade, the conventional approach of speeding up CPUs by increasing

the processor clock speed has faced some barriers [27]. Physical limits on power

consumption, heat dissipation and current leakage [27, 28] have capped the CPU

clock frequency. A new trend has emerged to achieve increased computing power

through expansion to multiple processing cores rather than focusing on single-

threaded architectural optimizations. Beside multi-core CPUs, many-core accel-

erators have gained increasing popularity in high-performance computing. To-

day, programmable GPUs, FPGAs (Field Programmable Gate Arrays) and recently

released Intel MIC (Many Integrated Core architecture) offer viable solutions for

compute-intensive data-parallel problems [29, 30]. In a heterogeneous comput-

ing paradigm, serial portions of an algorithm can run on a CPU, while compute-

intensive tasks are delegated to a many-core co-processor. Heterogeneous com-

puting is a powerful approach to utilize the massive parallel computing power of

available resources to reduce solution time [31].

Parallel computing requires extra effort for modifying algorithms so can be ex-

ecuted concurrently. Some challenges in parallel computing include learning rel-

evant programming paradigms, optimal usage of memory bandwidth, achieving

good load balancing between the computing cores, minimizing data communica-

tion, and managing synchronization and possible data race conditions. Addition-

ally, this approach may not be applicable to all types of computational problems

due to data dependencies. A computational problem in which the same operation

is performed concurrently on a large set of data is known as being data-parallel

and potentially can fit well on many-core accelerators. Fortunately, the majority of

10

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

computations involved in physics-based deformation analysis are of data-parallel

nature.

High performance computing solutions based on computer clusters for real-

time deformation simulations are limited due to the cost and complexities associ-

ated with distributed memory [32]. FPGAs are highly flexible in customizing the

computing hardware architecture to the problem, and through large number of

processing elements and fast on-board memory, can achieve very high computing

performance. However, developing an FPGA-based solution for the computations

of the general nonlinear deformation model is very challenging [33]. In recent

years, GPUs have evolved from special-purpose computing devices into general

purpose computing platforms. Thanks to their massive computing power, trans-

parent scalability, relative ease of programming, accessibility, low cost and a small

form factor, GPUs have gained popularity in high-performance computing [31].

Intel MIC is a recent competitor to general-purpose GPUs in the area of high-

performance computing [34]. Intel MIC can be programmed with OpenMP [35],

Intel Threading Building Blocks (Intel TBB) [36] or Intel Cilk Plus [37]. The new

intel co-processor shows comparable performance to high-end GPUs in some par-

allel applications; however it is not as ubiquitous as GPUs.

A critical challenge for achieving high degrees of efficient parallelism in co-

processors is to employ an optimal strategy for using memory hierarchies. Mod-

ern GPU architectures provide a large memory bandwidth to the highest level of

memory hierarchy, known as global memory. But access to the global memory has

a very high latency (400-600 clock cycles) [38]. Additionally, in an improper mem-

ory access pattern, the amount of data that can be transferred to the computing

11

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

units at each cycle can be fairly limited, hence reducing the degree of parallelism.

Therefore, a key point for achieving good performance is to hide latency by em-

ploying large number of active threads and utilizing maximum possible effective

memory bandwidth.

1.3 Thesis Contributions

The FEM analysis of continuum mechanics based models of deformation is known

to generally produce accurate and reliable results in modeling of soft-object defor-

mation. However, the use of such models in real-time applications is inhibited by

their complexities, specially when considering nonlinearity and massive computa-

tions required for obtaining and solving the resulting system of equations. Fig. 1.5

illustrates the computing blocks in finite element formulation and the iterative con-

jugate gradients method for solving the resulting system of equations. This thesis

investigates methods for efficient parallel execution of the loops and vectorized

computations on GPU in nonlinear FEM deformation analysis .

Fig. 1.5 is based on an element-by-element CG algorithm [39] where matrix by

vector multiplication is performed directly on elemental FEM matrices followed

by vector assembly. An alternative approach is to first assemble the elemental

matrices into a global sparse matrix, and then perform the matrix by vector mul-

tiplication in parallel. Both of these approaches will be studied and compared in

Chapters 6 and 8.

In this thesis, highly parallel GPU-based methods are proposed for computing

nonlinear FEM matrices and solving the resulting system of equations. The defor-

mation model is based on the general total Lagrangian nonlinear FEM formulation

12

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

Computing
the strain

Computing
the stress

Computing FEM
matrices

Computing Contact
Matrices

Loop over all the elements Loop over contact elements

Nonlinear FEM Formulation

Elemental Matrix-Vector
Multiplication

Vector AssemblySome Other
Vectorized

Computations

Loop over all the elements

Conjugate Gradient Solution

Computations per Time-step

Deformation
Data

Figure 1.5: Computing diagram consisting of nonlinear FEM calculations followed
by CG iterative method.

presented in [40]. This formulation considers large displacements, large strains

and material non-linearities, without using the so-called co-rotational approxima-

tion technique. For dynamic analysis, the Newmark implicit time integration [20]

is utilized. The proposed GPU-based solution addresses the real-time comput-

ing challenges in both areas of nonlinear FEM matrices construction and solving

the system of equations resulting from implicit time integration. It exceeds 100

GFLOPS in the computation of nonlinear FEM matrices and 25 GFLOPS in the it-

erative equation solver on a single GTX 470 GPU device. These are very promising

results for applications requiring fast rendering of soft-tissue deformation.

The main objective of the proposed computational methods is to achieve speed,

accuracy and scalability in FEM-based deformation analysis. Fig. 1.6 shows how

the work in this thesis accomplishes each of these objectives. The results of this

13

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

research are of great significance to applications requiring fast computation of the

deformation response of soft objects, including in surgical training and medical

image registration applications.

Figure 1.6: Objectives and methodology.

A key novelty of the proposed computational methods for GPU-based nonlin-

ear finite element analysis of deformable objects is in their ability to efficiently uti-

lize memory bandwidth to continuously supply data operands to a large number

of computing units within modern GPU architectures. The computation of finite

element matrices is embarrassingly parallel and can be scaled up based on available

GPU resources and beyond, to multiple-GPUs. The iterative PCG solver involves

matrix-vector operation which can be performed either with local elemental ma-

trices or a global sparse matrix. An efficient GPU implementations of both of these

approaches will be presented in this thesis.

In summary, the main contributions of this thesis are:

• A novel highly parallel and optimized GPU-based method for computing the

finite element matrices in nonlinear two and three dimensional deformation

models.

14

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

• Addressing the main sources of nonlinearity including material, geometric

due to large rotations/deformations and contact interaction under an im-

plicit integration scheme, fully realized on GPU.

• A data structure and marking scheme to allow integration of a basic mesh

refinement method at contact elements.

• A novel vector assembly method which uses GPU shared memory to increase

the computation performance.

• Presenting and comparing two different GPU implementations of the precon-

ditioned conjugate gradients method for solving large systems of equations.

• Performance analysis of the GPU kernels.

1.4 Thesis Outline

The rest of this thesis is organized as follows:

Chapter 2 reviews the literature on different physical models and computing

approaches for deformable interaction analysis. The focus of this review is on par-

allel computing methods with biomedical applications. The previous work related

to deriving finite element matrices, contact formulation, assembly and solving the

linear system of equations on multi-core and many-core processors is presented in

this chapter.

Chapter 3 presents some relevant theoretical background on the continuum me-

chanics. First, a mathematical description of the deformation is presented. Then,

strain and stress measures are derived. Constitutive equations relating stress and

strain of a material are discussed next. At the end of this chapter, the principal

15

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

of virtual displacement is reviewed as a basis for establishing the finite element

formulation.

Chapter 4 explores a total Lagrangian formulation of the finite element method

in presence of large deformations and material nonlinearity. Different steps of

the FEM formulation including continuum differential equilibrium equation, in-

cremental decomposition, linearization and discretization using shape functions

are briefly reviewed in this chapter.

The first part of Chapter 5 is dedicated to the computational contact modeling

where a mathematical description of the discrete interaction surfaces and physical

constraints due to contact are presented. Then a penalty method for imposing the

physical contact boundary constraints is discussed. The second part of Chapter 5

presents a local mesh refinement method at the contact boundaries for enhanced

accuracy. Details of the mesh data structure and marking stage for the parallel

GPU implementation are discussed at the end of this chapter.

Chapter 6 is concerned with the numerical solution of the linear system of equa-

tions resulting from the FEM analysis. A number of efficient numerical algorithms

and preconditioning techniques are discussed and compared. At the end, two

different implementations of the conjugate gradients method for GPU-based com-

puting are analysed.

Chapter 7 describes GPU-based massively parallel computations involved in

the finite element deformation analysis. An introduction to GPU computing and

basic concepts in CUDA architectures is followed by discussion of optimization

strategies of the GPU kernels. Details of computing FEM matrices, assembly and

Jacobi preconditioned CG on GPU are discussed in this chapter.

16

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

Chapter 8 presents the results of several numerical experiments and assesses

the performance of different GPU kernels for FEM-based deformable interaction

modeling. Conventional and element-by-element PCG are compared and con-

trasted in this chapter for GPU-based computing.

Chapter 9 concludes the thesis with a summary and a critical discussion of

the modeling and computing methods presented in this thesis. Several possible

avenues of future work are also briefly discussed.

1.5 Related Publications

Journal Paper

1- R. Mafi and S. Siroupour, "GPU-based Acceleration of Computations in Nonlin-

ear Finite Element Deformation Analysis", International Journal for Numerical Meth-

ods in Biomedical Engineering (in press).

2- R. Mafi and S. Sirourpour, "GPU Acceleration of Hyperelastic Finite Element

Method with Large Deformations and Contact Simulation", in preparation for sub-

mission to Journal of Parallel and Distributed Computing.

3- B. Mahdavikhah, R. Mafi, S. Sirouspour and N. Nicolici, "A Multiple FPGA

Parallel Computing Architecture for Real-time Simulation of Soft-object Deforma-

tion", ACM Transactions on Embedded Computing Systems (in press).

Refereed Conference Paper

1- B. Mahdavikhah, R. Mafi, S. Sirouspour and N. Nicolici, "Haptic Rendering

of Deformable Objects using a Multiple FPGA Parallel Computing Architecture",

Proc. of FPGA 2010 Conf., Monterey, California, February 2010.

17

C
H

A
P

T
E

R

2
LITERATURE REVIEW

Advances in computing technology has given rise to new applications of medical

training simulators and computer-assisted surgical tools. This chapter reviews dif-

ferent approaches in modeling and computation of soft-object deformation, with a

particular emphasis on biomedical applications.

Accurate numerical analysis of non-rigid objects can be computationally de-

manding. Generally, this may consist of spatial and temporal discretization, eval-

uation of the stiffness in the discrete domains considering nonlinear attributes and

numerical solution for deformation considering the boundary conditions. There

are numerous methods in the literature intended for reducing the computational

complexity of deformable models in order to achieve a fast simulation response

time [25, 41–43]. However, most of these methods have limited accuracy and are

18

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

only valid for a small domain of applications. For example, disregarding non-

linear effects and using a linear model is valid only for applications where the

object undergoes small deformation and adheres to linear elastic material behav-

ior. This is not often the case in simulation of surgical procedures. Using a coarse

spatial discretization of a model domain would reduce its computations at the ex-

pense of its fidelity and accuracy.

High performance computing powered by modern many-core processors has

created an opportunity to employ realistic deformation models in applications re-

quiring fast/real-time response. What will follow is a brief review of different

deformable models, contact models, computations in deformation analysis and

methods for solving large systems of differential equations in the literature with a

particular interest in parallel computing.

2.1 Deformable Models

Deformation modeling has found an ever-increasing significance in different ap-

plications ranging from graphic animation to medical image registration, haptics

and surgical simulation [44]. Depending on whether the deformation models are

physics-based or not, they can be generally classified in different categories. Some

early examples of deformable models such as spline [45, 46], free form deforma-

tion [47] and chain-mail algorithm [48] lack rigorous foundation in physics of the

problem. These models are mainly applied in computer graphics and have limited

application in surgical simulation since they often produce unrealistic response [1].

In the following, mass-spring system and finite element method and some other

physics-based models are briefly reviewed. A more comprehensive survey of the

19

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

subject can be found in [13, 44, 49, 50].

2.1.1 Mass-Spring Systems

Mass-spring systems gained popularity in earlier research thanks to their relative

simplicity for real-time implementation [51]. In this approach, the model domain

is considered as a set of mass points interconnected via springs. Using the second

law of Newton, the differential equations describing the dynamics of each mass

point can be derived. The main computing steps involved in a mass-spring model

are [52]:

(a) computing the net force applied per mass point. The force vectors are found

by applying the Hooke’s law over spring links connected per mass point.

(b) time integration of the mass points. This can be done using explicit or implicit

time integration methods [53, 54] on the differential equation per mass point.

(c) updating the positions of the mass points.

In a mass-spring system, the continuous equations of the motion are discretized.

This non-continuum mechanics basis results in degraded accuracy compared with

that achievable with the finite element method where the continuity is preserved

by using interpolation functions. Large mass-spring models may impede rapid

global propagation of deformation, resulting in local deformations [50]. In gen-

eral, mass-spring systems cannot realistically model volume incompressibility in

three-dimensional models. To address this problem, some extra ad hoc force con-

straints may be employed [44, 55].

Another problem associated with mass-spring systems is the lack of a clear

physical relation for defining the spring constants. Some previous studies tried

20

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

to identify these parameters with reference to results achieved by more accurate

methods based on continuum mechanics [56, 57]. Bianchi et al. [56] used a genetic

algorithm to identify the topology and constant parameters of three-dimensional

mass-spring grid with reference to the corresponding FE-based model. In a dif-

ferent approach, Lloyd et al. [57] proposed an analytical expression for the spring

parameters by equating the stiffness matrix derived by FEM and the linearized

mass-spring model differential equations.

2.1.2 Finite Element Method

The finite element method is predominantly applied in numerical analysis of con-

tinuum mechanics based models, and is flexible in modeling complex geome-

tries [20, 58]. In this approach, the object is partitioned into smaller elementary

shapes, known as finite elements. These elements are connected to each other via

nodes at their boundaries. The governing differential equations of equilibrium are

applied per element. The solution is approximated by a weighted sum of inter-

polation functions, also known as shape functions. This process yields differential

equations involving the position of the nodal points of finite elements [20]. FEM

formulation will be discussed in more details in Chapter 4.

Linear FEM has been employed in several studies for modeling soft biological

tissues [25, 41, 59]. This type of model is limited in accuracy but its simplicity and

computational efficiency compared with that of nonlinear formulations have been

the main factors driving its popularity [49]. Delingette et al. [41] and Bro-Nielsen

and Cotin [25] proposed some methods based on pre-computing the inverse of

21

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

stiffness matrix derived by linear finite element in order to achieve real-time per-

formance. The main limitation of such methods is the inability to handle a chang-

ing model stiffness. Varying boundary constraints, e.g. due to physical contact,

geometric and material nonlinearity, and topological changes, e.g. due to cutting,

can lead to a change in the stiffness. DiMaio and Salcudean [59] used a linear

elastic material model in 2D FEM for needle insertion simulation and validated

their model using experimental results. They achieved fast interactive simulation

rate using a condensation technique to find the force and displacement along the

needle.

Different forms of nonlinear FEM with biomedical applications have been ad-

dressed in [14, 60–63]. Zhuang and Canny [14] worked on geometric nonlinear FE

models. They used linear elastic material model and graded-mesh for increasing

the computation speed. The model was approximated by mass lumping in order to

enable use of explicit time integration. Employing explicit time integration signifi-

cantly simplifies the matrix update and eliminates the need for solving the system

of linear equations [64]. However, explicit time integration methods are only con-

ditionally stable and may require prohibitively small time steps to maintain their

numerical stability.

Dick et al. [62] and Courtecuisse et al. [63] described geometric nonlinearity

by use of co-rotated strain formulation [65]. They used a linear elastic material

model for implicit dynamic analysis. The co-rotational approximation technique

offers accurate approximations in the presence of large rotations, however it fails

to accurately model geometric nonlinearity due to large strains [65].

22

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

Wu et al. [60] considered both material and geometric nonlinearities for FE-

based modeling of triangular meshes. They relied on mass-lumping assumption

and explicit integration method to reduce the solution time of the dynamic defor-

mation analysis. Moreover, an adaptive meshing method was employed to reduce

the number of mesh elements. In this approach, regions of the model undergoing

small stress gradients were computed through a coarse mesh and a finer mesh was

employed at contact regions with significant deformation.

Miller et al. [64] and Taylor et al. [61] used the total Lagrangian FEM with ex-

plicit integration for dynamic analysis of 3D models. Geometric nonlinearity in

the presence of large deformations was accounted for by using nonlinear Green-

Lagrange strain tensor, and a Neo-Hookean hyperelastic was employed as the non-

linear material model.

2.1.3 Other Methods

Mesh generation is a time consuming task in FE-based models. Applications such

as cutting simulation are challenging due to real-time update requirement of the

model mesh. Another problem associated with mesh-based computational tech-

niques is the possibility of mesh elements distortion due to large deformations.

Distorted elements can significantly degrade the numerical analysis accuracy. To

overcome these problems, some meshless techniques including meshless FEM have

been proposed [66–68].

De et al. [69] introduced a mesh-free computing scheme for real-time large de-

formation analysis known as Point Collocation-based Method of Finite Spheres

(PCMFS). In this approach, the continuum mechanics differential equations for

23

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

linear elasticity are solved by approximate functions defined on a set of particles

scattered in the computing domain. Lim and De [70] extended PCMFS method to

consider for geometric nonlinearity in surgical simulations with haptic feedback.

They adopted a multi-resolution scheme to enhance the computing results.

Boundary element method (BEM) [71,72] is another physics-based method used

in deformation analysis. In the BEM, the governing differential equations of equi-

librium are evaluated by integration at boundaries of the computing domain. Con-

sequently, the problem size for a volumetric deformable model is reduced to dis-

crete nodes at its surface mesh. However, unlike in the FEM or mass-spring sys-

tems, the linear system of equations derived by the discrete model is dense and

asymmetric. This would limit efficient application of iterative solvers in solving

the system of equations. Additionally, deformation behavior of objects with non-

homogenuous material can not be modeled using the BEM [60]. Wang et al. [71]

used the BEM for modeling prodding, pinching and cutting deformable objects.

2.2 Contact Models for Deformable Objects

Modeling

Modeling contact interaction of deformable objects with other rigid or deformable

surfaces is an important element of a surgical simulation system. Many exam-

ples of real-time interaction with deformable models are based on single-point

contact [60, 73–76]. Such methods cannot properly model the general physical in-

teraction where the contact force depends on the geometry of the contact surface

rather than a single point [77]. Mahvash and Hayward [77] took this approach one

24

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

step further by allowing contact of rigid tool with arbitrary shape with deformable

body at multiple points. Tangential forces due to friction were considered for con-

tact simulation. The method used in [77] was based on massive pre-computation

of different combinations of tool-body contact points followed by interpolation to

express contact forces at arbitrary points based on pre-computed nodes for real-

time simulation. Methods based on pre-computation, in general cannot be used in

presence of material or geometric nonlinearity where the superposition principle

does not apply.

Contact analysis between two or several deformable objects at multiple points

is more challenging compared to single-point contact, since the deformation and

contact forces are both unknown. Depending on the method of applying the con-

tact constraints on the discretized finite element model, there exist different for-

mulations for contact analysis.

The penalty method is one of the common approaches in computational contact

analysis [78–80]. In this method, the contact force is defined based on the measure

of penetration between contact surfaces via a penalty factor. While robust non-

penetrating contact interactions require large values for penalty factor, physical

stability of contact simulation imposes an upper limit on this value [81]. Compared

to other methods, penalty-based contact formulation requires fewer computations

and is easier to implement.

The Lagrange multiplier method is another popular approach for modeling con-

tact constraints. In this approach, the contact constraints are enforced with no

approximation, however the size of the system of equations increases depending

on the number of contact constraints. Cotin et al. [82] employed a simple form of

25

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

Lagrange multipliers to impose the deformation constraint introduced by haptic

tool/deformable body interaction. This model considered multiple-point interac-

tions at the mesh nodes.

Duriez et al. [83] proposed a Lagrange multiplier-based solution using Sig-

norini’s law for real-time simulation of interacting deformable objects. Signorini

contact model [84] states a complimentary relation between the gap and stress due

to contact between two objects; if there is a gap between two objects, g ≥ 0, the

contact stress is zero, σ= 0, and if the contact stress is non-zero, σ≥ 0, the gap be-

tween the objects is zero, g = 0. A formulation based on Signorini’s law leads to

linear complementary problem (LCP) [85]. The LCP formulation in [83] included

inverse of stiffness matrix (i.e. compliance matrix). Therefore real-time computa-

tion of contact problems which requires updating the compliance matrix (i.e. due

to material or geometric nonlinearity) with large number of contact points, can

be prohibitively expensive. In order to compute the tangential forces in contact,

Coulomb’s friction law was used in [83].

Courtecuisse et al. [63] employed a similar contact formulation in soft-tissue

deformation to that presented in [83]. To address the challenges in updating the

compliance matrix in the presence of large deformation, a compliance warping

technique was employed where the inverse of stiffness matrix in deformed con-

figuration was approximated by the inverse of undeformed stiffness matrix and

rotation matrices derived by co-rotational FEM [65]. However, co-rotational FEM

approximates the stiffness matrix in the presence of geometric nonlinearity and

does not compute the stiffness changes due to material nonlinearity.

A summary of computational contact mechanics can be found in [86–88].

26

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

2.3 Parallel Computing in Deformable Models

The majority of the recent research studies for developing real-time simulation

tools in deformation analysis are based on parallel computing. The natural moti-

vating factor is to gain the maximum computing power of the modern processors

in order to meet the performance criteria in real-time applications. The following

two sections review some of the recent work in parallel computation of the popular

physics-based models, i.e. mass-spring and FEM-based models.

2.3.1 Parallel Implementation of the Mass-Spring Systems

Mass-spring model simulation can benefit significantly from GPU computing due

to potentially large number of mass points and the inherent data independency for

the computations per mass point in steps (a), (b) and (c) mentioned in Sec. 2.1.1.

References [52] and [89] presented two of the earliest studies on GPU-based mod-

eling of mass-spring systems. Both references used explicit Verlet [90] time integra-

tion and OpenGL API to program the GPUs. At the time, GPU programming APIs

for general purpose and scientific computing such as CUDA [91] and OpenCL [92]

had not been developed yet. To perform step (a) in mass-spring computations,

one may compute the forces per spring link and scatter these force values over the

mass points in the mesh. One other approach is to gather the forces from adja-

cent links and add them together per mass point. Georgii and Westermann [52]

implemented these two methods and concluded the scatter method yields better

performance compared to the gather method in their GPU implementation.

Leon et al. [93] presented a comparative study of mass-spring simulation on

serial CPU, multi-thread CPU and CUDA-based GPU. A penalty solver algorithm

27

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

was employed to solve the resulting differential equations. The data structure pre-

sented in [93] aimed at efficient use of shared and global memory of GPU. A speed

gain of 20 times was reported on 8800 GT Nvidia GPU versus a 2.2 GHz Intel Quad

core processor.

2.3.2 Parallel Computing for the Finite Element Method

Parallel computation of finite element analysis on multi-processors has been well

developed both in theory and practice over the past two decades [94, 95]. Many

of today’s FEM software packages such as Abaqus [96], ANSYS [97], RS3 [98] and

COMSOL Multiphysics [99] perform the matrix computing, assembly and solution

steps in parallel on distributed or shared memory processors. Rao [100] reported

three different formulations of parallel computation of implicit dynamic nonlinear

FEM based on domain decomposition. In this work, Message Passing Interface

(MPI) [101] was used to provide a parallel implementation on multiple multi-core

processors. The results indicated close to linear scalability with respect to the num-

ber of processors up to 32. Paz et al. [102] presented the details of a hybrid parallel

computation of different stages of FEM. They used MPI for communication be-

tween a computer cluster nodes and OpenMP [35] for parallel computing on each

multi-core node.

Linear finite element model is employed in some real-time applications to re-

duce the computing load. In [12], we proposed an FPGA-based micro-architecture

for parallel solution of equations derived by a linear elastic finite element model.

This architecture was successfully employed in real-time haptic interaction with

deformable objects in static and implicit dynamic analysis.

28

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

GPU-based implementations of nonlinear finite element models have been pre-

sented in a number of previous papers [61, 62, 103]. Taylor et al. [61] used the total

Lagrangian explicit dynamic finite element method on tetrahedral meshes. In [61],

a 16-fold speed up compared with a CPU implementation was reported. Multi-

point contact constraints were not supported in this study.

Joldes et al. [103] proposed a GPU-based nonlinear finite element method for

explicit dynamic analysis with application to neurosurgery. This work considered

Neo-Hookean material, different element types and deformable/rigid contacts, at-

taining a speed-up of more than 20 times compared with a CPU implementation.

Dick et al. [62] presented an approach based on the NVIDIA GPU architectures

for real-time simulation of deformable objects. A linear elastic material model on

a regular hexahedral grid was used. A regularly structured grid allowed using

multigrid solver [104] with fast convergence behvaior. Since all the finite elements

had a similar shape, the stiffness matrix needed to be computed only once, greatly

reducing memory footprint and computing time.

2.4 Solving Linear System of Equations

Numerical solution of the system of equations in static or implicit dynamic analysis

is often the most computationally intensive step in the process of finite element

analysis of interacting deformable objects. To solve the system of equations in

FEM, a set of local stiffness matrices computed per element are usually assembled

into one global sparse matrix. Matrix assembly requires large number of memory

accesses and relatively few arithmetic operations. Therefore, in order to achieve

high performance, an optimized data access pattern and efficient use of cache are

29

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

necessary. Several strategies for parallel implementation of matrix assembly on

CPU and GPU are presented in [105–107]. In an alternative approach referred to

as element-by-element, it is possible to forgo matrix assembly and directly use the

elemental matrices [108, 109].

Methods for solving the linear system of equations derived by the FEM are gen-

erally grouped into direct [110] and iterative [111] algorithms. Compared to direct

methods, iterative algorithms are, in general, more efficient in terms of memory

usage for solving a large sparse system of equations and offer better computing

parallelism. The preconditioned conjugate gradients method is an iterative al-

gorithm that has been widely used in real-time applications of the finite element

method. In [12], we proposed a Jacobi-conditioned conjugate gradient solver based

on FPGA for solving the sparse system of linear equations arising from the FEM.

This micro-architecture employed hundreds of processing elements running in

parallel with access to a customized memory architecture to speed up the compu-

tations by a factor of 150-250 compared to conventional CPUs at the time. Concur-

rent use of 360 processing cores running at 100 MHz and a memory structure de-

signed to provide a high bandwidth on an Altera Stratix III EP3SE110 FPGA board

enabled 72 giga fixed-point operations per second. The non-zero components of

each row in the sparse matrix were padded to have the same length for parallel

processing. Mahdavikhah et al. [112] extended the proposed micro-architecture

for solving the preconditioned CG in [12] to multiple FPGAs.

Courtecuisse et al. [63] employed a GPU-based element-by-element CG algo-

rithm to solve the system of equations derived by backward Euler implicit inte-

gration in FE-based dynamic analysis of deformable objects. The authors of [63]

30

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

reported 15 to 35-fold speed-up on a GeForce GTX 280 compared to a sequential

implementation on an Intel Core 2 Quad processor running at 3.0 GHz. However,

there was no comparison made with a conventional CG method with an assembled

sparse matrix input argument.

Weber et al. [107] presented a new data structure for sparse matrix storage on

GPU to assemble elemental matrices and efficiently access data to perform the

CG algorithm with Jacobi preconditioning. The proposed sparse matrix structure

in [107] allowed for a higher GPU memory bandwidth compared to standard stor-

age formats such as Compressed Sparse Row (CSR) available on CUDA sparse

matrix library, achieving about 25-40 single-precision GFLOPS for sparse matrix

by vector multiplication on a GeForce GTX 470.

Cevahir et al. [113] proposed a distributed memory implementation of the CG

algorithm on a GPU-extended cluster. In [114, 115] other implementations of CG

method on multiple GPU were presented. A multiple GPU-based implementation

of element-by-element Jacobi-conditioned CG was reported in [116].

Dick et al. [62] proposed a numerical multigrid solver entirely realized on GPU

using CUDA API. They employed a matrix-free formulation in which the stiffness

matrices per element are not assembled into a global matrix. This allows for a

direct mapping of the computations per element onto GPU implementation. Their

parallel simulation on a GTX 480 graphic card achieved a performance gain of

27 times compared to a single-threaded implementation on a 3.2 GHz Intel Xeon

X5560 processor.

Helfenstein and Koko [117] presented a preconditioned CG algorithm using ap-

proximate inverse matrix computed based on Symmetric Successive Over-Relaxation

31

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

(SSOR) preconditioning. They adopted CSR storage format for the sparse matrix,

achieving up to 10 times speed gain on NVIDIA Tesla T10 GPU versus Intel Xeon

Quad-Core 2.66 GHz. A comprehensive review of parallel implementation of dif-

ferent numerical solvers for linear systems of equations can be found in [118, 119].

32

C
H

A
P

T
E

R

3
PHYSICS OF DEFORMATION BASED

ON CONTINUUM MECHANICS

Continuum mechanics provides a physically accurate framework for modeling de-

formation of biological soft tissue subject to force or displacement boundary con-

straints. In this theory, the object is treated as a continuum mass rather than dis-

crete particles. Despite the fact that materials are made of atoms, this assumption

is highly accurate in scales much larger than atomic scale. In this chapter, the fol-

lowing subjects from the continuum mechanics will be reviewed [18]:

• Description of deformation and strain

• Force in continuum mechanics and stress measures

• Constitutive equations for linear-elastic and hyper-elastic materials

• Principle of virtual displacement

33

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

3.1 Deformation Description

Consider states of an object undergoing deformation at two different time instants,

where point 0x in the initial configuration is mapped to point τx in the current con-

figuration. Fig. 3.1 demonstrates this transformation which can be represented

with a displacement vector τu. The Cartesian coordinate system in which the mo-

tions are measured is assumed to be stationary and is represented by the X1, X2

and X3 axes.

τx =0 x+τ u (3.1)

initial configuration current configuration

Figure 3.1: Displacement of a particle in two different states.

The components of vectors 0x, τx and τu are denoted by a right subscript i , 0xi , τxi

and τui where i = 1,2,3.

There are two different approaches in describing the mechanical quantities in

continuum mechanics analysis: one is based on undeformed configuration, known

as material or Lagrangian description and the other is with reference to deformed

state, known as spatial or Eulerian description [18]. Lagrangian description con-

cerns with the behavior at point 0x in the material, whereas Eulerian description

is focused at point τx which can be occupied with different material particles at

different times.

34

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

Eulerian description is mainly employed in fluid analysis in which an initial

configuration as steady-state flow does not exist [120]. In solid mechanics, La-

grangian description is primarily employed as the constitutive equations are de-

fined based on material description [18]. The Lagrangian and Eulerian descrip-

tions are related to each other through mapping of current and initial positions

in Eq.(3.1). Since the focus of this thesis is on studying solid deformable objects,

Lagrangian description is employed.

initial configuration current configuration

Figure 3.2: Deformation of a line segment in two different states.

Now consider the element line segment d0x in the initial configuration in Fig. 3.2,

which is deformed into dτx in the current configuration. These two line segments

are related to each other through the deformation gradient tensor F as

d
τx = F d

0x where F =










∂τx1

∂0x1

∂τx1

∂0x2

∂τx1

∂0x3

∂τx2

∂0x1

∂τx2

∂0x2

∂τx2

∂0x3

∂τx3

∂0x1

∂τx3

∂0x2

∂τx3

∂0x3










(3.2)

35

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

Using tensor index notation, the deformation gradient can be represented as

Fi j = ∂τxi /∂0x j for i , j = 1,2,3 (3.3)

F is non-singular [120]. It is straightforward to show that the determinant of the

deformation gradient tensor, det (F), gives the scale factor by which an infinitesi-

mal volume changes from initial to the current configuration [18]. In Fig. 3.3, the

current volume dv spanned by line segments dτx, dτy and dτz is related to the

initial volume dV as

dv = JdV (3.4)

Notation J is used to denote det (F).

initial configuration current configuration

Figure 3.3: Change of infinitesimal volume.

The surface of a segment is represented by a vector with a magnitude equal

to the area and a direction along the normal of the surface. Eq.(3.4) can be used

to map the surface area from undeformed to deformed state. To this end, one

may consider an arbitrary line segment dH forming volume dV with the surface

area dS (see Fig. 3.4). dS in the initial configuration is mapped to ds in the current

36

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

configuration. Line segment dH is related to dh in the deformed configuration

through the deformation gradient tensor, i.e. dh = F dH. As shown in Fig. 3.4,

volume dV on the left side is mapped to volume dv on the right using Eq.(3.4).

initial configuration current configuration

Figure 3.4: Change of infinitesimal surface area.

dv = JdV ⇒ (3.5a)

ds.dh = JdS.dH (3.5b)

ds.F dH= JdS.dH (3.5c)

Since (3.5c) holds for any dH, it can be concluded that,

ds= F−T JdS (3.6)

The volume and surface mappings discussed above provide some good in-

sight into understanding different measures of stress that will be introduced in

Section 3.3.

37

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

3.2 Strain Measures

One measure of strain can be given by considering the elongation of a line segment.

When the change in square of length of dτx is expressed in terms of the initial line

segment d0x using the deformation gradient, the Green or Lagrangian strain tensor,

E , can be defined as

d
τx.d

τx−d
0x.d

0x = d
0xT

(

F TF −−− I
)

d
0x = d

0xT
.2E d

0x (3.7a)

E ,
1

2
(F TF −−− I) (3.7b)

where I is the identity tensor. If the change of element segment scalar product is

expressed in terms of current segment dτx, another expression for strain would be

derived [18]. This is denoted as Almansi strain tensor, e, and is given by

d
τx.d

τx−d
0x.d

0x =τ xT
(

I −−−F−TF−1
)τ

x = d
τxT

.2ed
τx (3.8a)

e ,
1

2

(

I −−−F−TF−1
)

(3.8b)

The Green strain is used to formulate deformation in the rest of this thesis. An

interested reader is referred to two reference books in the field [18,121], for further

discussion of the Almansi strain.

From (3.2), it can be observed that

d
τx.d

τx = d
0xT

(

F TF
)

d
0x (3.9)

The symmetric right Cauchy-Green deformation tensor is defined as Cr , F TF .

Cr = I represents the case of pure rigid-body displacement or rotation with no

38

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

change in the length of any element segment. Tensor invariants of Cr have proven

useful in defining constitutive equations discussed in Section 3.4.2. The Green

strain tensor E in (3.7b) can be expressed in terms of the right Cauchy-Green tensor.

E =
1

2
(Cr −−− I) (3.10)

It would be instructive to express the Green strain tensor in terms of deriva-

tives of the deformation vector. However, before proceeding it is necessary to

lay out the notation which will be employed. Corresponding components in the

coordinate system are denoted by right sub-index which can be numeric or rep-

resented by i , j , k, or l , varying from 1 to 3. For example τu2 denotes the dis-

placement component along the second Cartesian axis, or Ei j represents strain ten-

sor component along i and j coordinates. Throughout this thesis, the summation

convention, also known as Einstein convention, will be employed [122]. According

to this convention, repetition of an index indicates its summation. For example

Fi j Fi k = F1 j F1k +F2 j F2k +F3 j F3k .

Using the index notation, the Green strain tensor E from (3.10) equals to

Ei j =
1

2
(Fki Fk j −δi j) (3.11)

where δi j is Kronecker delta defined as

δi j =







1, if i = j

0, if i 6= j

(3.12)

39

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

On the other hand, Fi j = ∂τxi /∂0x j after substituting τxi by 0xi +τ ui from (3.1), can

be written as Fi j = ∂τui /∂0x j +δi j . Replacing this form of the deformation gradient

into Eq.(3.10) and after some simplification, the Green strain tensor of the current

configuration is derived in terms of derivatives of the current deformation vector

Ei j =
1

2
(∂τui /∂0x j +∂τu j /∂0xi
︸ ︷︷ ︸

linear term

+

quadratic term
︷ ︸︸ ︷

∂τuk /∂0xi .∂τuk /∂0x j) (3.13)

In small deformations, the quadratic term in (3.13) can be ignored. This leads to

linear strain model, also known as engineering strain,ε.

ε=
1

2
(∇τu+∇τu

T
) or equivalently εi j =

1

2
(∂τui /∂0x j +∂τu j /∂0xi) (3.14)

However, the quadratic term in the Green strain enables accurate modeling in pres-

ence of large deformations and rotations; this is the measure of strain adopted in

this thesis to address geometric nonlinearity. The use of a linear strain model in

large rotation/deformation results in artificial unacceptable distortions. Examples

and further discussion in this regard can be found in [123].

3.3 Stress Measures

Stress represents internal force intensity developed within an object in response to

external boundary constraints, i.e. force or displacement. Traction vector associ-

ated with vector n is defined as force per unit area with normal n,

t(n) , lim
∆a→0

∆p

∆a
(3.15)

40

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

where ∆a is an infinitesimal area with normal n and ∆p is the resultant force vector

applied on this area. Cauchy stress tensor represented by σ, is defined in a way to

relate normal vector n to traction vector t [18],

t(n) =σn (3.16)

It is noted that Cauchy stress tensor is defined in the current deformed state

and is used in conjunction with small deformation strains. For large deforma-

tions, some other stress measures such as Piola-Kirchhoff stress tensors need to be

defined. Sometimes in case of stress analysis of deformable objects undergoing

large deformations, it is desired to express stress tensor with reference to the initial

configuration where the area is known.

A stress tensor that relates the force in the current state to the area in the initial

state, should yield the same traction as Cauchy stress tensor. Using Eq.(3.15) and

(3.16), the following equality should hold

dp = dat(n) = daσn (3.17)

= dAσp N

where dp is the resultant force vector at the current state, σp is the 1st Piola-

Kirchhoff stress tensor, dA is the mapping of infinitesimal area segment da at the

initial configuration and N is the normal vector of dA. By assigning ds , dan and

dS, dAN, Eq.(3.6) can be used to map the area parameters in (3.17),

σ(dan) =σp (dAN) (3.18a)

σ
(

JF−T
dAN

)

=σp (dAN) (3.18b)

41

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

Since the equation in (3.18b) is valid for any given dAN, 1st Piola-Kirchhoff stress

tensor is derived as follows

σp = JσF−T (3.19)

Here the stress tensor σp gives the actual force based on the initial state. However,

there are some problems in the application of 1st Piola-Kirchhoff stress in numer-

ical computations. The tensor σp , unlike the Cauchy stress σ, is not symmetric.

Additionally this description is not work conjugate of the Green tensor, i.e. the

product of the 1st Piola-Kirchhoff stress and the Green strain rate is not equivalent

to the work per current volume [18].

Let dP be defined as a mapping of force vector dp from Eq.(3.17) in the unde-

formed configuration, i.e. dp = F dP. Then 2nd Piola-Kirchhoff stress tensor, denoted

by S, is defined to express dp in terms of area at the initial configuration.

by definition dP = SdAN (3.20a)

from (3.17) and (3.19) dp = JσF−T
dAN (3.20b)

⇒ JσF−T
dAN = F SdAN (3.20c)

In (3.20c), 2nd Piola-Kirchhoff stress tensor is related to Cauchy stress tensor as in

S = JF−1σF−T (3.21)

From Eq.(3.21) the symmetry of tensor S is evident.

42

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

3.4 Constitutive Equations

The stress and strain measures developed in the preceding sections are general

and can be applied to all types of materials. These descriptions are not sufficient

to distinguish between different material types and some relationships between

stress and strain need to be established to describe the material behavior. These

relationships are known as constitutive equations.

No change of material behavior under rigid body transformation would be ex-

pected, therefore constitutive equations need to be independent of the coordinate

system used to describe the deformation. Materials with elastic behavior store

energy under deformation and this energy is not dissipated. As such, elastic ma-

terials return to their initial configuration when the loads are removed. Where the

stress can be derived from the stored energy function, the material is called hypere-

lastic. Constitutive equations in hyperelastic materials are not path dependent and

the stored energy can be expressed based on the current state [121].

There are different classes of constitutive models, such as linear elastic, hyper-

elastic, viscoelastic and plastic among others. In this chapter we will limit the

discussion to linear elastic and hyperelastic materials. A comprehensive study of

different models can be found in [18, 121, 124].

3.4.1 Linear Elasticity

Robert Hooke in 1660 discovered there is a linear relation between the stretch and

force applied on an elastic object [125]. Augustin-Louis Cauchy extended this im-

portant law in elasticity to three-dimensional elastic objects, which is known as

generalized Hooke’s law. In this law, the stress-strain relation is expressed in terms

43

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

of elastic modulus tensor, C ,

S ===C E or equivalently Si j =Ci j kl Ekl (3.22)

Using Voigt notation (see Appendix A), the fourth order elasticity modulus

tensor can be expressed as a 6×6 matrix C.∗ For homogeneous and isotropic elastic

materials, this matrix is expressed as in (3.23)

C =














λ+2µ λ λ 0 0 0

λ λ+2µ λ 0 0 0

λ λ λ+2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ














(3.23)

where parameters λ and µ are Lamé constants, describing linear elastic material

characteristics [126]. Note that matrix C is symmetric. For a linear elastic material,

matrix C is invariant.

3.4.2 Hyperelastic Material Model

In practice, few materials exhibit linear elastic behavior and in most cases some

form of nonlinear relation between stress and strain is observed. Hyperelastic model

has been developed for large deformations and is applicable to rubber-like sub-

stances [127]. This model is used for materials with nonlinear stress-strain relation

where stress and constitutive tensors, as in Eq.(3.24) can be found according to

strain energy density function Ψ, i.e.
∗In the adopted notation, italic bold letters represent tensors and upright bold letters represent

the corresponding compressed matrix form.

44

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

Si j =
∂Ψ

∂Ei j

and Ci j kl =
∂2
Ψ

∂Ei j∂Ekl

(3.24)

As such, the strain energy density function should be expressed in terms of the

finite strain E , or equivalently the right Cauchy-Green tensor Cr . Since the energy

function should be objective with respect to rotation and translation, it is defined

in terms of principal invariants of Cr tensor. Tensor invariants do not change with

rotation or translation of the coordinate system.

Ψ=Ψ(IC , IIC , IIIC) (3.25)

Equation (3.25) is the general form of strain energy density function of com-

pressible materials in terms of the invariants of right-Cauchy stress, Cr . In case

of incompressible behavior, the volume of material remains unchanged, therefore

J = 1 and the energy function is only dependent on two invariants of IC and IIC .

These invariants are defined as [121]:

IC = tr (Cr) (3.26)

IIC =
1

2

(

tr (Cr)
2 − tr (C 2

r)
)

(3.27)

IIIC = det (Cr) = J 2 (3.28)

Different models are proposed for hyperelastic energy function, among which

Neo-Hookean, Moony-Rivlin and Ogden models can be named [18, 128]. Neo-

Hookean is a special case of the more general Moony-Rivlin and Ogden mod-

els. This constitutive model has been successfully applied in a number of pre-

vious studies for soft tissue modeling [103, 129]. In this thesis, compressible Neo-

Hookean model is adopted. This model is characterized by its dependence on the

45

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

first and third invariants. Constitutive equations for compressible Neo-Hookean

material are obtained from the following strain energy function [18],

Ψ=
µ

2
(IC −3)−µ(lnJ)+

λ

2
(lnJ)

2 (3.29)

where λ and µ are the Lamé parameters defined based on material properties. It is

noted that J , the determinant of the deformation gradient tensor, is the root square

of the third principal invariant of the right Cauchy-Green tensor, IIIC . The second

Piola-Kirchhoff stress is obtained by taking derivatives of Ψ with respect to the

Green strain tensor E [18],

S =
∂Ψ

∂E
=λ(lnJ) C−1

r +µ(I −−−C−1
r) (3.30)

The Lagrangian elasticity tensor is found by carrying out differentiation on S

with respect to Cr [130],

Ci j kl =
∂2
Ψ

∂Ei j∂Ekl

=λC−1
ri j

C−1
rkl

+ (µ−λ lnJ)(C−1
ri k

C−1
r j l

+C−1
ri l

C−1
r j k

) (3.31)

This fourth order tensor C can be converted to a compressed matrix form (see

Appendix A), which is preferable for matrix computations.

3.5 Principle of Virtual Displacement

Displacement-based finite element method, which will be discussed in Chapter 4,

can be derived based on principle of virtual displacement; this is a form of principle

of virtual work [20]. Consider a deformable body undergoing small virtual dis-

placement δU. The principle of virtual displacement states that at the equilibrium,

46

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

the internal and external virtual work applied as a result of virtual displacement

would be equal. In other words, the work done by external forces through the

virtual displacement on the body equals to the work done by internal stresses and

the virtual strain caused by virtual displacement. The virtual displacement δU is

chosen arbitrarily, but it should satisfy boundary constrains imposed on the body.

Using compressed vector form of stress/strain tensors, this principle is formulated

as follows
∫

V
S.δEdV

︸ ︷︷ ︸

internal virtual work

=
∫

V
fB.δUdV +

∫

S
fS.δUdS +

∑

i

Ri .δU

︸ ︷︷ ︸

external virtual work

(3.32)

On the right hand side of the equation, fB represents body forces and the integra-

tion is over volume V , fS represents surface forces and the integration is performed

over the surface S and finally Ri ’s represent external concentrated loads applied on

the deformable body.

Finite element modeling consists of two main steps, (a) establishing a weighted

integral of the physical equilibrium equations, and (b) using interpolation func-

tions to approximate the solution in terms of nodal variables of the finite ele-

ments [58]. The principle of virtual displacement enables deriving the weighted in-

tegral equation as the basis for finite element formulation discussed in Section 4.2.

47

C
H

A
P

T
E

R

4
FEM FORMULATION

In this chapter, nonlinear finite discretization of static and dynamic deformation

models will be formulated. In the preceding chapter, the strain and stress mea-

sures were discussed and the material characteristics were defined through con-

stitutive equations. The principle of virtual displacement was introduced as an

effective tool for deriving differential equations describing body deformation sub-

ject to external constraints. In this chapter, a numerical procedure for formulating

these differential equations in discrete domain is discussed.

The derivation of the finite element method for non-linear static and dynamic

analysis is a lengthy procedure. Therefore, only a brief overview of some of its

critical steps leading to the final form of equations are presented here; the reader

is referred to [20, 21, 40] for more details.

48

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

4.1 General Overview

The finite element method consists of the following basic steps [58]:

1. Partitioning geometry of the object model into smaller elements. This allows

approximating complex geometries using elements with basic shapes. Parti-

tioning yields a systematic approach for solving differential equations over

regions of general shape. The collection of the elements is known as the FEM

mesh. Each element in the mesh is associated with some nodes. The solution

of differential equations in the discrete domain is obtained at these nodes.

2. Computing FEM matrices per element. The continuum domain variables are

interpolated by nodal values per element. Differential equations are approx-

imated based on these nodal values.

3. Assembling the elemental equations. This is done by considering continu-

ity of the solution between the elements. Elemental equations can not be

solved individually as the boundary constraints are available only for the en-

tire mesh; therefore these equations are assembled into a global matrix form.

4. Applying boundary constraints to the global matrix form followed by solv-

ing the system of equations using a proper numerical method.

The above steps are summarized in Fig. 4.1.

After spatial discretization in step (1) and deriving the FEM matrices per ele-

ment in step (2), the equation of deformation per element in static analysis is given

in the following general form,

(Ke
N +Ke

L)ue = Re −Fe (4.1)

49

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

1- Discretizing the domain into
finite elements

2- Computing FEM matrices
per element

+
+

+=

3- Assembling elemental FEM
matrices into global form

4- Applying boundary conditions
and solving the system of equations

=x

?
?

...

?

...

..
.

. .

Figure 4.1: General steps in the finite element method.

Here the superscript e implies that the equation is defined over an element of

the model. Moreover, Re represents external forces acting on the element, ue is the

vector of nodal displacements with respect to the current time step, Ke
L and Ke

N are

linear and non-linear components of stiffness matrix, and Fe is the vector of nodal

internal forces caused by the element stresses. The deformation model taking into

account dynamic effects has the following general form [20]

Me

m×m

üe

m×1

+De

m×m

u̇e

m×1

+
(

Ke
L

m×m

(0ue
)+Ke

N
m×m

(0ue
)

)

ue

m×1

= Re

m×1

−Fe

m×1

(0ue
) (4.2)

where Me and De are elemental mass and damping matrices, and u̇e and üe are

the first and second time derivatives of the nodal displacement vector per ele-

ment, ue. 0ue within the parentheses indicates the dependency of the matrices to

the nodal displacement vector with respect to the initial configuration. The di-

mension m in Eq.(4.2) depends on the model dimension and the number of the

nodes per element, e.g. for a linear tetrahedral element m = 3(model dimension)×

4(tetrahedral nodes). In most cases, the elemental mass and damping matrices Me

and De can be assumed constant and need not be recomputed in real time.

50

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

initial configuration
at time 0

current configuration
at time

next configuration
at time

Figure 4.2: Configuration of a deformable body at different time increments.

There are two classes of numerical integration techniques for solving the differ-

ential equations in (4.2) in the discrete-time domain, namely explicit and implicit in-

tegrations. The explicit approaches such as the central difference method are easier

to implement but are only conditionally stable. To maintain stability, the simulation

time-step ∆t must be smaller than a critical value ∆tcr which would depend on

characteristics of the worst element in the mesh [20]. In contrast, implicit methods

such as the Newmark integration scheme (see Appendix B) guarantee numerical

stability independent of the time-step used [20]. They do, however, require solving

a linear system of equations similar to that in (4.1) at each time-step.

A powerful strategy to solve nonlinear equilibrium equations is to adopt an

incremental approach in which loads/displacements are applied in an adequate

number of steps in virtual (in static analysis) or real (in dynamic analysis) time-

steps. Equations of motion are solved at t ime = 0, ∆t , 2∆t , ... τ, τ+∆t . Deformation

quantities of the next time-step in Fig. 4.2 can be stated with reference to one of the

previously known configurations, i.e. initial configuration in the Total Lagrangian

(TL), or the last previously calculated configuration in Updated Lagrangian (UL)

formulation. A consistent material description leads to the same result in both

formulations. Since the TL formulation is expressed with respect to a fixed initial

configuration, some of its spatial derivatives such as those in the Jacobian matrix

51

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

(see Appendix D), can be precomputed to reduce real-time computations [64]. The

TL formulation is employed in this thesis.

4.2 Derivation of FEM Matrices

In this section, a brief formulation of the total Lagrangian finite element with large

strains/displacements and material nonlinearity is presented. The Green strain

tensor E defined in (3.10) accounts for geometric nonlinearity in large deforma-

tions. The second Piola-Kirchhoff stress tensor S is work conjugate of the Green

strain and is adopted in the TL formulation. As mentioned in Section 3.4, the stress

tensor S is related to the strain tensor E through the material constitutive tensor C ,

Si j =Ci j kl Ekl (4.3)

Tensor C is constant in linear elastic material. In a nonlinear material, this tensor is

evaluated according to the material model as discussed in Section 3.4.2. It is useful

to employ a notation to represent the time-step where a quantity (a) refers to (b)

with reference to; such notation is particularly helpful in making distinction be-

tween next time-step unknown quantities and the current ones. A left superscript

τ represents the current time-step and t is the next time-step. In t
0

S and t
0

E , the left

superscript and subscript denote that the stress and strain tensors are defined for

the configuration at time t and with reference to the initial configuration at time 0.

Fig. 4.3 shows the important steps involved in numerically solving the partial

differential equations arising from a continuum mechanics based model of the de-

formation using the method of finite element. These steps are summarized in the

following subsections.

52

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

Virtual external work done by ody force,B

urface traction and oncentrated forcesS C

Virtual internal work done by actual stress

going through virtual strain

incremental

decomposition of

stress and strain

Stress in terms of strain

using constitutive tensor

Decomposing incremental

strain into linear and non-

linear components
is a known parameter

A

B

C.1 C.2

Using and the integrandC. C.1 2,

term in is rewritten asB

Linearization of the term including

incremental stress

D

-

Adopting matrix-vector

notation and employing

shape functions, internal

virtual work is expressed

in discrete form

F

E

Figure 4.3: Establishing nonlinear finite element formulation based on the princi-
ple of virtual displacement.

4.2.1 The Differential Equation

As mentioned in Secion 3.5, the principle of virtual displacement gives a varia-

tional formulation of equilibrium equations in continuum mechanics which is used

in displacement-based finite element formulation. The virtual external work in

53

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

Eq.(3.32), δWext , is expressed as a summation of work of different external forces

(i.e. body force, surface traction and concentrated forces) going through the virtual

displacement δu. In dynamic analysis, virtual work due to the inertia and damp-

ing forces are added up to δWext . The virtual internal work at the next time-step

t can be expressed in terms of the second Piola-Kirchhoff stress and the virtual

Green strain tensors. Fig. 4.3.a and 4.3.b represent these equations.

4.2.2 Incremental Stress and Strain Terms

In the total Lagrangian incremental FEM formulation, the next time-step stress and

strain tensors, t
0

S and t
0

E , can be decomposed into known tensors at the current

time-step with reference to the initial state, τ
0

S and τ
0

E , and unknown incremental

terms, S and E . Furthermore, the Green strain tensor can be decomposed into

linear and nonlinear terms defined in Eq.(3.13); ε is the linear component and η

is the quadratic term of Green strain tensor. Fig. 4.3.c1 and c2 demonstrate these

decompositions. Considering deformation increment u defined as in (4.4),

t u =τ u+u (4.4)

and using Green strain equation defined in (3.13), ε and η can be derived as follows

εi j = (ui , j +u j ,i +
τ uk,i uk, j +uk,i

τuk, j)/2 (4.5)

ηi j = uk,i uk, j /2 (4.6)

where ui , j = ∂ui /∂0x j and τui , j = ∂τui /∂0x j .

54

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

As given in Fig. 4.3.d, the stress and strain decompositions followed by linear

approximation of strain in the incremental term result in approximate formulation

of the virtual internal work,

δWi nt =
∫

0V

τ
0Sδε dv +

∫

0V

τ
0Sδη dv +

∫

0V
Cεδε dv (4.7)

4.2.3 FEM Discretization

In finite element method, the continuum displacement field is expressed in terms

of displacement values at the nodal points. Interpolation functions, also known as

shape functions, set up a bridge between continuum and discrete domains. The

continuum displacement field within a finite element domain can be expressed in

terms of nodal displacement values, i.e.

u =
ne∑

i=1

hi ue
i (4.8)

where hi ’s are shape functions, ue
i

is the the displacement at node i of the element

and ne is the number of nodes representing the element. For a discussion regard-

ing shape functions see Appendix D. Using this discrete form of displacement in

Eqs. (4.5) and (4.6), it is possible to define linear and nonlinear strain-displacement

matrices BL and BN [40] such that the strain tensor components are given by

ε= BLue and η= BNue (4.9)

where ue represents the vector of nodal displacements. ε and η are vector form of

linear and nonlinear strain tensor components defined as

55

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

ε= [ε11 ε22 ε33 2ε23 2ε13 2ε12]
T (4.10)

η= [u1,1 u1,2 u1,3 u2,1 u2,2 u2,3 u3,1 u3,2 u3,3]
T (4.11)

The strain expressions in terms of nodal displacement vector in Eq.(4.9) can be

applied to the continuum differential equation derived by the principle of virtual

displacement. To this end, the tensor differential equation in (4.7) can be rewritten

in matrix form,

δWi nt =
∫

0V
δεTτ

0S dv +
∫

0V
δηTτ

0S̃η dv +
∫

0V
δεTCε dv (4.12)

where C is the compressed material constitutive matrix extracted from tensor C

(see Appendix A) and

τ
0S = [

τ
0S11

τ
0S22

τ
0S33

τ
0S23

τ
0S13

τ
0S12]

T (4.13)

τ
0S̃ =







τŜ 0 0

0 τŜ 0

0 0 τŜ







where τŜ =







τS11
τS12

τS13

τS21
τS22

τS23

τS31
τS32

τS33







and 0 =







0 0 0

0 0 0

0 0 0







(4.14)

Now using Eq.(4.9) and vector form of Eq.(4.3), i.e. τ
0

S = C τ
0

E, we have

∫

0V
δεTτ

0S dv = δueT

∫

0V
δBL

TC τ
0E dv = δueT

Fe (4.15)
∫

0V
δηTτ

0S̃η dv = δueT

(∫

0V
BN

Tτ
0S̃BN dv

)

ue = δueT
Ke

Nue (4.16)
∫

0V
δεTCε dv = δueT

(∫

0V
BL

TCBL dv

)

ue = δueT
Ke

Lue (4.17)

where Ke
L and Ke

N, as mentioned earlier in this chapter, are linear and nonlinear

components of the stiffness matrix, and Fe is the nodal force vector due to the

internal stress field. Fig. 4.3.e illustrates a summary where the internal virtual work

56

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

using shape functions is expressed in terms of FEM matrices and displacement at

nodal points of the element.

4.2.4 Steady-state Equilibrium Equation

By setting equal δWi nt and δWext in Fig. 4.3.f for any virtual displacement con-

sistent with boundary conditions, the steady-state equilibrium is formulated as in

Eq.(4.1). Static and dynamic equations per element in (4.1) and (4.2) usually need

to be assembled into a global form to obtain the equilibrium equation for the com-

plete model object. The assembled form of static and dynamic equations are

(KN +KL)U = R−F (4.18)

MÜ+DU̇+ (KN +KL)U = R−F (4.19)

The assemblage process maps and adds the elemental matrices into a global

matrix [131]. Using the symbol of A for KL, KN, M and D matrices, and symbol of x

for U, R and F vectors, FEM assembly is represented as

A =
⊎

i=1

Ae
i =

∑

i

Âe
i , x =

⊎

i=1

xe
i =

∑

i

x̂e
i (4.20)

where accent ˆ denotes the mapping of the elemental parameter into a global pa-

rameter. For example, matrix Âe
i

has the same size as A with all its components

except those corresponding to elemental matrix Ae
i

set to zero. In the structure of

matrix A, each row corresponds to x, y or z− dimension of one mesh node in the

FEM mesh. Nonzero entries in that row are limited to the number of neighbor

nodes in connection to the corresponding node; therefore for a mesh with large

number of nodes, matrix A is a large sparse matrix.

57

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

4.3 Computational Cost

As formulated in the previous section, the finite element vectors and matrices are

computed as volume or surface integrals. These integrations can be carried out us-

ing a numerical technique such as the Gauss quadrature [20]. Gaussian quadrature

is a numerical method to evaluate an integral as a weighted sum of the integrand

function at specific points xi (see Appendix C). The number and location of these

points are chosen based on the element type and the required precision for the nu-

merical integration [20]. Eq.(4.21) gives the general numerical integration form of

Ke
L, Ke

N and Fe.

Ke
L =

∫

0V
BT

LCBLdv =
∑

i

ωi BT
L(xi)CBL(xi) (4.21a)

Ke
N =

∫

0V
BT

NSBNdv =
∑

i

ωi BT
N(xi)SBN(xi) (4.21b)

Fe =
∫

0V
BT

LCEdv =
∑

i

ωi BT
L(xi)CE(xi) (4.21c)

where 0V is the volume of the initial element configuration, BL and BN refer to

linear and non-linear strain-displacement matrices, C is the incremental material

property matrix, S is the second Piola-Kirchhoff stress matrix, and E is the Green-

Lagrange strain vector.

Table 4.1 gives examples of the dimensions of the local (elemental) matrices in

the finite element analysis and the number of floating point operations for com-

puting Ke
L, Ke

N and Fe. The numbers in this table do not include the computation

cost of intermediate matrices such as BL, BN and the second Piola-Kirchhoff stress

matrix S in Eq.(4.21).

It is noted that some of the matrices contain fixed patterns of zeros. Considering

58

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

Element BL BN C S E Ke
L Ke

N Fe

Matrix size Multiplications/additions

2D
Triangle 3×6 4×6 3×3 4×4 3×1 162×,108+ 240×,180+ 27×,18+
Quadrilateral 3×8 4×8 3×3 4×4 3×1 264×,176+ 384×,288+ 33×,22+

3D
Tetrahedron 6×12 9×12 6×6 9×9 6×1 1296×,1080+ 2268×,2016+ 108×,90+
Hexahedron 6×24 9×24 6×6 9×9 6×1 4320×,3600+ 7128×,6336+ 180×,150+

Table 4.1: Dimensions of FE matrices for different types of elements. Number of
flops in computing FE matrices are given for one integration point using Gauss-
quadrature rule.

these patterns, redundant arithmetic operations can be eliminated. For example,

the number of floating point operations (flops) in the computation of Ke
N can be

reduced by 93%, by avoiding zero multiplications in a tetrahedral element with

linear shape functions. However, such reductions would not be available in the

cases of Ke
L and Fe.

An accurate finite element model may consist of thousands of elements, result-

ing in a huge number of computations. Nonetheless, data independency of the

elemental matrices and intensive arithmetic operations make this problem par-

ticularly suitable for parallel implementation on many-core architectures such as

GPUs. Modern GPU devices consist of hundreds of processing cores and handle

thousands of threads simultaneously. By assigning each GPU thread to compute

one elemental matrix of the TL FEM, a high level of parallelism can be achieved

for large FEM models. A detailed discussion of this matter will be provided in

Chapter 7.

59

C
H

A
P

T
E

R

5
FEM IN PRESENCE OF CONTACT

Deformable objects in contact are subject to external boundary constraints due to

physical interaction. The contact forces depend very much on the geometry of the

contact boundary. The contact geometry, itself changes based on boundary con-

straints, including contact forces. In this chapter, a mathematical formulation of

contact in deformation analysis is presented. After some preliminary discussions

about discretized contact surface, a penalty-based approach of contact formulation

in FEM deformation analysis is reviewed. Contact surfaces can be exposed to large

stress and strain gradients. Therefore, in order to achieve accurate numerical re-

sults, extra care should be taken in spatial discretization of contact domains. At

the end of this chapter, a method for local mesh refinement at contact surfaces is

presented to enhance the accuracy of computations of contact stresses.

60

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

5.1 Discretized Contact Surface

Considering contact of a hitting node, xh, with a target surface in Figure 5.1, gap is

defined as the distance between the hitting node and the target surface along the

normal direction, N. Contact occurs when the hitting node penetrates the target

surface and the gap becomes negative. Assuming a surface for the contact target,

it is always possible to define an outward vector N, in the normal direction to the

surface. In case of a tetrahedral mesh, the surface patch would be triangular. The

gap g can be expressed as

g = NT
(xh −xt) (5.1)

where xt is the position vector of the nearest point on the target surface with respect

to xh.

Figure 5.1: The contact pair nodes refer to the set of [xh x̂1 x̂2 x̂3]

In the presence of contact, Eq.(4.2) has to be modified as follows

Meüe +Deu̇e + (Ke
N +Ke

L)ue = Re +Re
c −Fe (5.2)

where Re
c denotes the contribution of contact forces per contact pair.

61

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

Using the Newmark scheme for implicit time integration, the solution for the

next time step deformation is found as

Ke
∗

t ue = t Re + t Re
c +

τRe
u (5.3)

where Ke
∗ is a linear combination of mass, damping and stiffness matrices and τRe

u

is defined by a linear combination of τue, τu̇e and τüe. t and τ left superscripts refer

to the next and current time steps respectively. In the previous equations (4.1, 4.2

and 5.2), the left superscript representing time was dropped to simplify the nota-

tion. The time at which each term in (5.3) is evaluated is important and therefore

is included in the notation here. To solve for the incremental deformation t ue, the

contact force vector at the next time step t Re
c should be determined according to

contact constraints.

Physical constraints require that two objects in contact do not overlap, i.e. g ≥

0. Also, no tensile traction is allowed on the contacting boundaries, i.e. fc ≥ 0,

where fc refers to the contact force magnitude at the hitting node. This implies zero

interpenetration between the two non-rigid objects in contact and zero interaction

force when the two objects are apart. These constraints are known as Signorini’s

law [84] and can be stated as

g ≥ 0, fc ≥ 0, g . fc = 0 (5.4)

The complementary constraint g . fc = 0 in (5.4), consisting of the gap function and

the contact force product, is energy related. A physical interpretation of this con-

straint is that the net work done by equal and opposite contact forces in equilib-

rium is zero.

62

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

Contact problem can be viewed as an optimization problem for minimizing

the energy function subject to inequality constraints in Eq.(5.4). There are different

methods to impose contact constraints including the penalty method, the Lagrange

multiplier method and combinations of the two [86].

The Lagrange multiplier approach enforces the zero interpenetration constraint.

In this method, the contact constraints are treated as extra unknown parameters,

introducing that many new equations. Depending on the number of contact points,

the problem size can significantly increase.

In the penalty-based method, small penetrations are allowed between contact

boundaries. Contact forces are calculated based on the penetration scaled by a

penalty parameter, α. Physically, this is equivalent to introducing some springs

with stiffness equal to α at the contact boundaries [132]. One drawback of the

penalty method is dependency of its solution accuracy to the penalty parameter

selection [132, 133]. In this approach, the contact constraints do not introduce any

extra degrees of freedom to the problem at hand. But allowing penetration be-

tween the contact boundaries would violate the conditions stated in (5.4), result-

ing in an approximate solution. The work done by contact forces in the presence of

penetration is not zero. This can be explained by storage of energy in the interface

penalty springs [21]. This energy would be fully released after the contact.

Theoretically, it can be shown as the penalty parameter becomes infinitely large,

the penalty method and Lagrange multiplier method would become equivalent

[134]. However, in practice very large values of penalty parameter lead to ill-

conditioned system of equations. Lack of robustness against interpenetration of

contact surfaces in the penalty methods is more pronounced in simulation of thin

63

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

Figure 5.2: Contact between two non-rigid objects.

highly deformable cloth layers. But in the simulation of volumetric objects in-

teracting with each other, the penalty method can be effectively employed. The

penalty method is computationally more efficient than the other methods and can

be easily integrated in a GPU-based computing platform, hence is adopted in this

work.

5.2 Penalty-based Formulation of Contacts

Using the penalty method, the next time step contact force, t Re
c, can be evaluated in

terms of the next time step deformation, t ue. To derive the penalty-based formula,

the work done by the contact forces should be determined. Without loss of gen-

erality, consider the two objects interacting in Figure 5.2. In such case, the contact

work equals to

Wc =
∫

Γc

(qh.uh +qt .ut)dS (5.5)

where Γc is the contact area, qh and qt represent contact stress vectors (dimension

3×1 in a three-dimensional model) applied on the hitting and target objects respec-

tively, and uh and ut are the corresponding deformation vectors. According to the

Newton’s third law of motion, qh and qt are equal in magnitude, but opposite in

64

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

Hitting Object

Target Object

Hitting Nodes

Figure 5.3: Contact in discrete form.

direction. By defining q , qt =−qh, Eq.(5.5) can be rewritten as

Wc =
∫

Γc

q.(ut −uh)dS (5.6)

Considering the contact of two objects in Fig. 5.3 in discrete form as the collision

of contact nodes on the hitting object with the contact surface on the target object,

Wc can be stated as a summation of contact work of each hitting node,

Wc =
∑

n

(wc)n (5.7)

In a discretized finite elements formulation, the contact work per hitting node,

wc , can be expressed in terms of the concentrated force at that hitting node, fc , as

wc = fc N.(ut −uh) (5.8)

Dot product by N represents the work along the normal direction. For simplicity,

tangential forces are neglected in (5.8). This assumption is valid in the absence of

frictional forces; otherwise Eq.(5.8) can be modified to include the friction work

[21, 133]. Using interpolation (shape) functions, ut can be expressed in terms of

65

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

nodal displacements of the element on target object that the contact point belongs

to, i.e.

ut =
∑

i

hi ue
t i = Heue

t (5.9)

Defining ue
c as displacement vector of ‘contact pair nodes’, ue

c = [uT
h

, ue
t

T
]T and

Qe , [−I, He], the contact work of each hitting node in Eq.(5.8) can be rewritten as

follows [21],

wc = fc N.Qeue
c = ue

c
T

QeT
fc N (5.10)

Defining Re
c as the nodal force vector contributed by the contact at the correspond-

ing contact pair nodes in Eq.(5.11), the contact work in Eq.(5.10) can be replaced

with wc = ue
c

T Re
c, where

Re
c = QeT

fc N (5.11)

In the penalty-based method, small penetrations are allowed and the contact

force at the hitting node, fc , is directly related to the penetration. For one hitting

node, fc is defined as

t fc ,−α tg (5.12)

where α is the penalty parameter and tg is the measure of overlap at the next time

step. The penalty parameter can be defined constant or as a function of penetra-

tion. As mentioned earlier, the magnitude of the penalty parameter affects the

accuracy of the solution. A small choice of α would result in excessive interpen-

etration and may contribute to stress inaccuracies. On the other hand, very large

66

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

values for α would yield an ill-conditioned system of equations, causing conver-

gence issues. Additionally, using large values of α in dynamic analysis may result

in noisy and oscillatory response and unrealistic separation of the contact bound-

aries. A guideline for selecting an optimal penalty parameter for static contact is

proposed in [135]. Penalty parameter for dynamic analysis can be selected by ad

hoc approaches, such as defining it proportional to the Young’s modulus of the

material [132, 136].

Equations (5.1), (5.11) and (5.12) define the contact force vector at contact pair

nodes, Re
c, in terms of the position of contact pair nodes. In the Newmark integra-

tion in (5.3), the contact force must be evaluated at the next time step. To this end,

t g is derived as
tg = NT

(
t xt −

t xh)

= NT
(
τxt −

τxh)+NT
(

t ut −
t uh)

= τg +NTQeue
c (5.13)

Substituting (5.12) and (5.13) into (5.11), the nodal force vector corresponding to

the contact nodes is derived as [21]

t Re
c =−α τg QeT

N−
(

αQeT
NNT Qe

)
t ue

c (5.14)

Stating τRe
c and Ke

α as in Eq.(5.15) and (5.16), t Re
c is expressed via (5.17). Equa-

tion (5.17) can be substituted into (5.3) to solve for the displacement vector.

τRe
c =α τg QeT

N (5.15)

Ke
α =αQeT

NNT Qe (5.16)

t Re
c =−τRe

c −Ke
α

t
ue

c (5.17)

67

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

5.3 Mesh Refinement

There is a direct correlation between the accuracy of the finite element method and

the corresponding mesh size. In order to achieve smaller errors, finer spatial dis-

cretization is required. A uniformly refined mesh may result in unnecessary high

computation times. In non-uniform meshes, the mesh granularity is increased only

where necessary and not over the entire mesh. This would help improve modelling

accuracy with a smaller increase in the computation cost than that achievable with

a uniform mesh. There are a number of different ways to obtain a non-uniform

mesh [131]:

i) h-refinement where the size and number of elements are subject to change.

ii) p-refinement where higher order interpolation functions are employed.

iii) r-refinement where the mesh nodes are relocated to adjust the mesh density.

The number of elements and the order of interpolation functions remain un-

changed in this approach.

In general, areas prone to large stress or strain gradients demand a high density

mesh for accurate finite element modeling. In adaptive mesh refinement, a tentative

solution is obtained through an initial mesh, and then using some form of error

estimation [137,138] candidate elements are selected for remeshing. After this step,

one or a combination of the remeshing techniques mentioned above can be applied

to improve the modeling accuracy. However, in case of real-time deformable body

simulation, this iterative solution of the problem followed by a posteriori error

estimation is not practical. Noting the fact that surface areas in physical contact are

subject to large stress/strain gradients, choosing contact elements for refinement

68

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

presents a simple and intuitive approach to achieve better accuracy in deformation

modeling.

In r-refinement, only positional data of the mesh is subject to changes, therefore

updating mesh data on GPU is simpler. However this approach can result in low-

quality elements, in particular at areas with fixed boundary and its accuracy is

limited [139]. Additionally, extra care should be taken to avoid nodes crossing

over the elements boundaries in the mesh [140].

Using p-refinement requires employing higher-order formulation for interpo-

lating functions. This approach can result in an improved conditioning of the sys-

tem of equations and better convergence rates compared to h-refinement [141]. But

in p-refinement, the computing kernels of the FEM matrices should be modified to

incorporate hierarchical shape functions with higher orders.

In h-refinement, new elements are added to improve the spatial discretization.

This method is more commonly used compared to other adaptive schemes [142].

Using h-refinement allows for direct integration of the local refinement to the FEM

solution without introducing any changes to the GPU kernels for computing FEM

matrices. For this reason, h-refinement is selected for local mesh refinement in this

thesis. However, other adaptive schemes remain as possible candidates for future

work.

It should be noted that mesh refinement has been extensively studied in the

literature and its treatment is beyond the scope of this thesis. Rather, the goal

here is to find a simple way of integrating some form of local mesh refinement

in our proposed solution for fast/real-time deformable body simulation on GPUs.

In what follows, first the mesh data structure and challenges imposed by mesh

69

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

refinement are discussed. Then a solution for GPU implementation of local mesh

refinement at contact elements is proposed.

5.3.1 A Note on Data Storage Scheme

According to the definition provided in Section 4.1, FEM mesh consists of nodes

and elements. The initial mesh data is stored in elemental matrix t and nodal po-

sition matrix p. Each row of matrix t is associated with one element in the FEM

model, and consists of the node numbers of that element. Each row of p corre-

sponds to one node in the mesh and contains the Cartesian coordinates of that

node. Based on t and p, a nodal-elemental matrix pt is formed such that the nodal

coordinates of each element are accessed in consecutive memory locations. This

data is used to compute FEM matrices per element. These matrices are stored in

row-major format in one-dimensional arrays in GPU global memory. Figure 5.4

gives an example of a 2D triangular mesh with three elements and five nodes.

, ,

Figure 5.4: Elemental and nodal mesh matrices for a sample 2D triangular mesh.

From this example, it is clear that the information in matrix pt is already contained

in the elemental and nodal matrices; therefore this matrix may seem redundant.

However, a performance issue justifies using the matrix pt instead of p and t. The

global memory in GPU is optimized for access to contiguous locations. This means

the running threads on GPU can read from or write onto contiguous addresses

70

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

much faster than they would with irregular access patterns. This topic is further

explored in Section 7.3. When reading the node coordinates of an element using

t and p, memory access is indirect, i.e. first the node indices are read from t and

then the corresponding node coordinates are read from p. Additionally, access to p

entries is not contiguous. Therefore, it is much faster to access the node coordinates

using the pt matrix than through the p and t matrices.

The above mentioned nodal-elemental data structure provides a simple and

compact representation of 2D and 3D finite element meshes. However, its efficient

application is limited to cases where the mesh is not subject to dynamic changes.

For surface meshes in 2D models, other data structures such as Winged Edge [143]

offer more flexibility for dynamic changes such as splitting or merging which could

be useful in applications such as cutting simulation. Winged Edge data structure

explicitly represents the nodes, elements (faces) and edges of a mesh, imposing

larger memory requirement compared to the nodal-elemental data structure.

Mesh refinement can introduce several challenges of its own. As an example,

consider a case in which element e3 in Fig. 5.4 is selected for refinement. In such

case,

(a) Array pt (or alternatively arrays t and p) should be updated in an

efficient way. This requires removing the corresponding data of the

parent element e3 and adding the data of the new elements to the array.

(b) Refinement of contact elements results in hanging nodes on the ad-

jacent elements. To rectify this problem, the refinement should be prop-

agated. In the example presented in Fig. 5.5, this can be accomplished

by bisecting e2.

71

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

(c) Parallel implementation of mesh refinement requires multiple threads

to be able to update pt array by adding the new values to the end of the

array. But since the end of the array is dynamically changing, a method

should be devised to avoid simultaneous access to a same memory lo-

cation.

Figure 5.5: Removing hanging node in an adjacent element.

In the following, a solution is proposed to address all the above noted prob-

lems. The solution is implemented for a 2D triangular mesh, however it can be

extended for 3D tetrahedral mesh. In this approach, initially contact elements and

their adjacent elements with hanging nodes are marked for refinement. Next the

mesh data structure is updated accordingly.

5.3.2 Marking Elements for Refinement

Consider an element e1 with nodes n1, n2 and n3 and edges d1, d2 and d3. There

are many ways to refine this element. One way would be to bisect one or mul-

tiple edges of e1. Figure 5.6 shows different possible subdivisions of a triangular

element.

As mentioned earlier, local mesh refinement is performed on contact elements

that are provided by a collision detection module. The contact elements are regu-

larly refined into four smaller isotropic triangles. The refinement is propagated to

72

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

regular refinement

triangle bisection

triangle trisection

Figure 5.6: Different scenarios for triangle refinement.

the neighbor elements and depending on the number of hanging nodes, the proper

partitioning is selected. Figure 5.7 demonstrates an example for this type of mesh

refinement. The two shadowed elements are in contact and regularly refined.

Figure 5.7: Refinement of contact and neighbor elements.

In order to detect which elements require a certain type of partitioning, mesh

refinement can be performed in two stages:

• in stage one, the elements are marked for refinement,

• in stage two, the pt array is updated.

As noted previously, each row of the elemental matrix t corresponds to one ele-

ment, consisting of the node numbers of that element. Since any d j edge in a tri-

angle element corresponds to a node n j , j = 1,2,3, a simple yet effective approach

73

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

to mark edge j of element i for bisection is changing the sign of ti j in matrix t. To

mark edges of the neighbor elements, an edge-element adjacency list is required,

which can be computed off-line. Therefore, the elements are marked by changing

the sign of those rows in matrix t corresponding to the contact elements and then

altering the sign of the edges of the adjacent elements. Alternatively, a vector with

length equal to the number of mesh elements can be employed for marking.

It is noted that this marking algorithm is parallel and can be efficiently im-

plemented on GPUs. Fig. 5.8 presents an example of the marking scheme for a

mesh with two contact elements. Each GPU thread is assigned to mark one con-

tact element and the corresponding edges of the adjacent elements. Following this

scheme, each edge is accessed by only one thread, therefore threads can perform

the marking step in parallel without race condition.

Elemental matrix

List of contact elements
provided by collision-
detection module

Thread 0 Marking

- - -

(a)

Thread 1 Marking(a)

- - -

Marking edges of
adjacent elements to

(b)

-

Marking edges of
adjacent elements to

(b)

-

-

M
a
rk

in
g
 S

te
p
 o

n
G

P
U

Figure 5.8: Marking edges of contact and adjacent mesh elements for refinement.

74

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

5.3.3 Updating Elemental Matrix

As explained in Section 5.3.1, a main challenge in parallel updating of the refined

mesh data is to avoid memory contention due to concurrent access of multiple

threads for writing the new mesh data on a same memory location. To explain this

problem, consider a mesh with initial number of m elements which after detecting

the contact elements and marking for refinement, l1, l2 and l3 elements are selected

to be bisected, trisected and regularly refined respectively.

In the simplest scenario for updating the mesh matrices due to local mesh re-

finement, only l1 elements are marked for refinement to be bisected and l2 = l3 = 0.

In this case, two new triangles are derived from each marked parent element. One

replaces the parent element and the other is added to the end of the mesh data

array. Assigning one thread per marked element, it is straightforward to allocate

a specific address for contiguous storage without memory contention. See Fig. 5.9

for an example where thread i updates memory location m+i and the correspond-

ing location of the parent element.

p
a

re
n

t
e

le
m

e
n

ts

n
e

w
 e

le
m

e
n

ts
d

a
ta

 t
o

 b
e

 a
d

d
e

d
fr

o
m

 h
e

re

..
.

..
.

thread 0

thread 1

memory address

0

1

2

m-1

m

m+1

..
.

..
.

..
.

Figure 5.9: Updating nodal-elemental matrix pt for bisected elements to include
mesh data of newly added elements.

75

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

In case that l2 and l3 are non-zero, some threads correspond to elements that

are refined into three or four smaller triangles. Then the address increment at the

end of the array for storing new data is variant and not known to the parallel GPU

threads. To avoid this problem, the nodal elemental matrix pt can be updated in

three steps such that in each step, each thread adds only one new element to the

end of the mesh data array. Fig. 5.10 demonstrates this approach.

76

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

p
a
re

n
t

e
le

m
e
n
ts

n
e
w

 e
le

m
e
n
ts

d
a
ta

 t
o
 b

e
 a

d
d
e
d

fr
o
m

 h
e
re

..
.

..
. thread 0

0

m-1

m

..
.

threadm

Step 1: all bisected elements updated.

new elements of trisected elements updated

new elements of regularly refined elements
updated

- -

n
e
w

 e
le

m
e
n
ts

d
a
ta

 t
o
 b

e
 a

d
d
e
d

fr
o
m

 h
e
re

..
.

..
. thread 0

..
.

threadm

Step 2: all trisected elements updated.

new elements of regularly refined elements
updated

-

-

m -

m

..
.

..
.

n
e
w

 e
le

m
e
n
ts

d
a
ta

 t
o
 b

e
 a

d
d
e
d

fr
o
m

 h
e
re

..
.

..
. thread 0

..
.

threadm

Step 3: all regularly refined elements updated.

-

m -

m

..
.

-

Figure 5.10: Updating nodal-elemental matrix pt for the general case to include
mesh data of newly added elements.

77

C
H

A
P

T
E

R

6
GPU PARALLEL COMPUTING FOR

SOLVING A LINEAR SYSTEM OF

EQUATIONS

The elemental equations for static analysis (4.1) and dynamic analysis after implicit

numerical integration are both in the general form of

Ae
i xe

i = be
i (6.1)

where the superscript e denotes elemental quantities and subscript i is the element

number in the finite element mesh. These elemental equations are usually assem-

bled into a global matrix equation in the form of Ax = b by taking into consideration

interactions among the elements as well as boundary conditions [131]. Note that

78

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

the elemental equations can not be independently solved for xe
i

since Ae
i
’s are rank

deficient and in practice only the vector b is known but not individual be
i
’s. The ex-

ternal boundary constraints are defined over the complete model rather than each

Ae
i
. Only after application of the boundary constraints [131, 144], the global matrix

A becomes full-rank.

In the general case where the matrix A is nonlinearly dependent on displace-

ment vector x, an incremental approach can be adopted in which loads and dis-

placements are applied in multiple increments. If the desired accuracy is not

achieved, the well-known Newton-Raphson successive approximation method can

be employed per increment to enforce equilibrium [40, 145]. In the real-time ex-

periments for dynamic analysis of deformation performed in this thesis, the time

increments are small and Newton-Raphson is not used. Several direct and iterative

methods exist for solving large linear systems of equations [110, 111, 118]. In the

following sections, some of these methods are briefly discussed.

6.1 Direct Solvers

The basic idea of direct solvers is to decompose matrix A into simpler forms in

order to facilitate solving the system of equations. In the popular LU decomposition,

A = LU, where L is a lower triangular and U is an upper triangular matrix. Despite

the sparse pattern of matrix A, L and U matrices may not be sparse. This problem

is more pronounced while dealing with large sparse matrices, both in terms of

memory footprint and computing cost. The nonzero elements that are introduced

in L and U factors with no counterpart in matrix A are known as fill-ins. Several

algorithms have been developed, where by changing the order of the matrix rows,

79

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

the number of fill-ins is reduced [110]. In general, sparse direct solvers consist of

following steps [146]:

(a) reordering phase to minimizes the number of fill-ins,

(b) an analysis phase, also known as symbolic factorization, to determine the

non-zero structure of L and U factors. This step is used to determine the data

structure and memory allocation.

(c) numeric factorization phase, and

(d) triangular solver phase where forward elimination is followed by backward

substitution.

The numeric factorization is usually the most computationally expensive step. The

first three steps need to be done once for a certain matrix A and then can be used

for different vectors b. Step four has to be repeated for different vectors b. The tri-

angular solver for dense structures is inherently a sequential algorithm. However

for sparse structures, depending on the structure of the matrix, it is possible to ex-

ploit some degrees of parallelism. One method for parallel GPU implementation

of sparse triangular solvers is explored in [147].

In the case of a symmetric positive definite matrix, A can be decomposed as

A = LLT, where L is a lower triangular matrix and LT is its transpose. This decom-

position is known as Cholesky decomposition and is numerically more stable and

faster than LU-decomposition [148].

80

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

6.2 Iterative Solvers

In general, iterative methods are more amendable to massive parallelization of

the computations. They are also typically more efficient in terms of memory us-

age compared with direct solvers [149]. The basic idea in iterative methods is to

produce a sequence of improving approximations to the solution of Ax= b. There

are two main classes of iterative solvers for linear system of equations: stationary

methods and Krylov subspace-based methods.

In stationary methods, or classical iterative methods, matrix A is split into non-

singular matrices M and N, such that A = M−N. Then the solution can be expressed

iteratively as x(k+1) = M−1(Nx(k) +b). The key point for effectiveness of such meth-

ods is to choose a matrix M that can be easily inverted and yields fast convergence.

The main algorithms of this class are Jacobi, Gauss-Seidel, Successive Overrelax-

ation (SOR), and Symmetric Successive Overrelaxation (SSOR) [111].

In Krylov subspace methods, a sequence of Krylov subspace Kn is created to

find the approximate solutions x(n) in that subspace.

Kn = {b,Ab,A2b...,An−1b} (6.2)

Some known algorithms of this class include the Conjugate Gradients (CG), Bi-

conjugate Gradients Stabilized (BiCGStab) and Generalized Minimum Residual

Method (GMRES). For symmetric positive definite matrices, one of the most popu-

lar Krylov subspace algorithms is the CG [24]. The finite element matrices derived

in Chapter 4 are symmetric positive definite, hence can be solved using the CG

method. From a numerical perspective, the CG method is robust, has relatively

fast convergence rate, and requires less computations compared to other iterative

81

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

methods such as BiCGStab or GMRES, which are applicable to a broader range of

matrices compared to CG [118, 150].

6.3 Preconditioning Methods

The number of iterations required to converge to the solution in Ax = b depends

on the initial guess for u, desired error tolerance, and the condition number of

matrix A. The condition number of the stiffness matrix in finite element analy-

sis depends on the meshing quality and increases by the problem size, slowing

down the convergence. To counter this problem, a preconditioning step may be

used [111]. Preconditioning usually replaces Ax = b with an equivalent system of

equations P−1Ax = P−1b, where P−1A has a better condition number compared to

A , therefore requires fewer number of iterations to converge. The computational

overhead imposed by P−1 should not cancel out the saving achieved by reduced

number of iterations.

A symmetric matrix A can be decomposed as A = L+D+LT, where L is the lower

triangular part of A and D is the main diagonal of A. Using this decomposition,

some possible choices for the preconditioning matrix P include [111],

P = D Jacobi preconditioning (6.3)

P = L+D Gauss-Seidel preconditioning (6.4)

P =
1

ω
(L+ωD) SOR preconditioning (6.5)

where in (6.5) ω > 1 is a scalar. Another common preconditioning technique is

based on incomplete factorization, where approximate factors are employed. The

approximate factors are in some sense close to the original factors. Incomplete

82

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

LU factorization, or for symmetric positive definite matrices, incomplete Cholesky

factorization are examples of this technique [151]. Due to a high level of parallelism

achieved by Jacobi preconditioning compared to other techniques, this method is

adopted in two different GPU implementations of CG algorithm on GPU.

6.4 Conventional and Element-by-Element PCG

This section elaborates on two different approaches to implement CG algorithm.

The pseudo-code, advantages and drawbacks of each approach with respect to

GPU implementation are explained. Further details of GPU kernels to perform CG

will be given in Chapter 7.

Fig. 6.1 presents a pseudo-code of the Preconditioned Conjugate Gradients

(PCG) method. Each iteration of the algorithm consists of one sparse matrix by

vector multiplication (line 9), inverse of preconditioner matrix by vector multipli-

cation (line 13), a couple of vector by vector multiplications (lines 10 and 14) and

some scalar multiplications and vector additions. In case of the Jacobi precondi-

tioning, P−1 is simply the inverse of diagonal entries of the sparse matrix A and

solving for z in line 13 turns into component-wise vector product. This allows for

efficient parallel implementation on GPU. Using other types of preconditioning

techniques mentioned in Section 6.3 requires two sets of triangular solving proce-

dures, which would be less amendable to parallelization.

The matrix assemblage in Line 2a of the algorithm is a memory-bound function,

i.e. the limiting factor for speed is the memory access time rather than computation

time of arithmetic operations. Matrix assemblage is the most time-consuming step

in a GPU implementation of the PCG algorithm [105] and is performed only once

83

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

-
-

-
-

- -

In
it

ia
li

za
ti

o
n

L
o
o
p

Figure 6.1: Pseudo-code for the conventional PCG method, x = PCG(A,b).

at the initialization phase. In the Jacobi PCG loop, the matrix by vector multiplica-

tion is the most computationally intensive step. When the elemental matrices are

assembled into a sparse matrix A (see Eq.6.6a), one could exploit existing efficient

algorithms in sparse matrix operations, i.e. see [152], for this multiplication.

y = (
∑

i

Âe
i)x = Ax (6.6a)

=
∑

i

Âe
i x=

∑

i

ŷe
i (6.6b)

Alternatively in the so-called element-by-element (EbE) or matrix-free Conjugate

Gradients Method, the elemental matrices can be multiplied by the correspond-

ing components from the vector and then assembled into the resultant vector (see

84

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

-

-

-

-

- -

-

L
o
o
p

In
it

ia
li

za
ti

o
n

Figure 6.2: Pseudo-code for element-by-element PCG method, x = EbE PCG(Ae,b).

Eq.6.6b). This seemingly small difference in the order of summation and multi-

plication allows one to forgo the matrix assemblage step and hence avoid issues

pertaining to indirect memory access for storage and operation on a sparse matrix.

This element-based approach can be efficiently implemented on a GPU compute

platform.

The PCG method in Fig. 6.1 can be modified so it can operate on elemental

Ae
i

matrices instead of the sparse matrix A. Fig. 6.2 presents the pseudo-code for

matrix-free PCG algorithm. The main changes with respect to the original PCG

85

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

method are as follows. First vector d should be disassembled into elemental vec-

tors de
i

consisting of the corresponding elements of d that are multiplied by Ae
i
.

Then the sparse matrix by vector multiplication should be replaced by an elemen-

tal matrix by vector multiplication for all the elements, i.e. yi = Ae
i

de
i
, followed by

a kernel for vector assemblage to obtain y from yi’s. Fig. 6.3 shows a schematic of

these three kernels.

d

y

(a) Vector disassemble kernel

(b) Elemental matrix-vector

multiplication kernel

(c) Vector assemble kernel

1
de

2
de

3
de de

m

1
ye

2
ye

3
ye ye

m

ŷ ye

i

i

=å

1
Ae Ae

m1
de de

m1
ye ye

m

Figure 6.3: Schematic of kernels used to replace sparse matrix-vector multiplica-
tion in PCG algorithm with elemental matrix-vector multiplications.

Pros:

An element-based computing approach avoids matrix assemblage and needs not

to store indices of non-zero entries. Direct access to elemental matrices components

is faster compared to indirect accessing to global matrix elements. Additionally

EbE PCG scheme would be suitable for the use with adaptive mesh refinement

86

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

algorithms since only the refined elements would need extra computation [39].

An element-based approach also facilitates application of deformable contact con-

straints. As will be explained in Chapter 7, an implementation of vector assembly

in element-by-element PCG algorithm can be presented that results in more con-

sistent performance for a vast range of different FEM meshes compared to conven-

tional PCG algorithm.

Cons:

More computations need to be performed at each iteration of the EbE PCG. Sparse

matrix by vector multiplication (Step 8 in Fig. 6.1) is replaced by three steps of vec-

tor disassembling, elemental matrix-vector multiplications and vector assembly in

EbE PCG (8a, b and c in Fig. 6.2). Vector assemblage process, as will be discussed

in Section 7.5, takes less effort compared to matrix assemblage; however this task

needs to run at each iteration of the EbE PCG method. The proposed vector as-

sembly is based on atomic operations which using CUDA 5.0 and current GPU

compute capability, 3.5, is limited to single precision. Both methods are discussed

and compared in Chapter 8.

Several publications in the literature address the mathematics of element-by-

element CG algorithm [39], and deriving a pre-conditioner for this method [108]

with the goal of reducing memory usage. The contribution of this thesis in the EbE

PCG is the development of a fast and scalable GPU-based implementation for the

algorithm. The element-based structure of this algorithm enables efficient memory

loads and massive parallelization of its computations on many-core architectures.

87

C
H

A
P

T
E

R

7
GPU-BASED COMPUTE PLATFORM

FOR DEFORMATION ANALYSIS

In recent years many-core computing platforms, including GPUs and FPGAs, have

been employed as specialized coprocessors in heterogeneous computing along

CPUs. In general, FPGAs can be customized at a low level for the problem at

hand to yield very high performance in computing acceleration. However de-

signing FPGA-based computing architectures is a complicated and time consum-

ing process, which is highly customized to the FPGA hardware and the computa-

tional problem. Small changes in the computing problem may require substantial

changes in the compute architecture and moving designs across different platforms

may require significant design revisions. FPGAs also cost significantly higher than

GPUs.

88

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

GPUs were initially developed for special purpose graphics rendering. The

architecture of modern GPUs has evolved to point that they have become not

only powerful graphics engines, but also highly parallel programmable devices

for other high performance applications. There is a growing trend in using par-

allel computing on large number of computational cores to improve performance

rather than increasing the single-thread performance [153]. The increasing power

of GPUs and their use in high performance computing applications has spurred an

active area of research in GPU-based computing. GPUs offer large memory band-

width and high throughput computing that outpaces state-of-the-art CPUs. They

are particularly suitable for the type of computational problems discussed in this

chapter.

Control

Cache

ALU

ALU ALU

ALU

DRAM DRAM

CPU GPU

Figure 7.1: CPU and GPU architectures [154].

As shown in Fig. 7.1, in a modern CPU architecture, a major portion of the tran-

sistors are dedicated to control units and memory chache. In contrast in a modern

GPU architecture, the majority of transistors are allocated to the computing cores.

This explains the fundamental difference between the different types of problems

that each one is specialized for. In general, CPUs are optimized for low-latency

access to cached data sets and performing sequential and control-intensive tasks.

Although with the emergence of multi-core architectures, CPUs can handle a lim-

ited multi-threading parallelization as well. On the other hand, GPUs are best

89

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

suited for high throughput data-parallel applications where a sequence of com-

putations are performed on a large set of data in Single Instruction Multiple Data

(SIMD) fashion. Therefore, GPUs can be considered as co-processors that can of-

fload parallel compute-intensive portions of the application, while the remainder

of the code is executed on CPU.

The Compute Unified Device Architecture (CUDA) programming model intro-

duced by NVIDIA is designed to support joint CPU/GPU execution of an applica-

tion [155]. Different architectural designs and hardware features in CUDA GPUs

are represented by a number known as compute capability [154]. CUDA provides a

multi-threaded SIMD architecture to program NVIDIA GPUs. The set of data to be

processed is referred to as stream in computer programming context and GPU in-

structions on streams are referred to as kernel. Kernels are executed by a number of

threads. Threads are grouped in a grid of thread blocks. Fig. 7.2 presents this struc-

ture. The grid and block sizes are set at the kernel launch time. Threads within

each block run on the same streaming multiprocessor (SM) and can be synchronized

with each other. SM executes threads in groups of 32, called warp.

GPU_kernel <<< grid_size , block_size >>>

Block (0,0)

Block (1,0)

Grid Block (0,1)

Block (1,1)

Block (0,2)

Block (1,2)

...

...

Block (1,1)

Thread (0,0) Thread (0,1) Thread (0,2)

Thread (1,0) Thread (1,1) Thread (1,2)

...

...

Figure 7.2: Grid and blocks structure in CUDA [154].

90

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

Threads can access different CUDA device memory types. Shared memory and

registers are fast, but limited in size. Global memory on the device is large but rel-

atively slow. However, while some threads are waiting for memory access time,

other threads can become active and perform arithmetic operations to hide the la-

tency. Fig. 7.3 displays this memory hierarchy. A comprehensive introduction on

CUDA API principles and practices can be found in [31, 91, 156].

Register Register Register

Block (0,0)

Shared Memory

Grid

O
n

-c
h

ip
 M

e
m

o
ry

Global Memory

Constant Memory

D
e

v
ic

e
 M

e
m

o
ry

Register Register

Block (0,1)

Shared Memory

...

Life!me Scope

Register Kernel Thread

Shared Mem. Kernel Block

Constant Mem. Applica!on Grid

Global Mem. Applica!on Grid

Figure 7.3: Structure, lifetime and scope of global/constant/shared memory and
registers.

For numerical simulation of a deformable object, initially the mesh data dis-

cussed in Section 5.3.1, is computed off-line and transferred to GPU through two

matrices, namely matrix p, consisting of position coordinates of each node in the

mesh and matrix t, comprising of tetrahedral (triangular for 2D models) indices

associated with each element. For efficient memory access, as explained in 5.3.1,

these data are unified into pt array. The GPU kernels that will be discussed shortly,

91

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

address the two main problems described in Chapters 4 to 6, i.e. real-time updat-

ing of the non-linear FEM matrices and solving of a large system of linear equa-

tions. Fig. 7.4 gives an overview of the proposed GPU-based computing scheme

for soft-tissue deformation analysis.

(2)

(1) Matrix assembly using CUSP
and Thrust libraries

P P

(3) vector dot product, addition and
scalar multiplication performed
using CUBLAS library

(3) vector dot product, addition and
scalar multiplication performed
using CUBLAS library

Each GPU thread is assigned to compute matrices per

one element. and run only for contact elements.

GPU
thread

Iterative solving for deformation -

Figure 7.4: The general computation scheme: (a) mesh generation is done off-line,
mesh data is sent to GPU via elemental and nodal matrices, (b) in total Lagrangian
nonlinear FEM kernel, computations per element run in parallel (c) matrix linear
algebra operations in PCG are performed in parallel (d) mesh nodal matrix, con-
taining the coordinates of all vertices is updated and the procedure is repeated for
the next time step.

92

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

7.1 GPU Kernels for FEM Matrix Construction

The matrices Ke
L, Ke

N and Fe in the nonlinear finite-element formulation, as well as

Ke
α and τRe

c in presence of contact, were presented in Chapters 4 and 5. Comput-

ing these matrices involves some basic linear operations performed on small-sized

matrices/vectors per element in the FEM model, see 4.15-4.17 and 5.15-5.17. The

sizes of these elemental matrices/vectors are determined by the degrees of free-

dom of the corresponding finite element in the discrete model, e.g. see Table 4.1

for some examples.

Strain-displacement matrices Be
L and Be

N are computed based on spatial deriva-

tives of the interpolation functions. In the total Lagrangian formulation, these

derivatives are with respect to the initial configuration and remain unchanged for

all time steps. The partial derivatives can be calculated once and then stored in

the device global memory for the use in the update of FE matrices. Threads can be

assigned on GPU to compute the elemental matrices due to data independency

among the elements. GPUs can substantially accelerate these types of compu-

tations due to the data-parallel structure and arithmetic-intensive nature of this

problem, particularly for models with large number of elements.

As seen in the general scheme in Fig. 7.4, FEM matrices can be computed based

on total Lagrangian formulation using the mesh data, i.e. elemental and nodal

matrices stored in pt array. The kernels for these computations assign one thread

per element. These kernels are fully scalable and can execute for different-sized

problems on single or multiple GPUs, and as long as the corresponding portion

of mesh data is stored on each device, no extra communication is required among

multiple GPUs.

93

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

The main compute intensive task in deriving FEM matrices is matrix-matrix

multiplication. There exist highly optimized kernels for matrix multiplication of

relatively large-sized matrices on GPUs [157,158], available in NVIDIA CUDA Ba-

sic Linear Algebra Subroutines (CUBLAS) library [159]. However, matrix multipli-

cation in computing FEM matrices is different in the sense that it is performed on

relatively small-sized matrices, but needs to be repeated for all the elements in the

FEM model. It is more challenging to achieve high performance in matrix multi-

plication for small-sized matrices due to smaller ratio of arithmetic operations to

the data operands. An example quoted from [159] helps to clarify this matter:

"a single m ×m large matrix-matrix multiplication performs m3 operations for m2

input size, while 1024 m
32
×m

32
small matrix-matrix multiplications perform 1024(

m
32

)3 =

m3

32
operations for the same input size."

Some CUDA-capable GPU devices allow launching multiple kernels. The user

can define any number of streams, but the concurrent execution is limited to six-

teen kernels. One approach to compute FEM matrices is to create as many streams

as FEM elements and preface each call to CUBLAS matrix multiplication devel-

oped for large matrices [159]. However, this approach would not yield the best

performance. Another method is to use the newly introduced kernel in CUBLAS

version 4.1, developed to perform multiplication on a batch of small-sized ma-

trices, i.e. roughly 128 × 128 and smaller. This CUBLAS kernel referred to as

batched GEMM API offers a better performance for matrices which their dimen-

sion has an integer factor of 16. As an example, multiplying a batch of 100,000

single-precision matrices A16×16B16×16 on GTX 480 using the batched GEMM API

yields 177.1 GFLOPS, while the same batch size of A12×12B12×12 and A6×6B6×6 would

94

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

achieve 51.2 and 8.8 GFLOPS respectively.

In this thesis, a fine-tuned kernel for multiplication of matrix sizes defined by

the FEM model is developed. As an example, in computing Ke
L of a tetrahedral

FEM model, the matrix multiplication BL
T

12×6
C

6×6
BL

6×12
yields up to 210 GFLOPS on

GTX 480. The kernels involved in computing FEM matrices are memory-bounded,

hence optimal usage of memory can significantly improve the overall performance.

Section 7.2 gives an example of employing low-latency shared-memory and reg-

isters for high-performance FEM matrix computations. The FEM matrices for a

model with n elements can be stored in n one-dimensional arrays. Large data size

of FEM arrays fits to global memory in GPU memory hierarchy. In Section 7.3, a

data structure for efficient access to these arrays in global memory is presented.

7.2 Shared Memory and Registers in FEM

Computations

Efficient use of on-chip shared memory and registers can help achieve a greater

performance with GPUs in memory-bounded kernels. In computing FEM matri-

ces, small-sized matrix by matrix multiplication is the core routine. In matrix mul-

tiplication, row and column values should be loaded repeatedly to compute the

new result entries. Such repeated memory transactions from the global memory

in GPUs are costly due to limited bandwidth and high latency. One strategy to re-

duce the global memory bandwidth traffic is to use the available on-chip memory.

In this way, multiplicand entries can be loaded once onto the on-chip memory to

eliminate the need of global memory transactions for the next access times.

95

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

The main constraint in using shared memory and registers is the limited size

of the on-chip memory. Additionally, in using registers, the maximum number

of registers which can be assigned per thread is limited. If a thread exceeds that

limit, the excess data is automatically transferred to the global memory local to

that thread. The use of global memory in absence of available registers is known

as register spilling. As seen in Table 7.1, physical constraints vary on GPUs with

different compute capabilities.

Compute Capability 1.0 1.1 1.2 1.3 2.0 2.1 3.0 3.5

Max. Registers per Thread 124 124 124 124 63 63 63 255

32-bit Registers per SM 8192 8192 16384 16384 32768 32768 65536 65536

Shared Mem. per SM (bytes) 16384 16384 16384 16384 49152 49152 49152 49152

Max. Threads per SM 768 768 1024 1024 1536 1536 2048 2048

Max. Blocks per SM 8 8 8 8 8 8 16 16

Table 7.1: Physical constraints for different compute capabilities.

In order to achieve the maximum performance on GPU, it is desired to maxi-

mize the parallel execution. There is a metric known as occupancy, indicating how

effectively the GPU resources are kept busy [91]. Occupancy is the ratio of the ac-

tive threads to the maximum possible threads per streaming multiprocessor. There

are three main sources for limiting the occupancy: 1- registers, 2- shared memory

and 3- block size, i.e. assigned number of threads per block. For example, con-

sidering compute capability 2.1, a maximum number of 1536 threads can reside

per SM. However, if each thread uses 63 registers, no more than 520 active threads

can reside per SM, limiting the occupancy to 33%. A similar example justifies the

limitation enforced by the shared memory. Block dimension is chosen according

to the hardware constraints and performance considerations at the kernel launch

96

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

time. If the block dimension on a device with compute capability 2.1 for example

is chosen 32, since the number of thread blocks is limited to 8 per multiprocessor,

the maximum number of active threads equals to 32×8= 256 and the occupancy is

limited to 17%.

While the occupancy metric provides a tool to determine how efficiently the

parallelization is employed, it does not necessarily mean that high performance

can not be achieved at lower occupancies. This issue is discussed in detail in [160].

The main argument relies on using instruction level parallelism (ILP) in addition

to the thread level parallelism. If a number of independent arithmetic tasks are

assigned per thread, similar high performance to that in 100% occupancy can be

achieved at lower occupancies. Additionally, efficient use of registers and shared

memory can offer significant performance gain despite limiting the occupancy.

The performance gain, as mentioned previously, is due to larger memory band-

width and smaller latency.

Matrix multiplications to compute elemental matrices need be performed per

element of the FEM model. Each elemental computation can be assigned to a GPU

thread and run in parallel. Figure 7.5 presents the sequence of the steps in per-

forming BL
T

12×6
C

6×6
BL

6×12
to compute Ke

L in Eq.(4.17) in a tetrahedral mesh. These

steps are assigned per single thread, allowing instruction level parallelism of the

independent arithmetic operations. To perform the matrix multiplication, BL6×12
is

partitioned into two blocks of B16×6
and B26×6

. Larger block sizes limit the occu-

pancy due to limited on-chip memory and can result in register spilling. Smaller

block sizes on the other hand, do not reduce much from the global memory band-

width traffic.

97

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

B1 and B2 blocks are separately loaded onto on-chip registers, multiplied by

the elastic modulus matrix C
6×6

which is stored in the constant memory. Constant

memory is not on-chip, but it is cached and optimized to broadcast data among dif-

ferent threads. After the first call, the data in the constant memory can be accessed

efficiently from the cache. For the nonlinear material models where the material

matrix is not constant but is symmetric, registers can be used to store half of the C

matrix, i.e. 21 more registers in addition to 36 registers used for storing B1 or B2.

The intermediate results of the matrix products are stored in the shared memory

to allow fast access when being reused. Since in general the material matrix C is

symmetric, the computed block BT
2 CB1 is transpose of BT

1CB2, therefore the extra

computation in Step 5 in Fig. 7.5 is avoided.

Reg.

Sh.M.

Global
Mem.

Read from intoglobal memory registers1)

Replace with read fromregisters global m.4)

Compute , store into shared memory2)

6)

Compute , store in global memory7)

Compute , store in global memory5)

Compute , store in global memory3)

Store the transpose in global mem.

Replace with computedshared memory

Figure 7.5: Using shared memory and registers to compute Ke
L

98

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

7.3 Memory Coalescing

In addition to efficient usage of shared memory and registers, access to the global

memory should be coalesced for an optimal performance [31]. Memory coalesc-

ing is a technique which allows optimal usage of the global memory bandwidth.

That is, when parallel threads running the same instruction access to consecutive

locations in the global memory, the most favourable access pattern is achieved.

indx 0 1 n-1

memory
address 0, 1, 2, 3, ... m-1 m, m+1, ... 2m-1 n.m-1

ixA 0, 1, bd-1 0, 1, bd-1 0, 1, bd-1 0, 1, bd-1

ixB 0 m-1 0 m-1

ixC 0 1

(a)

(b)

Figure 7.6: Storing n m-element vectors (a) in linear order (b) in coalesced pattern.

The example in Fig. 7.6 helps explain the coalesced arrangement. In Fig. 7.6.a, n

vectors of length m are stored in a linear fashion. Element i of vector j is denoted

by v
j

i
. Each thread in GPU kernel is assigned to one m-length vector. Threads in

CUDA are grouped in an array of blocks and every thread in GPU has a unique id

which can be defined as ind x = bd ×bx+ t x, where bd represents block dimension,

bx denotes the block index and t x is the thread index in each block. Vertical arrows

demonstrate the case that parallel threads access to the first components of each

99

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

vector, i.e. addresses 0, m, 2m... of the memory. In this case where memory access

is not consecutive, zeroing the gap between these addresses coalesces the memory

access. Since the allowed size of residing threads per GPU block is limited, the

coalesced data arrangement can be done by storing the first elements of the first

bd vectors in consecutive order, followed by first elements of the second bd vectors

and so on. The rest of vectors elements are stored in a similar fashion, as shown in

Fig. 7.6.b.

In the linear data storage in Fig. 7.6.a, component i (0 ≤ i < m) of vector ind x

(0 ≤ ind x < n) is addressed by m × ind x + i ; the same component in the coalesced

storage pattern in Fig. 7.6.b is addressed as (m × bd)i xC + bd × i xB + i x A, where

i xC = f loor
[

(m.ind x + j)/(m.bd)
]

= bx, i xB = j and i x A = mod(ind x,bd) = t x. In

summary, for a number of vectors with size m, linear indexing is mapped to coa-

lesced indexing according to (7.1).

m.ind x + i −→ m.bd .bx + i .bd + t x (7.1)

This data rearrangement can lead to a significant higher memory bandwidth

of GPU global memory [91]; for example writing BL matrices of length m = 72 for

100k elements using coalesced pattern is 11.8 times faster on Geforce GTX 470.

7.4 GPU Kernels for Solving Large System of Linear

Equations

In the GPU implementation of the PCG algorithms in Fig. 6.1 and 6.2, in addition to

kernels for matrix-vector multiplication, other kernels are required for scalar mul-

tiplication and vector addition (SAXPY) and vector dot product. These functions

100

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

are implemented using the CUBLAS library by NVIDIA [159]. To avoid unneces-

sary communication overhead with the host, the return location of the resultant

scalar by dot product is set to be on the device. In Jacobi preconditioning, inverse

of diagonal entries of the assembled sparse matrix needs to be stored in a vector.

In EbE PCG where the assembled matrix is not available, this vector needs to be

assembled only for once before the solver loop. Vector assembly on GPU is further

discussed in Section 7.6.

In the conventional PCG algorithm, the sparse matrix by vector multiplica-

tion can be performed efficiently using the functions provided in CUSPARSE li-

brary [161]. In the matrix-free PCG algorithm, three kernels for vector disassem-

bling, elemental matrix-vector multiplication and vector assembly are required to

perform Step 8 in Fig. 6.2. The threads for these kernels are defined per element,

e.g. a finite element model of 10,000 elements would have as many active threads.

The elemental matrices are typically small, for example 12× 12 for a tetrahedral

mesh from Table 4.1. As a result, the number of arithmetic operations per thread

is modest and a high level of parallelism can be attained in large meshes.

In the Jacobi PCG algorithm in Fig. 6.1, the most time consuming steps are

matrix assembly (line 2a) and sparse matrix by vector multiplication (line 8). The

latter is expensive due to huge amount of computations in addition to indirect

memory accessing to non-zero components of the sparse matrix. The assembly

kernel is a bottleneck due to indirect memory access pattern and serialization to

avoid memory contention. The problems associated with assembly process and an

efficient GPU kernel for vector assembly are further elaborated in Sections 7.5 and

7.6.

101

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

7.5 Assembly Process on GPU

According to Eq.(4.20), the assembly process consists of two steps, first mapping

elemental matrices/ vectors into global-sized type, then adding them up to form

the global matrix/vector. Fig. 7.7 shows an example for mapping elemental matrix

Ae to Âe in the first step. Matrix Âe is mainly comprised of zeros and therefore needs

to be stored in one of the standard sparse formats [152]. This requires that the data

associated with non-zero indices be stored in addition to their values. The use of

this mapping is referred as to indirect addressing. In general, accessing data from

global memory in GPU is slow and indirect addressing signifies this degradation.

Figure 7.7: Mapping procedure of a sample elemental matrix Ae into a global-sized
matrix Âe.

The other challenge associated with assembly process appears in the second

step, i.e. adding up the elemental matrices/vectors. There are two general dif-

ferent approaches to perform this addition on GPU. A method known as scat-

ter assigns each thread to one elemental matrix/vector. Another method known

as gather assigns each thread to the computation of one entry of the global ma-

trix/vector. In the scatter method, race condition can take place where concurrent

access of different threads to a same memory location on the global matrix/vector

leads to indefinite result. Fig. 7.8 is an example of such situation. The problem

102

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

can be addressed by using atomic add provided in CUDA, at the expense of se-

rial execution of threads which cause the race condition. This results in an extra

instruction overhead and slower run-time. Double precision operations are not na-

tively supported by atomic add, hence single precision float is used in the scatter

method.

Beside using atomic operations, there is also another technique known as graph

coloring [162]. The goal is to color the mesh in a way that no two elements with the

same color cause a race condition. In GPU implementation, elements of the same

color run in parallel, and different colors are executed is sequence. This method

requires off-line computation. In this approach double precision can be employed

for the scatter method.

Figure 7.8: Adding up the mapped elemental matrices and storing the results into
the global assembled matrix A; the location marked with X encounters memory
contention.

In the gather method, a mapping array is required to determine which ele-

mental matrices/vectors contribute to each entry of the global assembled form. In

general, this approach involves indirect accessing, non-coalesced load transactions

from global memory, and can be less efficient for non-structured FEM meshes with

many elements connected to each node.

The problems associated with assembly process are common in both matrix and

vector assembly, but are more pronounced in matrix assembly since it consists of

103

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

more entries. The next section explores an efficient GPU implementation of vector

assembly. Assembly of m ×m elemental matrices can be considered as assembly

of m elemental vectors of length m; therefore vector assembly kernel, with some

changes can be extended for application in matrix assembly.

7.6 Optimized Vector Assembly on GPU

In the scatter method by assigning each GPU thread to one elemental vector Ve
i

in

Fig. 7.9.a, memory loads can be coalesced, but storing the results onto the global

vector V is non-coalesced and encounters race condition. In the gather method,

each thread is assigned to one element of the global vector V and memory loads

of corresponding elemental vector components from Ve’s are non-coalesced. The

gather method was employed in a previous work [163]. In our proposed imple-

mentation, a scatter method is employed that by efficient use of shared memory,

requires smaller number of non-coalesced global memory transactions.

To address memory contention in the scatter method efficiently, serialization

can be performed at two levels. In the first level, a number of elemental vectors are

grouped per GPU block, and atomic operations are performed on shared memory

which is much faster in comparison to the global memory. This produces locally

assembled vectors Ṽi ’s in Fig. 7.9.b. The maximum number of local vectors pro-

cessed in each thread-block is limited by the allocated shared memory storing vec-

tor Ṽi . In the second level, atomic operations are performed on the global memory

to add Ṽi ’s. A mapping array is used to assign Ṽi components to the corresponding

addresses in the global vector V.

This method by transferring the global memory traffic to the shared memory

104

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

e

1v
e

2v
e

3v

evm
v

m elemental vectors global assembled vector

e

1v
evbd

local assem-
bled vector

bd elemental
vectors

1v

evk

evm v f

...

(a)

block f, f () 1
m

ceil
bd

= -
(b)

block 0

local assem-
bled vector

bd elemental
vectors

Figure 7.9: Vector assembly.

in its first level, yields about 7× speed-up compared to single-step assembly on

the global memory. Fig. 7.10 compares the timing of the two-level vector assembly

using shared memory versus the direct atomic add on global memory for a number

of different FEM meshes. When there are enough number of threads to fully utilize

the GPU device, the relation of the problem size and GPU run-time is expected to

be linear. However, small finite element models with smaller sizes do not produce

enough threads to keep the GPU completely busy. Consequently the graph for

speed-up ratio in Fig. 7.10 is not necessarily flat for models with smaller number

of elements.

The sparse matrix by vector multiplication kernel in conventional PCG algo-

rithm is subject to execution divergence due to variations of sparse matrix pattern

in different mesh structures [152]. In element-by-element PCG algorithm, this cor-

relation with the mesh structure is rooted in the vector assembly procedure. FEM

105

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

Figure 7.10: Comparison of two kernels for vector assembly, kernelG: scatter
method assembly, directly storing on global memory, kernelS: scatter method as-
sembly, two-level adding, using shared memory in the first level.

mesh structure determines data locality and non-coalesced memory access pat-

tern in vector assembly. Employing the vector assembly presented above reduces

this number of non-coalesced global memory transactions, and dependency on the

mesh structure.

In matrix assembly procedure, in addition to forming the global matrix, the

non-zero indices should be stored in one of the sparse storage formats. Matrix

assembly using gather approach has been previously addressed in [105]. In this

thesis, a code sample from CUSP library is employed∗. This code performs ma-

trix assembly in coordinate format using highly optimized kernels in THRUST li-

brary [164]. Since coordinate format does not yield the best performance for sparse

matrix by vector multiplication kernel in CUSPARSE library, the storage format of

the global matrix is converted into compressed sparse row (CSR) before entering

the PCG loop.

∗Link: https://code.google.com/p/cusp-library/source/browse/examples/
MatrixAssembly/unordered_triplets.cu

106

https://code.google.com/p/cusp-library/source/browse/examples/MatrixAssembly/unordered_triplets.cu
https://code.google.com/p/cusp-library/source/browse/examples/MatrixAssembly/unordered_triplets.cu
https://code.google.com/p/cusp-library/source/browse/examples/MatrixAssembly/unordered_triplets.cu

C
H

A
P

T
E

R

8
RESULTS

The GPU kernels for non-linear FEM matrix update and iterative solver methods

discussed in the previous sections are combined together to implement an implicit

dynamic FEM analysis using the total Lagrangian formulation. To measure the

performance of GPU implementation, several experiments with different FEM test

cases are carried out on a system with an Intel Core i7-3770 processor running at

3.40 GHz, 8 GB RAM and a GeForce GTX470 GPU. CUDA Version 5.0 is used in the

experiments. The test meshes are 3D with tetrahedral elements. The CPU results

are based on an optimized single-threaded C++ code. Fig. 8.1 and Table 8.1 present

the mesh structure and parameters used in the tests. It is noted that the numerical

results are compared and validated with Abaqus FEA [96] for a number of test

cases. Dynamic simulations reveal transient damping oscillatory effects which are

not present in static analysis.

107

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

Mesh # of elements # of nodes # of non-zeros in global matrix

6k 6361 1295 157,383
13k 12926 2517 313,065
23k 23000 4385 551,205
39k 38924 7250 922,680
56k 56688 11099 1,374,183
133k 133784 25462 3,197,664

Table 8.1: Mesh parameters for the test cases.

Figure 8.1: (a) The model used for 6k, 13k and 23k meshes (b) The model used for
39k, 56k and 139k meshes; mesh (a) is based on a 3D surface model of stomach
from [165] meshed using iso2mesh toolkit [166].

8.1 Performance in Computation of FEM Matrices

Fig. 8.2 shows the overall execution time as well as the GFLOPS of kernels used

to compute FEM matrices with elastic material behavior. The computations due

to the non-constant material matrix for a Neo-Hookean material would add up to

9% to the overall time reported in Fig. 8.2. The speed-gain compared to an equiva-

lent optimized implementation on CPU is also presented in this figure. Note that

108

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

GFLOPS are lower for smaller meshes since there are not enough number of el-

ements to keep all the GPU cores busy; however as the number of elements in-

creases, GFLOPS reach a maximum level determined by the GPU capacity. As

observed in Fig. 8.2, the execution time is relatively linear with respect to the num-

ber of the elements. The GPU kernels for computing FEM matrices were initially

developed for 2D models. The execution time for a 2D mesh with similar number

of elements to that in 3D is about an order of magnitude smaller.

80

100

120

k k k k k k

G
F

L
O

P
S

0.26

0.47

0.81

1.33

1.91

4.42

T
im

e
 (

m
s
e
c
)

Speed-gain
compared to CPU 22.4 26.5 27.3 27.5 28.0 28.4

Figure 8.2: Computing performance and execution time of kernels used to generate
FEM matrices based on TL non-linear FEM formulation.

Figs. 8.3, 8.4, 8.5 and 8.6 provide the performance results of the individual ker-

nels used in computing the total Lagrangian FEM on the GPU.

40

60

k k k k k k

50

0.49

0.21

0.15

0.09

0.05
0.03

T
im

e
 (

m
s
e
c
)

G
F

L
O

P
S

Figure 8.3: Computing performance and execution time of the kernel used to com-
pute the linear component of the strain-displacement matrix.

109

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

14

16

18

k k k k k k
0.08
0.16
0.28

0.46

0.66

1.55

G
F

L
O

P
S

T
im

e
 (

m
s
e

c
)

Figure 8.4: Computing performance and execution time of the individual kernel
used to compute the Green strain matrix.

150

200

0.72

k k k k k k

T
im

e
 (

m
s
e
c
)

G
F

L
O

P
S

0.50

0.31
0.18
0.10

1.66
175

Figure 8.5: Computing performance and execution time of the kernel used to com-
pute the linear component of the strain-displacement matrix.

115

130

G
F

L
O

P
S

T
im

e
 (

m
s
e
c
)

0.32

k k k k k k

0.22

0.13
0.08
0.04

0.73100

Figure 8.6: Computing performance and execution time of the kernel used to com-
pute the nonlinear component of the strain-displacement matrix.

Computing FEM matrices is an embarrassingly parallel problem and the ker-

nels can be scaled to be executed on multiple GPUs without extra communication

overhead.

110

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

Table 8.2 presents the computing time of contact matrix Ke
α and vector τRe

c based

on the penalty method defined in Eqs.(5.15) and (5.16), for a different number of

contact pair sets. These results indicate that the penalty method, even for a rela-

tively large number of contact pair sets has a minor overhead in the FEM comput-

ing. It is noted the computing time of one contact pair is in the same order to that

for hundred or thousand contact pairs. This can be explained by the parallel exe-

cution of the computations. When n threads are using CUDA memory bandwidth

and computing resources, thread n + 1 does not introduce any extra overhead if

there are available memory bandwidth and computing cores. This behavior is ob-

servable only for a small number of threads that do not saturate the GPU capacity.

Fig. 8.7 displays two examples of contact deformation in 2D models. In Fig.

8.7.a a thin cylindrical segment in contact with a rigid surface is under a load pres-

sure from the top surface, while the left surface is constrained along the x-axis. The

deformation is illustrated in different time samples. In Fig. 8.7.b, deformation of a

thin plate due to a point load and self-collision is displayed.

Contact Pairs 1 100 1000 10000 25000

2D 0.008 0.009 0.013 0.075 0.17

3D 0.041 0.041 0.050 0.38 0.82

Table 8.2: Computation time (ms) for updating the penalty-based contact matrices,
Ke
α and τRe

c, for different number of contact pair sets.

Mesh refinement tests were carried out based on the h-refinement scheme pre-

sented in Section 5.3. Mesh refinement consists of mainly memory transfer oper-

ations and very few arithmetic computation, therefore a memory friendly storage

of the data is crucial in achieving high performance. The tests are performed on

111

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

External Load

Rigid Surface sec

External Load

Constrained Boundary

sec sec

sec sec sec

(a)

(b)

Figure 8.7: (a) Rigid/deformable contat and (b) self-collision in 2D deformable
models.

a 2D mesh for different number of contact elements. Expansion of the algorithm

for 3D meshes is left for future research. The small difference in the timing results

for different number of contact elements is due to the fact that the problem size

is not large enough to saturate the GPU resources. Consequently, the time to per-

form mesh refinement for up to 1000 triangular elements is similar to that for one

element.

Contact Elements 1 100 1000 10000 25000

2D 0.88 0.88 1.06 1.92 2.05

Table 8.3: Computation time (ms) for updating the locally refined mesh data for
different number of contact elements.

112

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

Fig. 8.8 presents an example of the local mesh refinement at a given set of con-

tact elements, which is provided by a collision detection module.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
17

18
19

20

2122

1

2

3 7

8

9

10

1112

4 5 6

(a) (b)

Figure 8.8: An example of the local mesh refinement: (a) Elements 5 and 9 are
selected as contact elements. (b) the contact and their adjacent elements are refined
accordingly.

8.2 Computing Performance of the Parallel Conjugate

Gradients Method

Fig. 8.9 presents the performance and the execution time for one iteration of the

element-by-element CG as well as the conventional CG method on GPU. Due to

the issues associated with vector assemblage in matrix-free CG discussed in Sec-

tion 7.5, and also indirect addressing of sparse matrix in the conventional CG,

memory band-width is not fully utilized and smaller GFLOPS is achieved in com-

parison to the FEM kernels in Fig. 8.2. The conventional Jacobi-preconditioned

CG algorithm on GPU yields up to 10× speed-up compared to an optimized CPU

implementation.

113

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

k k k k k k

5

70

Figure 8.9: Computing performance and execution time of kernels used in one
iteration of the EbE CG and the conventional CG algorithm loop on GPU.

The pie charts in Fig. 8.10 illustrate the share of these kernels in the overall tim-

ing. Matrix by vector multiplication is the most computational intensive task in

the CG loop, which can be performed either in element-by-element or in assem-

bled form. Fig. 8.11 compares the GFLOPS of these two different methods. Mem-

ory access in the EbE matrix multiplication is coalesced whereas in sparse matrix

by vector multiplication, indirect memory access decreases the performance. Two

different libraries of CUSPARSE [161] and CUSP [167] were used for compressed

sparse row (csr) matrix by vector multiplication. Despite higher GFLOPS in EbE

method, this method is slower compared to the one with the multiplication in as-

sembled form because it involves a larger number of floating point operations. The

performance of sparse matrix by vector multiplication depends on the number of

non-zero entries and their distribution in the global matrix, which may vary in

a mesh with certain number of elements. However, the GFLOPS of EbE matrix

multiplication is expected to remain almost the same for different mesh structures.

114

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

Figure 8.10: Timing distribution of different kernels used in computing FEM ma-
trices, EbE CG and CG. The numbers in parentheses represent standard deviation
of each slice. In CG and EbE CG, the portion of matrix-vector multiplication kernel
increases as the problem size grows.

0

20

40

60

1.5

2.0x

2.5x

6k 13k 23k 39k 56k 133k
1.0x

G
F

L
O

P
S

E
b

E
 k

e
rn

e
l
ru

n
-t

im
e

/C
S

R
k
e

rn
e

l
ru

n
 t

im
e

EbE matrix-vector multiplication

CSR sparse matrix-vector mult. (CUSPARSE)

CSR sparse matrix-vector mult. (CUSP)

Execution time ration of EbE to CUSPARSE

x

Figure 8.11: GFLOPS of matrix-vector multiplication (a) Element-by-element ap-
proach, (b) CSR multiplication using CUSPARSE library (c) CSR multiplication
using CUSP library. The second y-axis compares the execution time between EbE
and CUSPARSE multiplication kernels.

In the element-by-element CG algorithm, sparse matrix by vector multiplica-

tion is replaced by three kernels in Fig. 6.3: vector disassemble, elemental product

and vector assemble; therefore this method has a longer execution time for each

iteration compared to the best implementation of the conventional CG algorithm

using CUSPARSE library. On the other hand, the CG algorithm needs to perform

115

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

the matrix assemblage step. Fig. 8.12 compares the execution time for perform-

ing 10 iterations of the element-by-element CG algorithm with 10 iterations of the

CG method including matrix assembly offset. The optimized global sparse matrix

assembly in csr format is performed using CUSP library [167].

0

5

10

15

20

6k 13k 23k 39k 56k 133k

10 iterations of EbE CG loop

10 iterations of CG loop

Matrix assembly (csr format)

T
im

e
 (

m
s
e
c
)

12.6

17.0
15.4

6.8

8.4

6.36.3

4.74.3
3.2

2.6
1.9

5.4

3.4
2.1

1.3
2.4

3.2

Figure 8.12: Execution time of CG and EbE CG methods with Jacobi precondition-
ing for 10 iterations.

The timing measurements for the two methods indicate that for small itera-

tions (i.e. n ≃ 10), EbE CG is faster than CG kernel. In the intended applications

of this thesis, deformation changes in one time step of the analysis are expected to

be small. Therefore the iterative PCG, which starts from the previous state of the

deformation, is expected to converge quickly. As an example, in the deformation

simulation of the smallest mesh test case, 6k mesh, with a boundary deformation

occurring at the typical hand movement speed, the Jacobi preconditioned CG algo-

rithm converged in less than 10 iterations with a relative residual error of 1%. The

number of iterations increased to about 20 for 0.1% relative error and 50 for 1e−4%

error tolerance. Fig. 8.13.a displays deformation of the 6k mesh under a point load.

Fig. 8.13.b demonstrates large deformation of a cantilever beam constrained from

one end and under a vertical load on the other end.

116

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

Figure 8.13: (a) Deformation of the 6k mesh under a point load (b) large deforma-
tion of a cantilever beam considering geometric nonlinearity.

A Note on the CPU-GPU Setup

Fig. 8.14 presents a general schematic of the CPU-GPU heterogeneous computing

of FEM-based deformation simulation. Prior to the simulation, the model mesh

is computed on CPU for once and transferred and stored on GPU to avoid extra

communication time with CPU. On GPU, the nonlinear finite element matrices are

computed according to the mesh data and the contact elements data provided by

collision detection module. If the conventional CG is employed, FEM matrices and

vectors are assembled into a global form. However, in the EbE PCG method, only

the vectors need to be assembled. The computed deformation vector is sent back

to the CPU at the end of the simulation loop.

As mentioned in Chapter 7, computational kernels in CUDA are presented in

fine-grained thread parallelism nested within coarse-grained block parallelism.

Thread blocks are independent from each other and can be mapped to different

117

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

Model Data
p t, mesh matrices,
material parameters

Computing FEM matrices

Assembly of equations

Solving for deformation

CPU

Simulation Loop

Mesh Data of the Model

GPU

computed off-line

mesh
data

deform-
ation
data

CPU

Figure 8.14: Heterogenuous FEM computing

GPU streaming multiprocessors. The hardware is versatile in scheduling these

blocks to be executed on different number of multiprocessors. Fig. 8.15 adopted

from [154], presents an example that a GPU device with more number of multipro-

cessors, automatically scales the execution of parallel blocks in the CUDA archi-

tecture. This multi-level parallelism explains the scalability of the computational

kernels for different sized FEM models on different CUDA GPU devices.

Block 0

Block 3

Grid of Thread Blocks

Block 1

Block 4

Block 2

Block 5

Block 6 Block 7 Block 8

. . .

SM0 SM1

GPU A

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

. . .

SM0 SM1

GPU B

SM0 SM1

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

. . .

Figure 8.15: Transparent scalability in CUDA [154].

The maximum size of the models is limited due to the global memory capacity

of GPU. The GTX 470 with 1280 MB memory can fit a model with up to about half

a million tetrahedral elements to compute FEM matrices and solve the resulting

equations.

118

C
H

A
P

T
E

R

9
CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

Deformable objects simulation has found numerous applications in medical train-

ing and surgical assisting procedures. Real-time simulation of interaction with de-

formable objects is challenging due to a large amount of computations that must

be completed within a very short time interval. In particular, in non-linear finite

element modelling, the object is meshed and partitioned to some smaller geome-

tries referred to as finite elements and the partial differential equations arising from

continuum mechanics based models are discretized in the spatial and time domain

accordingly. Implicit dynamic or static formulations results in a large linear system

of equations that must be solved at each simulation time step.

In this thesis, a GPU-based parallel computing approach was proposed for

119

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

fast/real-time analysis of soft objects deformation. The approach is based on the

total Lagrangian nonlinear FEM, and the Newmark implicit time-integration. This

formulation is general and can be used for modelling large deformations/rotations

and material nonlinearities. A penalty method was employed to allow for fast and

efficient multi-object deformation analysis. A local meshing paradigm was dis-

cussed to enhance the accuracy of the contact stress computations.

To solve the equations arising from the finite element formulation, iterative

Jacobi-conditioned conjugate gradients method was employed. Two different im-

plementations of element-by-element and conventional CG algorithms were pre-

sented and compared. A novel efficient approach for vector assembly on GPU,

utilizing shared memory for reduced memory access time, was also proposed. It

was shown that for a small number of iterations, the EbE PCG can outperform the

other method. However, the conventional CG performed better with more strin-

gent error requirements that would increase the number of iterations.

The results in Chapter 8 indicated that the computation time for FEM matrices

can be up to 28 times faster on GPU (Nvidia GTX 470) compared to a sequential

CPU (Intel core i7-3770) implementation. Using the memory optimization strate-

gies discussed in Chapter 7 for computing the FEM matrices, a performance of

over 100 GFLOPS was achieved. Moreover, modeling the contact using the penalty

method involves modest extra computations and has small effect on the overall

computation time. The implementation of the conventional PCG algorithm on

GPU yielded up to 10x speed-up compared to an equivalent CPU implementation.

In real-time applications such as surgical simulations with haptic feedback, the

simulation update rate could be in the order of 100-1000 Hz and therefore the

120

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

changes in object deformation within one sample period is expected to be small.

This implies that the solution at the previous sample time is usually a good initial

guess for the CG algorithm at the present time step, and the algorithm is expected

to converge in a few iterations.The fast convergence behavior would allow for real-

time deformation analysis in such applications.

In this thesis, a GTX470 GPU device was used, which was released over three

years ago. The computation time of deformation analysis could be further in-

creased using more recent GPU devices already available in the market, such as

Tesla K-series or GTX Titan. However, it is emphasized that even with this device,

our approach manages to satisfy the timing requirements for real-time soft-tissue

deformation analysis of many practical applications. For example the total compu-

tation time for nonlinear FEM analysis with 20 iterations of Jacobi preconditioned

EbE CG for a 6k mesh from the test meshes was less than 3 msec with this de-

vice. This performance is sufficient for a stable high-fidelity haptics/deformation

rendering of soft objects.

9.2 Future Work

Although the results of this work are very encouraging, there are still numerous

possibilities for future research. Among these are:

• Extension of the proposed vector assembly to sparse matrix assembly. By

producing the assembled matrix non-zero indices in a standard sparse stor-

age format, the optimized method for vector assembly in Section 7.6 can be

extended to matrix assembly. In applications where the mesh structure is not

121

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

subject to changes, the matrix non-zero indices can be computed off-line and

stored in GPU global memory. Then, extension of the vector assembly for

application in matrix assembly is simply achieved by considering m×m ele-

mental matrices as a collection of m elemental vectors of length m.

• Considering tangential friction forces in the contact model. The current penalty

method is considering only normal contact forces. In general, this simplified

assumption does not apply to all real-life applications and a friction model

needs to be included in the contact formulation.

• Employing different adaptive meshing schemes. The proposed local mesh

refinement is only applied to the contact elements in a triangular 2D mesh.

A more advanced technique would consider an error estimation technique to

perform one or a combination of h-, p-, or r- mesh refinement methods for 2D

and 3D meshes.

• High-fidelity cutting simulation. This type of simulation which introduces

topological changes to the model mesh requires a fast and efficient remesh-

ing followed by the FEM matrix computations of the new mesh. A possible

remeshing algorithm can benefit from the mesh data structures developed in

Section 5.3. Then computing the FEM matrices for the new mesh can be per-

formed using the present GPU kernels.

• Extension of the proposed computing kernels onto multiple GPUs. The FEM

matrix computations on multiple GPUs can be performed without extra com-

munication. However, efficient extension of the proposed CG methods in Sec-

tion 7.4 to solve the linear system of equations on multiple GPUs will need to

be investigated in future. This study will be concerned with reducing the

122

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

inter-GPU communication and balancing the computation load on multiple

GPUs with a minimum effect on the convergence behavior of the CG algo-

rithm. Overlapping the inter-GPU communication with kernel computations

would improve the performance of scalability of the system.

• Developing a parallel collision detection method. A robust and efficient col-

lision detection algorithm plays an important role in interactive deformation

analysis. Detection of multi-object collisions and self-collisions in presence of

large deformations is challenging and its efficient parallel implementation on

GPUs can be a line of future research.

• Computational fluid dynamics in a surgical simulation for modeling effects

such as blood flow would enhance the realism of the application. Parallel

numerical solution of continuum mechanics based Navier-Stokes equations

of fluid dynamics offers a possible extension of the research on deformation

analysis in future.

123

A
P

P
E

N
D

I
X

A
VOIGT NOTATION

Owing to their symmetry, the second-order stress and strain tensors can be repre-

sented in a more compressed form, known as Voigt notation. This notation maps

the second-order tensors to vectors. Basically the following index mapping is em-

ployed in the Voigt notation [130]:

11→ 1, 22→ 2, 33 → 3

23→ 4, 13→ 5, 12 → 6 (A.1)

124

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

Consequently, the stress tensor σ is mapped to the stress vector σ, i.e.

σ=










σ11 σ12 σ13

σ22 σ23

Sym.
σ33










=⇒σ=




















σ1

σ2

σ3

σ4

σ5

σ6




















=




















σ11

σ22

σ33

σ23

σ13

σ12




















(A.2)

In a similar vein, the strain tensor E can be redefined in Voigt form as follows

E =










E11 E12 E13

E22 E23

Sym.
E33










=⇒ E =




















E1

E2

E3

E4

E5

E6




















=




















E11

E22

E33

2E23

2E13

2E12




















(A.3)

There exists a factor of 2 in the last three components of strain vector, i.e. shear

components, to satisfy the work conjugacy. In this way the following tensor prod-

uct and vector dot product yield the same result

σ : E ,σi j Ei j = σ.E =σi Ei (A.4)

It is noted that in this thesis, italic bold letters represent tensors and upright

bold letters represent the corresponding Voigt form.

Employing Voigt index mapping for a fourth-order tensor results in a two-

dimensional array. As an example, linear elastic modulus tensor component C1213,

125

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

according to (A.1), is mapped to C32. In this way, tensor definition of stress for a

linear elastic material can be expressed in terms of matrix-vector product

σ=C : E or σi j =Ci j kl Ekl ≡ σ= CE or σi =Ci j E j (A.5)

The reader is referred to [130, Chapter 5] and [168] for further discussion on

this matter.

126

A
P

P
E

N
D

I
X

B
NEWMARK TIME INTEGRATION

Newmark integration scheme [20, 131] is a common method for implicit time dis-

cretization of dynamics equations arising from finite element models. A brief

overview of this algorithm is presented below.

To specify the time step at which a quantity is given, we employ the same nota-

tion laid out in Section 4.2 where a left superscript t represents the quantity in the

next time step, and a left superscript τ denotes a current state quantity. Consider

the standard linear second-order dynamics of an object deformation given by

M t Ü+D t U̇+K t U+t F = 0 (B.1)

The position and velocity vector at time step t can be approximated as follows

t U =τ U+∆t τU̇+
1

2
∆t 2

(

(1−β)
τÜ+β t Ü

)

t U̇ =τ U̇+∆t
(

(1−γ)
τÜ+γ t Ü

) (B.2)

127

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

where γ and β are two constants yet to be chosen. The above equations can be

solved for t Ü and t U̇ resulting in

t Ü =t ¨̂U+
2

β∆t 2

t U

t U̇ =t ˙̂U+
2γ

β∆t
t U

(B.3)

where

t ¨̂U =−
2

β∆t 2

τU−
2

β∆t
τU̇−

1−β

β
τÜn

t ˙̂U =−
2γ

β∆t
τU+ (1−

2γ

β
)
τU̇+ (1−

γ

β
)∆t τÜ

(B.4)

Substituting (B.3) and (B.4) into the dynamics equation in (B.1) yields

Â t U = b̂ (B.5)

where

Â =
2

β∆t 2
M+

2γ

β∆t
D+K

b̂ =−(
t F+D t ˙̂U+M t ¨̂U)

(B.6)

Note that to obtain the displacement vector t U, one needs to solve the system

of linear equations in (B.5) similar to that of the static case. The following choice of

the parameters β and γ guarantees the stability of the discretized system [20, 131]

γ≥ 0.5 β≥ 0.5(0.5+γ)
2 (B.7)

128

A
P

P
E

N
D

I
X

C
GAUSSIAN QUADRATURE

INTEGRATION

Guassian quadrature is an effective numerical integration technique widely used

in FEM for computing stiffness matrix, mass matrix and force vectors. Gaussian

quadrature approximates a definite integration via a weighted sum of the inte-

grand function values at specific points within the integration domain. n-point

Guassian quadrature yields the exact result for polynomial functions of order at

most 2n −1.

The basic idea of this integration rule can be described by a simple example.

Consider the function f (x) in Fig. C.1. It is desired to approximate the integral of
∫+1

−1 f (x)dx by w0 f (x0)+ w1 f (x1). In contrast to the trapezoidal integration which

129

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

uses fixed end points of the integral domain, x0 and x1 are variables to be deter-

mined. Since the aim is to produce exact results for integration of polynomials up

to degree three, the equations for determining the four unknown parameters w1,

w2, x0 and x1 are given by

w0 f (x0)+w1 f (x1) =
∫+1

−1

f (x)dx for f (x) = 1, (C.1)

f (x) = x, (C.2)

f (x) = x2
, (C.3)

f (x) = x3 (C.4)

Solving the equations in (C.1) to (C.4) yields

w0 = w1 = 1, x0 =
1
p

3
and x1 =

−1
p

3
(C.5)

These parameters give exact solution for integrating polynomial functions of de-

gree 3 or less in [−1,1] domain. The above formula, with a change of variable can

be applied to integrations with arbitrary domain other than [−1,1]. The example

above, can be expanded for higher dimension integrations. The integration points

and weights for different finite elements such as triangular and tetrahedral are

computed and reported in [169].

-1 +1

Figure C.1: Gaussian quadrature integration

130

A
P

P
E

N
D

I
X

D
SHAPE FUNCTIONS

Shape functions allow interpolation within the discrete FEM nodal points. The fi-

nite element matrices can be developed in a systematic approach by performing

the computations on a local coordinates system and map it to the global coordi-

nates system. An example helps to clarify this matter. Fig. D.1 displays a triangle

in the global and local coordinates∗,

Global Coordinates

(0,1)

(1,0)

Local Coordinates

.

1

2

3 area of

area of

area of

.

Figure D.1: Three node triangle in local and global coordinates systems [20]

.
∗also known as natural coordinates or iso-parametric coordinates.

131

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

The global Cartesian coordinates of point P in Fig. D.1 are given by

x =
3∑

i=1

hi xi (D.1a)

y =
3∑

i=1

hi yi (D.1b)

where xi ’s and yi ’s are the global coordinates of the triangle nodes. The shape

function parameters in this example, i.e. hi ’s are defined as

h1 =
A1

A1 + A2 + A3

, h2 =
A2

A1 + A2 + A3

, h3 =
A3

A1 + A2 + A3

(D.2)

where A1, A2 and A3 are the areas of triangles displayed in Fig. D.1. Following the

expression of a point position in Eq.(D.1) based on the nodal values, the displace-

ment value u =τx−0 x can also be expressed using hi parameters, i.e.

ux =
3∑

i=1

hi uxi (D.3a)

uy =
3∑

i=1

hi uyi (D.3b)

where uxi and uyi are the nodal displacement values. Since the same hi parameters

are used to express the geometry and the displacement field in (D.1) and (D.3),

this method is known as iso-parametric formulation. Using the local coordinates

system in Fig. D.1, shape function parameters are expressed in terms of the local

coordinates as [20]

h1 = 1− r − s, h2 = r, h3 = s (D.4)

132

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

Although it is possible to directly work with the global coordinates system for

elements with simple geometries, in general it is more convenient to perform nu-

merical derivatives and integrations in the local coordinate system. Then the re-

sults are mapped to the global coordinates system. To this end, a Jacobian matrix

defined below is used for mapping






∂
∂r

∂
∂s




=






∂x
∂r

∂y

∂r

∂x
∂s

∂y

∂s











∂
∂x

∂
∂y




 ⇐⇒

∂

∂r
= J

∂

∂x
(D.5)

∂

∂x
= J−1 ∂

∂r
(D.6)

Using Eq.(D.6), spatial derivatives with respect to the global coordinates system

can be expressed in terms of the local coordinates. Additionally, surface integra-

tions on the local coordinates are transformed to the global coordinates using de-

terminant of the Jacobian matrix [20], i.e.

∫

S
. dxdy =

∫

S
. det(J)dr ds (D.7)

Examples on finite elements with different number of nodes and geometries

and further discussion on this topic can be found in any standard finite element

textbook such as [20, 131].

133

A
P

P
E

N
D

I
X

E
TECHNICAL SPECIFICATIONS OF GTX

470

The specifications of NVIDIA GTX 470 with code name GF 100 is listed in Table E.1.

GTX 470 belongs to Fermi architecture. GF 100 devices provide compute capability

2.0.

Computing Cores Memory Size Memory Bandwidth Core Clock Bus Interface Transistors

448 1280 MB 133.9 GB/s 607 MHz PCIe 2.0 ×16 3200M

Table E.1: Specifications of GTX 470

Fig. E.2 adopted from [170] presents an overview of Fermi architecture con-

sisting of up to 16 streaming multiprocessors. SMs in compute capability 2.0 are

134

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

equipped with 32 cores∗. GTX 470 features 15 SMs. CUDA blocks are scheduled

and distributed betweens SMs via GigaThread. Threads within each SM are sched-

uled in groups of 32, known as warps, via dual Warp Schedulers per SM. There are

32k 32-bit register files per SM. The 64 KB of on-chip memory per SM can be con-

figured as 48 KB of shared memory and 16 KB of L1 cache or as 16 KB of shared

memory with 48 KB of L1 cache. More technical details can be found in [154, 170].

L2 Cache

Instruction Cache

Warp Scheduler Warp Scheduler

Dispatch UnitDispatch Unit

Register File (32,768 x 32bit)

Core CoreCore Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

SFU

SFU

SFU

SFU

Interconnect Network

Uniform Cache

64 KB Shared Memory / L1 Cache

Core CoreCore Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

FP Unit FP Unit

Result Queue

Operand Collector

Dispatch Port

CUDA Core

Figure E.2: Fermi architecture [170].

∗CUDA cores are also known as streaming processors or shader units

135

BIBLIOGRAPHY

[1] A. Liu, F. Tendick, K. Cleary, and C. Kaufmann, “A survey of surgical sim-

ulation: Applications, technology, and education,” Presence -Cambridge Mas-

sachusetts, vol. 12, no. 6, pp. 599–614, 2003.

[2] K. S. Gurusamy, R. Aggarwal, L. Palanivelu, and B. R. Davidson, “Virtual re-

ality training for surgical trainees in laparoscopic surgery,” Cochrane Database

Syst Rev, vol. 1, no. 4, 2009.

[3] H. Singh, E. J. Thomas, L. A. Petersen, and D. M. Studdert, “Medical errors

involving trainees: a study of closed malpractice claims from 5 insurers,”

Archives of Internal Medicine, vol. 167, no. 19, pp. 2030–2036, 2007.

[4] A. A. Gawande, M. J. Zinner, D. M. Studdert, and T. A. Brennan, “Analysis

of errors reported by surgeons at three teaching hospitals,” Surgery, vol. 133,

no. 6, pp. 614–621, 2003.

[5] S. Barry Issenberg, W. C. McGaghie, E. R. Petrusa, D. Lee Gordon, and R. J.

Scalese, “Features and uses of high-fidelity medical simulations that lead to

effective learning: a beme systematic review,” Medical teacher, vol. 27, no. 1,

pp. 10–28, 2005.

136

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

[6] B. Cowan, D. Rojas, B. Kapralos, K. Collins, and A. Dubrowski, “Spatial

sound and its effect on visual quality perception and task performance

within a virtual environment,” in Proceedings of Meetings on Acoustics, vol. 19,

2013, pp. 1–7.

[7] B. Marami, S. Sirouspour, and D. W. Capson, “Model-based deformable reg-

istration of preoperative 3d to intraoperative low-resolution 3d and 2d se-

quences of mr images,” in MICCAI (1)’11, 2011, pp. 460–467.

[8] B. Glocker, N. Komodakis, N. Paragios, G. Tziritas, and N. Navab, “Inter

and intra-modal deformable registration: Continuous deformations meet

efficient optimal linear programming,” in Information Processing in Medical

Imaging. Springer, 2007, pp. 408–420.

[9] M. Ferrant, S. K. Warfield, A. Nabavi, F. A. Jolesz, and R. Kikinis, “Regis-

tration of 3d intraoperative mr images of the brain using a finite element

biomechanical model,” in Medical Image Computing and Computer-Assisted

Intervention–MICCAI 2000. Springer, 2000, pp. 19–28.

[10] M. Ferrant, A. Nabavi, B. Macq, F. A. Jolesz, R. Kikinis, and S. K.

Warfield, “Registration of 3-d intraoperative mr images of the brain using

a finite-element biomechanical model,” Medical Imaging, IEEE Transactions

on, vol. 20, no. 12, pp. 1384–1397, 2001.

[11] K. Miller, A. Wittek, G. Joldes, A. Horton, T. Dutta-Roy, J. Berger, and L. Mor-

riss, “Modelling brain deformations for computer-integrated neurosurgery,”

International Journal for Numerical Methods in Biomedical Engineering, vol. 26,

no. 1, pp. 117–138, 2010.

137

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

[12] R. Mafi, S. Sirouspour, B. Mahdavikhah, B. Moody, K. Elizeh, A. Kinsman,

and N. Nicolici, “A parallel computing platform for real-time haptic interac-

tion with deformable bodies,” IEEE Transactions on Haptics, vol. 3, no. 3, pp.

211–223, July-September 2010.

[13] A. Nealen, M. Mueller, R. Keiser, E. Boxerman, and M. Carlson, “Physically

based deformable models in computer graphics,” Computer Graphics Forum,

vol. 25, no. 4, pp. 809–836, December 2006.

[14] Y. Zhuang and J. Canny, “Haptic interaction with global deformations,” in

Proceedings of the IEEE International Conference on Robotics and Automation,

2000, pp. 2428–2433.

[15] M. Bro-Nielsen, “Finite element modeling in surgery simulation,” Proceed-

ings of the IEEE, vol. 86, no. 3, pp. 490–503, March 1998.

[16] M. Müller, J. Dorsey, L. McMillan, R. Jagnow, and B. Cutler, “Stable real-

time deformations,” in Proceedings of the 2002 ACM SIGGRAPH/Eurographics

symposium on Computer animation. ACM, 2002, pp. 49–54.

[17] L. F. da Silva, A. Öchsner, and R. D. Adams, Handbook of adhesion technology.

Springer, 2011.

[18] J. Bonet and R. D. Wood, Nonlinear continuum mechanics for finite element anal-

ysis, 2nd ed. Cambridge university press, 2008.

[19] E. Madenci and I. Guven, The finite element method and applications in engineer-

ing using ANSYS®. Springer, 2006.

[20] K. J. Bathe, Finite Element Procedures. Prentice Hall, 1996.

138

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

[21] Z.-H. Zhong, Finite Element Procedures for Contact-Impact Problems. Oxford

University Press, 1993.

[22] G. Brussino and V. Sonnad, “A comparison of direct and preconditioned iter-

ative techniques for sparse, unsymmetric systems of linear equations,” Inter-

national journal for numerical methods in engineering, vol. 28, no. 4, pp. 801–815,

1989.

[23] J. Shewchuk, “An introduction to the conjugate gradient method without

the agonizing pain,” in Technical report, School of Computer Science, Carnegie

Mellon University, 1994.

[24] M. Křížek, Conjugate Gradient Algorithms and Finite Element Methods.

Springer, 2004.

[25] M. Bro-Nielsen and S. Cotin, “Real-time volumetric deformable models

for surgery simulation using finite elements and condensation,” Computer

Graphics Forum, vol. 15, no. 3, pp. 57–66, 1996.

[26] D. L. James and D. K. Pai, “Artdefo: accurate real time deformable objects,”

in Proceedings of the 26th annual conference on Computer graphics and interactive

techniques. ACM Press/Addison-Wesley Publishing Co., 1999, pp. 65–72.

[27] H. Sutter, “The free lunch is over: A fundamental turn toward concurrency

in software,” Dr. Dobb’s Journal, vol. 30, no. 3, pp. 202–210, 2005.

[28] S. Borkar, P. Dubey, K. Kahn, D. Kuck, H. Mulder, S. Pawlowski, and J. Rat-

tner, “Platform 2015: Intel processor and platform evolution for the next

decade,” Intel, white paper, March 2005.

139

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

[29] S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating compute-

intensive applications with GPUs and FPGAs,” in Application Specific Proces-

sors, 2008. SASP 2008. Symposium on. IEEE, 2008, pp. 101–107.

[30] A. Heinecke, M. Klemm, and H. Bungartz, “From GPGPU to many-core:

Nvidia fermi and intel many integrated core architecture,” Computing in Sci-

ence & Engineering, vol. 14, no. 2, pp. 78–83, 2012.

[31] D. B. Kirk and W.-m. W. Hwu, Programming Massively Parallel Processors: A

Hands-on Approach, 2010.

[32] K. Iskra, R. G. Belleman, G. D. van Albada, J. Santoso, P. M. A. Sloot, H. E.

Bal, H. J. W. Spoelder, and M. Bubak, “The polder computing environment: a

system for interactive distributed simulation,” Concurrency and Computation:

Practice and experience, vol. 14, no. 13-15, pp. 1313–1335, 2002.

[33] R. Mafi and S. Sirouspour, “GPU-based acceleration of computations in non-

linear finite element deformation analysis,” International Journal of Numerical

Methods in Biomedical Engineering, p. to appear, 2013.

[34] J. Jeffers and J. Reinders, Intel Xeon Phi Coprocessor High Performance Program-

ming. Newnes, 2013.

[35] B. Chapman, G. Jost, and R. Van Der Pas, Using OpenMP: portable shared mem-

ory parallel programming. The MIT Press, 2008.

[36] C. Pheatt, “Intel® threading building blocks,” Journal of Computing Sciences

in Colleges, vol. 23, no. 4, pp. 298–298, 2008.

[37] S. Blair-Chappell and A. Stokes, Parallel Programming with Intel Parallel Studio

XE. John Wiley & Sons, 2012.

140

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

[38] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron, “A per-

formance study of general-purpose applications on graphics processors us-

ing CUDA,” Journal of parallel and distributed computing, vol. 68, no. 10, pp.

1370–1380, 2008.

[39] G. Carey, E. Barragy, R. Mclay, and M. Sharma, “Element-by-element vec-

tor and parallel computations,” Communications in applied numerical methods,

vol. 4, no. 3, pp. 299–307, 1988.

[40] K. Bathe, E. Ramm, and E. Wilson, “Finite element formulations for large

deformation dynamic analysis,” International Journal for Numerical Methods

in Engineering, vol. 9, no. 2, pp. 353–386, 1975.

[41] H. Delingette, S. Cotin, and N. Ayache, “A hybrid elastic model for real-time

cutting, deformations, and force feedback for surgery training and simula-

tion,” Visual Computer, vol. 16, no. 8, pp. 437–452, 2000.

[42] B. J. Weghorst, H. Gladstone, G. Raugi, and M. Ganter, “Fast finite element

modeling for surgical simulation,” Student Health Technol. Inf, vol. 62, pp.

55–61, 1999.

[43] J. Brown, S. Sorkin, J.-C. Latombe, K. Montgomery, and M. Stephanides, “Al-

gorithmic tools for real-time microsurgery simulation,” Medical Image Analy-

sis, vol. 6, no. 3, pp. 289–300, 2002.

[44] U. Meier, O. López, C. Monserrat, M. Juan, and M. Alcañiz, “Real-time de-

formable models for surgery simulation: A survey,” Computer Methods and

Programs in Biomedicine, vol. 77, no. 3, pp. 183–197, 2005.

141

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

[45] G. E. Farin, Curves and Surfaces for Computer-Aided Geometric Design: A Prac-

tical Code. Academic Press, Inc., 1996.

[46] S. A. Cover, N. F. Ezquerra, J. F. O’Brien, R. Rowe, T. Gadacz, and E. Palm,

“Interactively deformable models for surgery simulation,” Computer Graph-

ics and Applications, IEEE, vol. 13, no. 6, pp. 68–75, 1993.

[47] T. W. Sederberg and S. R. Parry, “Free-form deformation of solid geometric

models,” in ACM Siggraph Computer Graphics, vol. 20, no. 4. ACM, 1986, pp.

151–160.

[48] S. F. Gibson, “3d chainmail: a fast algorithm for deforming volumetric ob-

jects,” in Proceedings of the 1997 symposium on Interactive 3D graphics. ACM,

1997, pp. 149–154.

[49] S. Misra, K. Ramesh, and A. M. Okamura, “Modeling of tool-tissue interac-

tions for computer-based surgical simulation: a literature review,” Presence:

Teleoperators and Virtual Environments, vol. 17, no. 5, pp. 463–491, 2008.

[50] P. Moore and D. Molloy, “A survey of computer-based deformable models,”

in Machine Vision and Image Processing Conference, 2007. IMVIP 2007. Interna-

tional. IEEE, 2007, pp. 55–66.

[51] S. Cotin, “Computer based interactive medical simulation,” Lille University,

Tech. Rep., June 2013.

[52] J. Georgii and R. Westermann, “Mass-spring systems on the GPU,” Simula-

tion modelling practice and theory, vol. 13, no. 8, pp. 693–702, 2005.

142

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

[53] M. Dokainish and K. Subbaraj, “A survey of direct time-integration meth-

ods in computational structural dynamics:i. explicit methods,” Computers &

Structures, vol. 32, no. 6, pp. 1371–1386, 1989.

[54] K. Subbaraj and M. Dokainish, “A survey of direct time-integration meth-

ods in computational structural dynamics:ii. implicit methods,” Computers

& Structures, vol. 32, no. 6, pp. 1387–1401, 1989.

[55] J. Brown, S. Sorkin, C. Bruyns, J.-C. Latombe, K. Montgomery, and

M. Stephanides, “Real-time simulation of deformable objects: Tools and ap-

plication,” in Computer Animation, 2001. The Fourteenth Conference on Com-

puter Animation. Proceedings. IEEE, 2001, pp. 228–258.

[56] G. Bianchi, M. Harders, and G. Székely, “Mesh topology identification for

mass-spring models,” in Medical Image Computing and Computer-Assisted

Intervention-MICCAI 2003. Springer, 2003, pp. 50–58.

[57] B. A. Lloyd, G. Székely, and M. Harders, “Identification of spring parameters

for deformable object simulation,” Visualization and Computer Graphics, IEEE

Transactions on, vol. 13, no. 5, pp. 1081–1094, 2007.

[58] J. N. Reddy, An introduction to the finite element method. McGraw-Hill New

York, 2006.

[59] S. P. DiMaio and S. E. Salcudean, “Needle insertion modeling and simula-

tion,” Robotics and Automation, IEEE Transactions on, vol. 19, no. 5, pp. 864–

875, 2003.

143

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

[60] X. Wu, M. Downes, T. Goktekin, and F. Tendick, “Adaptive nonlinear fi-

nite elements for deformable body simulation using dynamic progressive

meshes,” Computer Graphics Forum, vol. 20, no. 3, pp. 349–358, 2001.

[61] Z. A. Taylor, M. Cheng, and S. Ourselin, “High-speed nonlinear finite ele-

ment analysis for surgical simulation using graphics processing units,” IEEE

Transactions on Medical Imaging, vol. 27, pp. 650–663, 2008.

[62] C. Dick, J. Georgii, and R. Westermann, “A real-time multigrid finite hexa-

hedra method for elasticity simulation using CUDA,” Simulation Modelling

Practice and Theory, vol. 19, no. 2, pp. 801–816, 2011.

[63] H. Courtecuisse, H. Jung, J. Allard, C. Duriez, D. Y. Lee, and S. Cotin, “GPU-

based real-time soft tissue deformation with cutting and haptic feedback,”

Progress in Biophysics and Molecular Biology, vol. 103, no. 2, pp. 159–168, 2010.

[64] K. Miller, G. Joldes, D. Lance, and A. Wittek, “Total lagrangian explicit

dynamics finite element algorithm for computing soft tissue deformation,”

Communications in Numerical Methods in Engineering, vol. 23, no. 2, pp. 121–

134, 2007.

[65] C. Felippa and B. Haugen, “A unified formulation of small-strain corota-

tional finite elements: I. theory,” Computer Methods in Applied Mechanics and

Engineering, vol. 194, no. 21-24, pp. 2285–2335, 2005.

[66] G.-R. Liu, Meshfree methods: moving beyond the finite element method. CRC

press, 2010.

144

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

[67] S. R. Idelsohn, E. Oñate, N. Calvo, and F. Del Pin, “The meshless finite el-

ement method,” International Journal for Numerical Methods in Engineering,

vol. 58, no. 6, pp. 893–912, 2003.

[68] G. Zhang, A. Wittek, G. Joldes, X. Jin, and K. Miller, “A three-dimensional

nonlinear meshfree algorithm for simulating mechanical responses of soft

tissue,” Engineering Analysis with Boundary Elements, p. to appear, 2013.

[69] S. De, J. Kim, Y.-J. Lim, and M. A. Srinivasan, “The point collocation-based

method of finite spheres (pcmfs) for real time surgery simulation,” Computers

& structures, vol. 83, no. 17, pp. 1515–1525, 2005.

[70] Y.-J. Lim and S. De, “Real time simulation of nonlinear tissue response in

virtual surgery using the point collocation-based method of finite spheres,”

Computer Methods in Applied Mechanics and Engineering, vol. 196, no. 31, pp.

3011–3024, 2007.

[71] P. Wang, A. Becker, I. Jones, A. Glover, S. Benford, C. Greenhalgh, and

M. Vloeberghs, “Virtual reality simulation of surgery with haptic feedback

based on the boundary element method,” Computers & structures, vol. 85,

no. 7, pp. 331–339, 2007.

[72] D. L. James and D. K. Pai, “A unified treatment of elastostatic contact simu-

lation for real time haptics,” in ACM SIGGRAPH 2005 Courses. ACM, 2005,

p. 141.

[73] R. Mafi, S. Sirouspour, B. Mahdavikhah, and et al., “Hardware-based parallel

computing for real-time haptic rendering of deformable objects,” in INTU-

ITION 2008 Conference, Turin, Italy, 2008.

145

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

[74] M. Mahvash, V. Hayward, and J. Lloyd, “Haptic rendering of tool contact,”

in Proc. Eurohaptics 2002, 2002, pp. 110–115.

[75] P. Jacobs, M. J. Fu, and M. C. Çavuşoğlu, “High fidelity haptic rendering

of frictional contact with deformable objects in virtual environments using

multi-rate simulation,” The International Journal of Robotics Research, vol. 29,

no. 14, pp. 1778–1792, 2010.

[76] I. Peterlík, M. Sedef, C. Basdogan, and L. Matyska, “Real-time visio-haptic

interaction with static soft tissue models having geometric and material non-

linearity,” Computers & Graphics, vol. 34, no. 1, pp. 43–54, 2010.

[77] M. Mahvash and V. Hayward, “High-fidelity haptic synthesis of contact with

deformable bodies,” IEEE Computer Graphics and Applications, vol. 24, no. 2,

pp. 48–55, 2004.

[78] G. Hirota, S. Fisher et al., “An improved finite-element contact model for

anatomical simulations,” The Visual Computer, vol. 19, no. 5, pp. 291–309,

2003.

[79] J. Barbic and D. L. James, “Six-dof haptic rendering of contact between geo-

metrically complex reduced deformable models,” Haptics, IEEE Transactions

on, vol. 1, no. 1, pp. 39–52, 2008.

[80] A.-I. Ştefancu, S.-C. Melenciuc, and M. Budescu, “Penalty based algorithms

for frictional contact problems,” Bulletin of the Polytechnic Institute of Iasi -

Construction, vol. 61, no. 3, pp. 119–129, 2011.

146

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

[81] N. Galoppo, M. A. Otaduy, P. Mecklenburg, M. Gross, and M. C. Lin, “Fast

simulation of deformable models in contact using dynamic deformation tex-

tures,” in Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on

Computer animation. Eurographics Association, 2006, pp. 73–82.

[82] S. Cotin, H. Delingette, and N. Ayache, “Real-time elastic deformations of

soft tissues for surgery simulation,” Visualization and Computer Graphics, IEEE

Transactions on, vol. 5, no. 1, pp. 62–73, 1999.

[83] C. Duriez, F. Dubois, A. Kheddar, and C. Andriot, “Realistic haptic rendering

of interacting deformable objects in virtual environments,” Visualization and

Computer Graphics, IEEE Transactions on, vol. 12, no. 1, pp. 36–47, 2006.

[84] M. Sofonea, W. Han, and M. Shillor, Analysis and Approximation of Contact

problems with Adhesion or Damage. CRC Press, 2010.

[85] K. G. Murty, Linear complementarity, linear and nonlinear programming. Hel-

dermann Berlin, 1988.

[86] P. Wriggers, “Finite element algorithms for contact problems,” Archives of

Computational Methods in Engineering, vol. 2, no. 4, pp. 1–49, 1995.

[87] G. Gilardi and I. Sharf, “Literature survey of contact dynamics modelling,”

Mechanism and machine theory, vol. 37, no. 10, pp. 1213–1239, 2002.

[88] V. A. Yastrebov, Numerical Methods in Contact Mechanics. John Wiley & Sons,

2013.

[89] J. Mosegaard, P. Herborg, and T. S. Sorensen, “A GPU accelerated spring

mass system for surgical simulation,” Studies in health technology and infor-

matics, vol. 111, pp. 342–348, 2005.

147

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

[90] I. Parberry, Introduction to Game Physics with Box2D. CRC PressI Llc, 2013.

[91] CUDA C best practices guide, nVidia Corporation, Oct. 2012.

[92] K. O. W. Group et al., “The openCL specification,” A. Munshi, Ed, 2008.

[93] C. A. D. Leon, S. Eliuk, and H. T. Gomez, “Simulating soft tissues using a

GPU approach of the mass-spring model,” in Virtual Reality Conference (VR),

2010 IEEE. IEEE, 2010, pp. 261–262.

[94] B. H. Topping and A. I. Khan, Parallel finite element computations. Saxe-

Coburg Publications Edinburgh, 1996.

[95] D. T. Nguyen, Finite Element Methods: Parallel-Sparse Statics and Eigen-

Solutions. Springer, 2006.

[96] Dassault Systèmes, “ABAQUS FEA,” http://academy.3ds.com/software/

simulia/.

[97] ANSYS, Inc., “ANSYS Academic Research, Release 14.0,” http://www.

ansys.com/Products.

[98] Rocscience Inc., “RS3,” http://www.rocscience.com/products/16/RS3,

2013.

[99] COMSOL, “COMSOL Multiphysics,” http://www.comsol.com/.

[100] A. Rao, “MPI-based parallel finite element approaches for implicit nonlinear

dynamic analysis employing sparse PCG solvers,” Advances in Engineering

Software, vol. 36, no. 3, pp. 181–198, 2005.

[101] W. D. Gropp, E. L. Lusk, and A. Skjellum, Using MPI: portable parallel pro-

gramming with the message-passing interface. the MIT Press, 1999.

148

http://academy.3ds.com/software/simulia/
http://academy.3ds.com/software/simulia/
http://www.ansys.com/Products
http://www.ansys.com/Products
http://www.rocscience.com/products/16/RS3
http://www.comsol.com/

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

[102] R. Paz, M. Storti, H. Castro, and L. DalcÃn, “Using hybrid parallel program-

ming techniques for the computation, assembly and solution stages in finite

element codes,” Latin American applied research, vol. 41, pp. 365–377, 2011.

[103] G. Joldes, A. Wittek, and K. Miller, “Real-time nonlinear finite element com-

putations on GPU–application to neurosurgical simulation,” Computer meth-

ods in applied mechanics and engineering, vol. 199, no. 49, pp. 3305–3314, 2010.

[104] W. Hackbusch, Multi-grid methods and applications. Springer-Verlag Berlin,

1985.

[105] C. Cecka, A. Lew, and E. Darve, “Assembly of finite element methods on

graphics processors,” International journal for numerical methods in engineering,

vol. 85, no. 5, pp. 640–669, 2011.

[106] G. Markall, A. Slemmer, D. Ham, P. Kelly, C. Cantwell, and S. Sherwin,

“Finite element assembly strategies on multi-core and many-core architec-

tures,” International Journal for Numerical Methods in Fluids, vol. 71, no. 1, pp.

80–97, 2013.

[107] D. Weber, J. Bender, M. Schnoes, A. Stork, and D. Fellner, “Efficient GPU data

structures and methods to solve sparse linear systems in dynamics applica-

tions,” in Computer Graphics Forum. Wiley Online Library, 2012.

[108] G. Carey and B. Jiang, “Element-by-element linear and nonlinear solution

schemes,” Communications in applied numerical methods, vol. 2, no. 2, pp. 145–

153, 2005.

149

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

[109] I. Kiss, S. Gyimothy, Z. Badics, and J. Pavo, “Parallel realization of the

element-by-element fem technique by cuda,” Magnetics, IEEE Transactions

on, vol. 48, no. 2, pp. 507–510, 2012.

[110] T. A. Davis, Direct methods for sparse linear systems. Siam, 2006.

[111] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd Edition. SIAM, 2003.

[112] B. Mahdavikhah, R. Mafi, S. Sirouspour, and N. Nicolici, “Haptic rendering

of deformable objects using a multiple FPGA parallel computing architec-

ture,” in FPGA ’10: Proceedings of the 18th annual ACM/SIGDA international

symposium on Field programmable gate arrays, 2010.

[113] A. Cevahir, A. Nukada, and S. Matsuoka, “High performance conjugate gra-

dient solver on multi-GPU clusters using hypergraph partitioning,” Com-

puter Science-Research and Development, vol. 25, no. 1-2, pp. 83–91, 2010.

[114] S. Georgescu and H. Okuda, “Conjugate gradients on multiple GPUs,” Inter-

national Journal for Numerical Methods in Fluids, vol. 64, no. 10-12, pp. 1254–

1273, 2010.

[115] M. Ament, G. Knittel, D. Weiskopf, and W. Strasser, “A parallel precondi-

tioned conjugate gradient solver for the poisson problem on a multi-GPU

platform,” in Parallel, Distributed and Network-Based Processing (PDP), 2010

18th Euromicro International Conference on. IEEE, 2010, pp. 583–592.

[116] Y. Liu, W. Zhou, and Q. Yang, “A distributed memory parallel element-by-

element scheme based on jacobi-conditioned conjugate gradient for 3d finite

element analysis,” Finite Elements in Analysis and Design, vol. 43, no. 6, pp.

494–503, 2007.

150

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

[117] R. Helfenstein and J. Koko, “Parallel preconditioned conjugate gradient al-

gorithm on GPU,” Journal of Computational and Applied Mathematics, vol. 236,

no. 15, pp. 3584–3590, 2012.

[118] G. Karniadakis and R. K. II, Parallel Scientific Computing in C++ And Mpi: A

Seamless Approach to Parallel Algorithms and Their Implementation. Cambridge

University Press, 2003.

[119] M. A. Heroux, P. Raghavan, and H. D. Simon, Parallel processing for scientific

computing. SIAM, 2006, vol. 20.

[120] G. T. Mase and G. E. Mase, Continuum mechanics for engineers. Crc Press,

2010.

[121] A. A. Shabana, Computational continuum mechanics. Cambridge University

Press, 2011.

[122] W. M. Lai, D. H. Rubin, D. Rubin, and E. Krempl, Introduction to continuum

mechanics, 4th ed. Butterworth-Heinemann, 2009.

[123] Y. Zhuang, “Real-time simulation of physically realistic global deforma-

tions,” Ph.D. dissertation, 2000, chair-John Canny.

[124] N. Ottosen and M. Ristinmaa, Mechanics of Constitutive Modeling. Elsevier,

2005.

[125] J. Rao, “Fundamentals of elasticity,” in History of Rotating Machinery Dynam-

ics. Springer, 2011, pp. 45–47.

[126] A. Maceri, Theory of Elasticity. Springer Berlin Heidelberg, 2010.

151

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

[127] I. Doghri, Mechanics of deformable solids: linear, nonlinear, analytical and compu-

tational aspects. Springer, 2000.

[128] G. A. Holzapfel, Nonlinear solid mechanics: a continuum approach for engineer-

ing. John Wiley & Sons Ltd., 2000.

[129] Z. A. Taylor, M. Cheng, and S. Ourselin, “Real-time nonlinear finite element

analysis for surgical simulation using graphics processing units,” Medical

Image Computing and Computer-Assisted Intervention, vol. 4791, pp. 701–708,

2007.

[130] T. Belytschko, W. Liu, and B. Moran, Nonlinear Finite Elements for Continua

and Structures. Wiley, 2000.

[131] O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, Vol. 1, 5th Edi-

tion. Butterworth-Heinemann, 2000.

[132] I. Huněk, “On a penalty formulation for contact-impact problems,” Comput-

ers & structures, vol. 48, no. 2, pp. 193–203, 1993.

[133] P. Wriggers, Computational Contact Mechanics. Springer Berlin Heidelberg.

[134] D. G. Luenberger, Linear and nonlinear programming. Springer, 2003.

[135] B. Nour-Omid and P. Wriggers, “A note on the optimum choice for penalty

parameters,” Communications in applied numerical methods, vol. 3, no. 6, pp.

581–585, 1987.

[136] R. Kulak, “Adaptive contact elements for three-dimensional explicit tran-

sient analysis,” Computer methods in applied mechanics and engineering, vol. 72,

no. 2, pp. 125–151, 1989.

152

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

[137] I. Babuška and W. C. Rheinboldt, “A-posteriori error estimates for the finite

element method,” International Journal for Numerical Methods in Engineering,

vol. 12, no. 10, pp. 1597–1615, 1978.

[138] O. C. Zienkiewicz and J. Z. Zhu, “A simple error estimator and adaptive pro-

cedure for practical engineerng analysis,” International Journal for Numerical

Methods in Engineering, vol. 24, no. 2, pp. 337–357, 1987.

[139] M. Molinari, S. Cox, B. Blott, and G. J. Daniell, “Adaptive mesh refinement

techniques for electrical impedance tomography,” Physiological Measurement,

vol. 22, no. 1, p. 91, 2001.

[140] M. F. Cohen and J. R. Wallace, Radiosity and realistic image synthesis. Access

Online via Elsevier, 1993.

[141] O. C. Zienkiewicz, D. S. Gago, and D. W. Kelly, “The hierarchical concept

in finite element analysis,” Computers & Structures, vol. 16, no. 1, pp. 53–65,

1983.

[142] J. Zhu and O. Zienkiewicz, “Adaptive techniques in the finite element

method,” Communications in applied numerical methods, vol. 4, no. 2, pp. 197–

204, 1988.

[143] B. G. Baumgart, “Winged edge polyhedron representation,” DTIC Docu-

ment, Tech. Rep., 1972.

[144] F. L. Stasa, Applied Finite Element Analysis for Engineers. Holt, Rinehart, and

Winston, 1985.

[145] M. A. Crisfield, Non-Linear Finite Element Analysis of Solids and Structures.

John Wiley & Sons, 1996.

153

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

[146] N. I. Gould, J. A. Scott, and Y. Hu, “A numerical evaluation of sparse direct

solvers for the solution of large sparse symmetric linear systems of equa-

tions,” ACM Transactions on Mathematical Software (TOMS), vol. 33, no. 2,

p. 10, 2007.

[147] M. Naumov, “Parallel solution of sparse triangular linear systems in the

preconditioned iterative methods on the GPU,” NVIDIA Technical Report,

NVR-2011-001, Tech. Rep., 2011.

[148] W. H. Press, Numerical recipes 3rd edition: The art of scientific computing. Cam-

bridge university press, 2007.

[149] H. A. Van der Vorst, “Parallel iterative solution methods for linear systems

arising from discretized PDE’s,” Special Course on Parallel Computing in CFD,

1995.

[150] K. H. Huebner, D. L. Dewhirst, D. E. Smith, and T. G. Byrom, The Finite

Element Method for Engineers, 4th Edition. Wiley, 2001.

[151] G. H. Golub and C. F. Van Loan, Matrix computations. JHU Press, 2012.

[152] N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication on

CUDA,” NVIDIA Corporation, NVIDIA Technical Report NVR-2008-004,

Dec. 2008.

[153] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips,

“GPU computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879–899, 2008.

[154] “Cuda C Programming Guide,” NVIDIA Corporation, Oct., 2012.

[155] C. Nvidia, “Compute unified device architecture programming guide,” 2007.

154

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

[156] S. Cook, CUDA Programming: A Developer’s Guide to Parallel Computing with

GPUs. Newnes, 2012.

[157] V. Volkov and J. W. Demmel, “Benchmarking GPUs to tune dense linear alge-

bra,” in High Performance Computing, Networking, Storage and Analysis, 2008.

SC 2008. International Conference for, 2008, pp. 1–11.

[158] R. Nath, S. Tomov, and J. Dongarra, “Accelerating GPU kernels for dense

linear algebra,” in High Performance Computing for Computational Science–

VECPAR 2010. Springer, 2011, pp. 83–92.

[159] CUDA CUBLAS Library, nVidia Corporation, 2013.

[160] V. Volkov, “Better performance at lower occupancy,” in Proceedings of the GPU

Technology Conference, GTC, vol. 10, 2010.

[161] CUSPARSE Library, nVidia Corporation, Oct. 2012.

[162] D. Komatitsch, D. Michéa, and G. Erlebacher, “Porting a high-order finite-

element earthquake modeling application to nvidia graphics cards using

CUDA,” Journal of Parallel and Distributed Computing, vol. 69, no. 5, pp. 451–

460, 2009.

[163] C. Cecka, A. Lew, and E. Darve, “Application of assembly of finite element

methods on graphics processors for real-time elastodynamics,” in GPU Com-

puting Gems 3, July 2011, pp. 187–205.

[164] N. Bell and J. Hoberock, “Thrust: A productivity-oriented library for

CUDA,” GPU Computing Gems Jade Edition, p. 359, 2011.

155

Ph.D. Thesis - Ramin Mafi McMaster - Electrical Engineering

[165] Stomach 3dxtras. [Online]. Available: http://www.3dxtras.com/3dxtras-

free-3d-models-details.asp?prodid=7994

[166] Q. Fang and D. A. Boas, “Tetrahedral mesh generation from volumetric bi-

nary and grayscale images,” in Biomedical Imaging: From Nano to Macro, 2009.

ISBI’09. IEEE International Symposium on. IEEE, 2009, pp. 1142–1145.

[167] N. Bell and M. Garland, “CUSP: Generic parallel algorithms for sparse

matrix and graph computations,” 2012. [Online]. Available: http://

cusplibrary.github.io/

[168] P. Helnwein, “Some remarks on the compressed matrix representation of

symmetric second-order and fourth-order tensors,” Computer methods in ap-

plied mechanics and engineering, vol. 190, no. 22, pp. 2753–2770, 2001.

[169] G.-R. Liu, Smoothed finite element methods. CRC Press, 2010.

[170] C. M. Wittenbrink, E. Kilgariff, and A. Prabhu, “Fermi GF100 GPU architec-

ture,” Micro, IEEE, vol. 31, no. 2, pp. 50–59, 2011.

156

http://www.3dxtras.com/3dxtras-free-3d-models-details.asp?prodid=7994
http://www.3dxtras.com/3dxtras-free-3d-models-details.asp?prodid=7994
http://cusplibrary.github.io/
http://cusplibrary.github.io/

	Abstract
	Acknowledgements
	Notation
	Contents
	List of Figures
	Introduction
	Problem Statement
	Accurate Physical Modeling
	Deformable Contact Simulation
	Numerical Solution of Linear System of Equations

	Parallel Computing
	Thesis Contributions
	Thesis Outline
	Related Publications

	Literature Review
	Deformable Models
	Mass-Spring Systems
	Finite Element Method
	Other Methods

	Contact Models for Deformable Objects Modeling
	Parallel Computing in Deformable Models
	Parallel Implementation of the Mass-Spring Systems
	Parallel Computing for the Finite Element Method

	Solving Linear System of Equations

	Physics of Deformation Based on Continuum Mechanics
	Deformation Description
	Strain Measures
	Stress Measures
	Constitutive Equations
	Linear Elasticity
	Hyperelastic Material Model

	Principle of Virtual Displacement

	FEM Formulation
	General Overview
	Derivation of FEM Matrices
	The Differential Equation
	Incremental Stress and Strain Terms
	FEM Discretization
	Steady-state Equilibrium Equation

	Computational Cost

	FEM in Presence of Contact
	Discretized Contact Surface
	Penalty-based Formulation of Contacts
	Mesh Refinement
	A Note on Data Storage Scheme
	Marking Elements for Refinement
	Updating Elemental Matrix

	GPU Parallel Computing for Solving a Linear System of Equations
	Direct Solvers
	Iterative Solvers
	Preconditioning Methods
	Conventional and Element-by-Element PCG

	GPU-based Compute Platform for Deformation Analysis
	GPU Kernels for FEM Matrix Construction
	Shared Memory and Registers in FEM Computations
	Memory Coalescing
	GPU Kernels for Solving Large System of Linear Equations
	Assembly Process on GPU
	Optimized Vector Assembly on GPU

	Results
	Performance in Computation of FEM Matrices
	Computing Performance of the Conjugate Gradients Method

	Conclusions and Future Work
	Conclusions
	Future Work

	Voigt Notation
	Newmark time integration
	Gaussian Quadrature Integration
	Shape Functions
	Technical Specifications of GTX 470
	Bibliography

