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ABSTRACT
It has been shown that the sparse grid combination tech-
nique can be a practical tool to solve high dimensional PDEs
arising in multidimensional option pricing problems in fi-
nance. Hierarchical approximation of these problems leads
to linear systems that are smaller in size compared to those
arising from standard finite element or finite difference dis-
cretizations. However, these systems are still excessively
demanding in terms of memory for direct methods and chal-
lenging to solve by iterative methods. In this paper we ad-
dress iterative solutions via preconditioned Krylov subspace
based methods, such as Stabilized BiConjugate Gradient
(BiCGStab) and CG Squared (CGS), with the main focus
on the design of such iterative solvers to harness massive
parallelism of general purpose Graphics Processing Units
(GPGPU)s. We discuss data structures and efficient imple-
mentation of iterative solvers. We also present a number of
performance results to demonstrate the scalability of these
solvers on the NVIDIA’s CUDA platform.

Categories and Subject Descriptors
G.1 [Numerical Analysis]: Numerical Linear Algebra; I.3.1
[Hardware Architecture]: Graphics Processors

General Terms
Sparse Linear Iterative Solvers, Stabilized Biconjugate Gra-
dient, Conjugate Gradient Squared

Keywords
NVIDIA CUDA, Iterative solvers, multidimensional option
pricing

1. INTRODUCTION
Various problems in computational finance are formulated

as high dimensional integrals stemming from large number
of state variables and complex time structures. One major
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challenge is the pricing of high dimensional options, called
basket or index options, with a large number of underlying
risk factors. In the simplest multidimensional Black-Scholes
model, the number of assets determines the dimensionality
of underlying partial differential equations (PDEs).

Research on efficient pricing methods of these financial
derivatives is one of the important areas of computational
finance. On the one hand, the probabilistic formulation of
the pricing problem easily translates into a Monte Carlo al-
gorithm. Monte Carlo methods are flexible and therefore
widely used for multidimensional pricing but they suffer
from several drawbacks such as a relatively slow convergence
and difficulty to compute accurate sensitivities of the solu-
tion (known as “Greeks” in finance). On the other hand, the
direct solving of the underlying PDE offers fast convergence
and easy computation of the sensitivities, but the method is
often prohibitively computationally demanding and suffers
from the curse of dimensionality : standard discretization of
the PDE leads to systems that grow exponentially with the
dimension of the problem.

The sparse grid combination technique can be used to con-
trol the exponential growth of unknowns in time dependent
solutions [3]. In a nutshell, the method discretizes the prob-
lem on several sparse grids, then solves these sub-problems
which have the same spatial dimensionality as the original
problem but coarser discretization, and finally properly com-
bines the partial solutions to get the final one. In the context
of this work, we use the technique proposed in [3], which is
briefly described in Section 2.

Computational efficiency of the sparse grid combination
technique depends on the efficient solution of the resulting
sub-problems. The linear system solvers can account for a
large part of the overall computation time. In this paper
we investigate through numerical experiments performance
of Krylov subspace based iterative solvers, with which time
and memory required per iteration do not increase and no
restarting is needed as is the case with GMRes solvers[15].
Iterative methods have additional advantage that they do
not change the structure of the problem. In this work, we
focus on two solvers, BiCGStab and CGS. For regular or
irregular sparse linear systems, the efficient implementation
of solvers on parallel architectures becomes harder. Over
the past three decades, a number of research efforts have
resulted in parallel sparse linear solvers optimized for lat-
est computational architectures. Our goal is to complement
these efforts by developing a comprehensive sparse linear
solver package for GPUs. Recently, GPGPUs have been
used in various numerically intensive scientific applications



due to their superiority over conventional CPUs with respect
to achievable computational power and memory bandwidth.
For instance, an Intel QuadCore Xeron 5140 CPU has a peak
performance of 29 GFlops, whereas NVIDIA GPU Tesla
C1060, has a peak performance of 933 GFlops[25]. Hard-
ware vendors have also provided computational scientists
with high level programming tools, like Common Unified De-
vice Architecture (CUDA) from NVIDIA and Stream SDK,
a precursor of Close-To-Metal from AMD-ATI, for hiding
low level or direct access to GPUs, exposing as massively
parallel data parallel processors. Compared to GPUs, CPUs
are more flexible and can support a wider range of applica-
tions at the cost of greatly increased chip complexity. Specif-
ically, programs that require complicated control flows and
large data caches to achieve optimal performance are better
suited for CPU-based implementations. On the other hand,
contemporary GPUs have a significantly larger number of
cores and devote a higher percentage of their transistors to
floating point operations. Therefore, GPU provides massive
parallelism and delivers better performance than CPU for
certain applications. The sparse grid computation is an ex-
ample of this kind, as the computation kernels are local and
linear. Demonstrating the effectiveness of linear solvers on
the CUDA platform will help us to establish the usefulness
of this platform for various financial problems such as large
scale portfolio optimization, asset management, etc.

The structure of the remainder of this paper is as follows.
We first briefly discuss the combination technique in Section
2. In Section 3, we describe the NVIDIA GPU architecture.
We provide a review of works that are of interest with regard
to this paper in Section 4. The efficient parallel implementa-
tion details, including sparse matrix storage formats and the
CUDA based matrix-vector multiplication (SpMV) libraries,
are discussed in Section 5. We present numerical and per-
formance results in Section 6. Section 7 contains a summery
of our findings, and future directions for investigation.

2. COMBINATION TECHNIQUE FOR
SOLVING THE BLACK-SCHOLES PDE

In this section, we briefly introduce the test case chosen
for our GPU implementation of the combination technique.
We choose to price European derivatives on a d-dimensional
basket of risky assets in the multidimensional Black-Scholes
framework.

Let us denote Si(t) the price of the i-th asset, σi(t) its
volatility, ρij(t) the linear correlation between assets i and
j, and r the risk-free interest rate. We consider a Euro-
pean option with maturity T and payoff h(S). The value
V (S, t),S ∈ R

d
+, t ∈ [0, T ] of this option is solution of the

following Black-Scholes partial differential equation:
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with terminal condition V (S, T ) = h(S). With constant
parameters, this equation can be reduced to a multidimen-
sional heat equation. Although very academic, this test case
is similar to the PDEs of more realistic models. See [8] for
a large panel of PDE in finance.

As mentioned earlier, solving PDE (1) in a high-dimensional
case (say d > 3) is limited by memory restriction since the

problem is affected by the so-called“curse of dimensionality”:
on a regular full grid of mesh size 2−n, the discretized prob-
lem grows exponentially with the dimension. The sparse
grid combination technique allows to solve a higher dimen-
sional problem by reducing the size of the problem. The
framework in our case is as follows. For simplicity, we as-
sume our derivative contract is a basket up-and-out barrier
option. In this case, the value of the option is zero as soon
as one of the assets crosses a given value B, so that the
PDE (1) can be solved with homogeneous Dirichlet bound-
ary condition. Let us denote Ω = [0, B]d as our domain. For
each multi-index i ∈ N

d, we denote Ωi the Cartesian sparse
grid on that domain with mesh size 2−ik in the k-th dimen-
sion. The standard finite differences solution of PDE (1)

on the anisotropic grid Ωi is denoted Ṽi. Then the solution
V CT

n obtained at level n with the sparse grid combination
technique is:

V
CT

n =

n+d−1
X

l=n

(−1)d−1−l+n

 

d − 1

l − n

!

X

i1+...+id=l
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Therefore, the sparse grid combination technique allows
to build a discretization of the problem of size O(2nnd−1)
(on level n) instead of size O(2nd) in the full grid case. It
also offers a natural coarse parallelization, since all solutions
Vi summed in equation (2) can be computed independently
from one another. All sub-grids Ωi are solved sequentially
a single GPU using BiCGStab and CGS solver. Therefore,
the speedups we present in Section 6 could be enhanced
with a multiple GPU implementation using this “natural”
parallelization.

3. NVIDIA GPU ARCHITECTURE AND
THE CUDA PROGRAMMING MODEL

In this section, we discuss the GPU parallel computing ar-
chitecture followed by the CUDA programming model which
facilitates the developing data parallel applications on NVIDIA
GPUs.

3.1 Processor Architecture
Traditionally designed to excel in visualization tasks like

compute intensive rendering, the architecture of a GPU makes
it an ideal candidate for massively parallel data process-
ing. In general, unlike CPU, a GPU has more transistors
dedicated to data processing than to data caching and flow
control. A basic building block of NVIDIA GPUs is a mul-
tiprocessor with 8 cores, up to 16384 32-bit registers, 16KB
memory shared between 1024 co-resident threads (a multi-
processor executes a block of up to 16 warps, comprising of
up to 32 threads, simultaneously). With up to 240 cores (30
multiprocessors) and memory bandwidth up to 102 GBps,
the latest generation of GPUs offers extremely cost-effective
computational power not only for visualization but also for
general purpose scientific computations [25].

3.2 Memory Architecture
NVIDIA GPU memory model is highly hierarchical and

there exist per-thread local memory, per-thread-block shared
memory and device memory which aggregates global, con-
stant and texture memory allocated to a grid, an array of
thread blocks. A thread executes a kernel, GPU program,
and communicates with threads in the same thread block



via high-bandwidth low-latency shared memory. Generally,
optimizing the performance of CUDA applications could in-
volve optimizing data access patterns to these various mem-
ory spaces. Each of the memory space has certain perfor-
mance characteristics and constraints. Efficient implementa-
tion of solver kernels must consider carefully CUDA memory
spaces, specifically, local and global memories which are not
cached and have high access latencies.

3.3 CUDA programming model
NVIDIA’s Compute Unified Device Architecture (CUDA)

is a general purpose parallel computing architecture with a
novel parallel programming model and instruction set ar-
chitecture. C for CUDA exposes the CUDA programming
model as an abstraction of GPU parallel architecture using
a minimal set of extensions to the C language by allowing
programmers to define C functions, called kernels. When
called, these kernels are executed N times in parallel by N
different CUDA threads in a hierarchical fashion, as opposed
to only once as is the case in regular C functions. NVIDIA
also provides CUBLAS, a BLAS (Basic Linear Algebra Sub-
programs) library ported to CUDA, which enables the use of
GPUs without direct operation of the CUDA drivers. Our
solver implementations use this library mainly for vector-
vector operations. CUBLAS does not provide sparse matrix
storage structures.

4. RELATED WORK
Sparse Grid methods for option pricing: Combina-

tion technique was first introduced in [3]. Some results on
convergence and error analysis of the method (which are not
under investigation here) can be found in [1, 5, 6, 9]. The
sparse grid combination technique has been successfully ap-
plied in fluid mechanics [4], in data mining [7] or in finance
[2, 10]. The combination technique for solving the Black-
Scholes PDE used in this work is in line with [4].

GPU based linear solvers: GPU memory can be ef-
ficiently utilized for solvers where the matrix has a regular
structure. In this work, our target is to solve systems with
irregular sparsity. A few other algorithms have been stud-
ied to solve sparse and dense linear systems. Dense linear
algebra routines are provided by NVIDIA, and their care-
ful optimizations are studied in [20]. It is well known that
due to their regular access patterns, dense linear algebra
algorithms are well suited to GPU architecture. However,
due to the amount of data contained in a dense matrix, in
most cases the computations are bandwidth limited. Di-
rect factorization-based solvers have been ported to GPUs
[21], [22]. Most of these works rely on blocking strategies to
parallelize the operations.

Sparse linear algebra is somewhat more difficult to adapt
to GPUs, at least for unstructured problems. Several tech-
niques have been proposed in the literature [18, 11, 16]. The
major issues involve how the sparse matrix is stored (com-
pressed storage formats), and whether blocking is used. To
exploit massive parallelism offered by GPU, the optimiza-
tions for reducing memory footprint and hence hiding the
memory access latency is very important. Bell et al [16]
compare GPU SpMV results with SpMV results on vari-
ous multi-core platforms obtained by [17] and illustrate that
GPUs offer best performance.

The first GPU-based Conjugate Gradient solver for un-
structured matrices is proposed in [18]. To utilize memory

Kernels Methods

Kernel FLOPs Method Initial Iterations

SpMV 2α CGS 10n + 2α − 4 24n + 4α − 3
dot 2n − 1 BiCGStab 10n + 2α − 4 30n + 4α − 5
axpy 2n BiCG 5n + 2α − 1 15n + 2α − 4
scal n

Table 1: FLOPs for Basic Kernels and Iterative
Solvers. n is dimension of a matrix, α is number
of nonzeros.

bandwidth, blocked compressed sparse row (BCSR) format
matrix storage is used in [11] instead of CSR. BCSR de-
creases number of memory fetches from the device memory
to some extent, however, number of elements to be mul-
tiplied increases. Both these works solve systems in single
precision floating point. A mixed precision, multi-grid solver
for a GPU cluster is proposed in [24]. The multi-gpu based
general purpose symmetric linear systems solver with double
precision solution accuracy is presented in [23].

In [18], authors use textures to store non-zero coefficients
of a matrix and its associated two level look tables for CSR
format to implement conjugate gradient solver. The lookup
table is used to address the data and to sort the rows of the
matrix according to the number of non-zero coefficients in
each row. Then an iteration is performed on the GPU si-
multaneously over all rows of the same size to complete, for
instance, a matrix-vector operation. Another approach to
implement sparse matrices based on CSR format was pro-
posed in [19] and it utilizes vertex buffers where each vertex
buffer is used for each non-zero element.

5. ITERATIVE SOLVERS ON GPUS
We are interested in methods for solving nonsymmetric

systems of linear equations, that arise from discretization
of partial differential equations. One of the leading fami-
lies for linear system solvers is iterative solvers known as
Krylov subspace methods [15]. We selected BiCGStab and
CGS methods for their suitability for solving nonsymmetric
linear systems. Iterative methods use four basic computa-
tional kernels: matrix vector products, preconditioner, inner
product (dot), and vector update (axpy). The choice of the
preconditioner is very important for the efficient solution of
a linear system, but we will not discuss preconditioning here
because it is often problem dependent. The constituent ker-
nels along with their computational costs are presented in
Table 5. The efficiency of any iterative method is determined
primarily by the performance of the matrix-vector products
and therefore on the storage scheme used for the matrix.
We elect some sparse matrix representations which could
be suitable for matrices resulting in the combination tech-
nique and evaluate the performance of linear solvers with
respect to various implementations of GPU based matrix-
vector products.

5.1 Sparse Matrix Formats
There exist several sparse storage formats with the aim

of representing sparse matrices economically. A survey of
various sparse storage formats can be found in [15]. These
differ in terms of amount of storage required, the accessing
methods such as the amount of indirect addressing required



for fundamental operations like matrix-vector products, and
their adaptability for parallel architectures of GPUs. Due to
matrix sparsity, memory access patterns tend to be highly
irregular and utilization of global uncached memory can suf-
fer from low spatial or temporal locality. Each format takes
advantage of specific properties of the sparse matrix and
may achieve different degree of efficiency of space and com-
putational efficiency. We prefer to consider general stor-
age formats which are suitable for matrices with arbitrary
sparse structure. Hence, we consider following formats in
our study:

• Coordinate (COO): is a general sparse matrix for-
mat that comprises of arrays row, col and data to store
row indices, column indices and values of nonzero ma-
trix entries, respectively. This format is very space in-
efficient and computationally intensive among the for-
mats we considered.

• Compressed Sparse Row (CSR): is a general-purpose
sparse matrix format. It does not consider any order-
ing among nonzero values within each row. Subsequent
nonzeros of rows are stored in contiguous memory, and
additional integer arrays specify column index for each
nonzero and beginning of offset of each row.

• Block Compressed Sparse Row (BCSR): is par-
ticularly useful when the sparse matrix has square dense
blocks of nonzeros in some regular pattern. It enables
register blocking strategies, and vector processing sig-
nificantly reduces the required memory bandwidth and
computational time for matrices with large block sizes
[15].

• Hybrid (HYB): is a combination of the Ellpack-
Itpack (ELL) (or Diagonal (DIA)) and COO for-
mat, by coupling the speed of ELL (or DIA), utilizing
the memory bandwidth efficiently, and the flexibility of
COO. It is usually the fastest format for a wide range
of unstructured matrices.

5.2 Sparse Matrix Operations
Sparse matrix-vector multiplication is arguably the most

important operation in sparse matrix computations.Iterative
solvers generally require hundreds, if not thousands, matrix-
vector products to reach convergence. Over the past decade,
there has been significant amount work on optimizing SpMV.
Most of the work has focused on optimizing sparse ma-
trix kernels on general-purpose architectures. SpMV being
a memory bound kernel, most optimizations target perfor-
mance improvements at various memory levels in the mem-
ory hierarchy. The optimizations include optimal data struc-
ture for storing sparse matrix, exploiting block structures in
sparse matrix and blocking for reuse at the level of cache,
TLB and registers [12]. Various optimizations have been
proposed taking into account the complex memory hierarchy
and unconventional mapping of computation to the coresi-
dent threads on GPUs.

Let us take an example of a sparse matrix A, as repre-
sented in Figure 1 with its CSR representation and a dense
vector x of length n. The objective is to compute y = Ax,
where y is the output dense vector of length n. In Figure 1,
we present a sequential implementation of the SpMV proce-
dure using CSR format. There are several ways to parallelize
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a) Sparse Matrix A

row ptr [5] = ( 0 3 5 5 7 )

col ind [7] = ( 0 1 3 0 2 1 2 )

val [7] = ( 2 3 1 1 3 4 2 )

b) CSR format of Matrix A

Figure 1: An example of CSR representation

Figure 2: Serial routine for CSR SpMV

Figure 3: A naive CUDA kernel for CSR SpMV

this procedure. A simple translation of this sequential rou-
tine into a CUDA kernel is given in Figure 3. In this naive
approach of parallelizing the main loop, each row is assigned
to one thread. One of the major problems with this paral-
lel implementation on GPU is the way how threads within
a warp access the col ind and val arrays. Despite these
values are stored contiguously, each thread reads the ele-



ments of its row sequentially, resulting in non-contiguous
accesses to off-chip memory and thus hampering the overall
performance of the memory bound kernels. Additionally, if
the nonzero elements are unevenly distributed across all the
rows, it may lead to poor utilization of the resources keeping
many threads idle. Several algorithmic as well as architec-
ture specific optimizations have been proposed to improve
the performance of both serial and parallel implementations
[17, 16, 12, 11]. We experiment with the following three li-
braries to implement the linear solvers. NVIDIA’s CUBLAS
is used for dense vector operations.

5.2.1 NVIDIA SpMV Library
NVIDIA made available a library for SpMV computation

and is one of the prominent efforts in this direction. In
[16] authors discuss the implementation details of various
sparse matrix formats and their efficient representation on
NVIDIA GPUs. The library supports DIA and ELL formats
suitable for small sparse/dense matrices. The other formats
suitable for large sparse matrices include COO, CSR, HYB
and Packet (PKT) format.

The COO-vector kernel based on segmented reduction is
robust with respect to variations in row sizes. It is reli-
able and complements the deficiencies of the other SpMV
kernels. COO-scalar kernel uses only one thread and is
equivalent to sequential algorithm. The CSR-scalar kernel
uses one thread per matrix row. It has low bandwidth uti-
lization and hence poor computational performance, as it
does not exploit memory coalescing. On the contrary, CSR-
vector uses a 32-thread warps per row results in contiguous
memory access. This may result in poor load balancing by
increasing the number of idle threads when the number of
nonzero coefficients is less than the warp size. Performance
of CSR-scalar is rarely competitive with alternative choices,
while the vector kernel efficiently handles large row sizes.
The HYB kernel is a combination of COO-vector and ELL
kernels. All the kernels we used in our implementation ben-
efit from the read-only texture cache present on all CUDA-
enabled devices.

5.2.2 IBM SpMV Library
In [12], authors propose GPU specific, application oriented

optimizations for efficient execution of SpMV kernels using
CUDA. The GPU specific optimizations include i) Exploita-
tion of synchronization-free parallelism for achieving intra-
thread-block synchronization across the rows, ii) Optimized
thread mapping based on the affinity towards optimal mem-
ory access pattern, iii) Enabling hardware optimized global
memory coalesced accesses and iv) Exploiting data reuse of
input vector elements by caching the elements in on-chip
memories like texture (hardware) cache, registers or shared
memory (software) cache. Texture memory is used to store
the input vector to utilize the read-only texture cache in or-
der to achieve performance gains due to input vector reuse.

The proposed optimizations are for the CSR format and
the authors claim to achieve better performance than the
NVIDIA SpMV library. We evaluate the performance of
our solvers with Padded CSR format, in which zeros are
padded to ensure that the number of entries in each row is
a multiple of 16 in order to achieve aligned global memory
access.

Feature C870 E5420

Multiprocessors 16 2
Processor cores 128 8
Processor Clock 1.35 GHz 2.6 GHz
Off-chip Memory Size 1.5 GB 4 GB
Peak Performance 500 GFlops 80 GFlops

Table 2: Architectural configurations of NVIDIA
Tesla C870 and Intel Xeon E5420.

5.2.3 CNC SpMV Library
In [11], authors present SpMV package which includes effi-

cient implementation for BCSR format. The sparse storage
format groups non-zero values in blocks of size BN x BM in
order to maximize the memory fetch bandwidth of GPUs, to
take advantage of registers to avoid redundant fetches (regis-
ter blocking), and to reduce the number of indirections due
to the reduced size of lookup tables. Although each indi-
rection results in dependent memory fetches, it introduces
memory latencies that need to be hidden by the GPU to
achieve a good efficiency. We experiment with implementa-
tions of 2x2 and 4x4 blocks for lower and higher filling ratio
respectively.

6. NUMERICAL RESULTS AND PERFOR-
MANCE

In this section, we discuss the results of a set of experi-
ments using NVIDIA GPU to demonstrate the performance
behavior of BiCGStab and CGS.

6.1 Architectures
The sequential, double precision versions of BiCGStab

and CGS solvers were developed and experimented on Intel
Xeon E5420, see Table 2. For the dense vector operations
we used BLAS library (1.2-1.3ubuntu3) and supported only
CSR sparse format. The sequential solvers and any other
CPU bound code was compiled using gcc compiler at -O3
optimization level. The GPU based solvers were executed
using Tesla C870 (G80 GPU) with configuration presented in
Table 2, connected to a host x86/Linux system through 16-x
PCI Express bus. The CUDA kernels for SpMV operations
were compiled using NVIDIA CUDA compiler 2.1 (nvcc) to
generate the device code. The device code was compiled
with -arch=sm 10 flag and -O3 optimization level. Note
that due to limitations of Tesla C870, experiments for GPU
based solvers were done with single precision arithmetic.

6.2 Validation of the results: Sparse Grid, Full
Grid and Monte Carlo prices

We consider the test case presented in Section 2, with an
up-and-out best-of barrier option on d assets. The payoff
is written h(S) = (maxi Si − K)+ on the domain [0, B]d.
Our numerical results are presented in Table 3. The fol-
lowing parameters have been used to obtain these results:
σi = 0.20, ρij = 0.0, r = 0.03, T = 1, K = 100, B = 200.
We solve the PDE using the combination technique at level
n = 6, . . . , 10 with 5000 timesteps. We present the result-
ing linear systems for d = 3 and n = 10 in Table 5. For
lower dimensions and levels the linear systems are smaller
in size, however, the number of unknowns increases with the
increase in dimensions and approximation level.



d MC interval l=6 7 8 9 10

2 [15.97-16.04] 16.68 16.49 16.10 16.06 15.99
3 [20.87-20.94] 23.49 22.59 21.69 20.80 20.85
4 [24.63-24.69] 26.98 31.43 NA NA NA
5 [27.61-27.68] 19.6145 NA NA NA NA

Table 3: Numerical results. Monte Carlo confi-
dence intervals computed using 1E6 paths and 250
timesteps. Note that MC prices are positively bi-
ased (see text).

d Level Total Time(s) Solver Time(s)

3 6 15.71 15.10
3 7 70.26 65.30
3 8 283.08 242.13
3 9 1155.27 818.10
3 10 5375.96 2553.31

Table 4: Time in seconds for pricing a basket of
three equities with different refinement levels.

As a rough validation, we simply check a few prices for
at-the-money option, i.e. in our case where all assets have
the initial value S0 = 100. The accuracy of our numerical
results is verified by comparison with a Monte Carlo 95%
confidence interval obtained with 1E6 simulation paths and
250 timesteps. It is known that these confidence intervals
are positively biased, since the evaluation of the crossing
of the barrier is not evaluated continuously. Table 3 shows
that convergence is achieved, at least for d = 2, 3. For error
analysis of the combination technique please refer to [6].

We also compute the standard full grid finite difference
solutions. Using the notation introduced in section 2, stan-
dard full grid solutions Ṽi are computed directly by solv-
ing the PDE (1) discretized on an isotropic grid Ωi with
i = (l, l, . . . , l). For d = 3 and l = 6, the GPU compu-
tation of the solution takes more than 8 hours (of which
the Solver Time is <1%), and the price for all assets at
the money (i.e. as in Table 3) is 20.66. This can be com-
pared to the sparse grid combination technique solution at
level l = 7 (such that finest one-dimensional discretization
are the same in both cases), which takes only 70 seconds,
but has a larger error (see Tables 3 and 4). This can also
be compared to a sparse grid combination technique with
similar error, which takes only 20 minutes at level l = 9.
Theses few comparisons establish the benefit that one may
get from an efficient implementation of the sparse grid com-
bination technique. Next subsection is dedicated to the
performances of the GPU linear solvers that are used in the
study.

6.3 Performance of the linear solvers
For the experiments, the convergence tolerance of the it-

erative methods is set to 1E-6. The execution times using
sequential solvers for d = 3 with n = 6, . . . , 10 are pre-
sented in Table 4. The column Solver Time represents the
time required for solving the linear discrete systems. The
remaining of the Total Time is spent on construcing partial
grids and combining the subsolutions. It usually remains
constant and is independent of parallel or sequential solvers

≺ l1, l2, l3 ≻ N NNZ ≺ l1, l2, l3 ≻ N NNZ

≺ 8,1,1 ≻ 255 763 ≺ 5,3,1 ≻ 217 1009
≺ 7,2,1 ≻ 381 1645 ≺ 5,2,2 ≻ 279 1563
≺ 6,3,1 ≻ 441 2065 ≺ 4,4,1 ≻ 225 1065
≺ 6,2,2 ≻ 567 3195 ≺ 4,3,2 ≻ 315 1863
≺ 5,4,1 ≻ 465 2233 ≺ 3,3,3 ≻ 343 2107
≺ 5,3,2 ≻ 651 3895 ≺ 6,1,1 ≻ 63 187
≺ 4,4,2 ≻ 675 4095 ≺ 5,2,1 ≻ 93 397
≺ 4,3,3 ≻ 735 4627 ≺ 4,3,1 ≻ 105 481
≺ 7,1,1 ≻ 127 379 ≺ 4,2,2 ≻ 135 747
≺ 6,2,1 ≻ 189 813 ≺ 3,3,2 ≻ 147 847

Table 5: A set of discrete systems for d = 3 and l = 10
with level of discretization in each direction given by
the permutation of ≺ l1, l2, l3 ≻. N is dimension of a
matrix and NNZ is number of nonzeros. The total
number of discrete systems is 85.

used. Hence, for the performance evaluation, we only con-
sider the Solver time, the total time spent in solving the all
grids. The speedups achieved for Solver Times using GPU
based BiCGStab and CGS are presented in Figure 4 and Fig-
ure 5, respectively. The speedup is computed as the ratio of
the execution time using one CPU(T1) and the parallel exe-
cution time (Tp) using Tesla. Overall performance of these
solvers in terms of mega FLOPs (MFLOPs) is presented in
Figure 6 and Figure 7. The total number of FLOPs are
computed as described in Table 5.
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Figure 4: Speedup for BiCGStab using GPU for in-
creasing problem sizes.

We evaluate the performance of GPU based BiCGStab and
CGS with respect to the underlying SpMV kernels. For the
analysis, we call both the solvers by the SpMV kernel name
used therein (e.g. CSR-Scalar stands for a BiCGStab or
CGS solver using NVIDIA’s scalar CSR SpMV kernel). The
performance characteristics of both the solvers follow similar
behavior for scalability, hence in the following discussion we
do not distinguish between both the solvers, if not mentioned
otherwise. The other solver kernels (dot, axpy and scal) in
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Figure 5: Speedup for CGS using GPU for increas-
ing problem sizes.
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Figure 6: Overall speed (megaflops) of BiCGStab
using GPU.

both the solvers are assumed to take equivalent time for
solving a perticular grid.

With CNC library: BCSR2x2 and BCSR4x4 kernels take
advantage of square dense block patterns in a sparse matrix,
saving in locations and reduction in indirect addressing. The
sparse grids resulted in the combination technique does not
exhibit any of such pattern. This format leads to register
level data reuse resulting coarse grained parallelism, how-
ever in our case, suffers from non-optimal global memory ac-
cesses. This attributes to its poor performance compared to
other variants of CSR formats that we investigated. CSR1x1
is uses one thread per row and 16 threads per block. The
equivalent NVIDIA CSR-scalar kernel uses 256 threads per
block. CSR1x1 comparatively results in poor thread granu-
larity due to more number of blocks. CSR1x1 results in an
inefficient utilization as the multiprocessor spends a large
fraction of time in block switching. Optimal block size (and
grid size) is necessary to ensure maximal utilization of the
resources.

With NVIDIA’s library: The CSR-vector kernel uses one
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Figure 7: Overall speed (megaflops) of CGS using
GPU.
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Figure 8: Histogram h[t] of Speedups achieved by
GPU based BiCGStab using NVIDIA-CSR-vector

kernel for solving discrete systems represented by
Table 5.

32-thread warp per matrix row. This approach benefits from
contiguous global memory access. However, as our testcases
have small scale, the resulting matrices have fewer than 32
non-zeros per row, which causes underutilization of this ker-
nel. Although this kernels outperforms our other SpMV
considerations. A CSR-scalar which uses one thread per
matrix row performs poorly compared to its vector counter-
part. It uses 256 threads per block and outperforms CSR1x1
which uses 16 threads per block. The COO-vector kernel is
based on segmented reduction. The COO format has the
worst computational intensity of all. The segmented re-
duction operation seems more expensive than alternative
approaches that distribute work across threads of execu-
tion. COO-scalar approach which allocates only one thread
has the worst computational complexity, equivalent of se-
quential CSR. Nevertheless, COO-vector kernel can be used
to compensate the deficiencies of the other kernels. The
HYB format couples the speed of ELL and the flexibility
of COO. The ELL alone cannot be used in our matrices as
there are very small number of nonzero entries per row. But
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Figure 9: The speedup for solving by full grid
method using GPU based BiCGStab. A linear sys-
tem with N = 29791, NNZ = 202771. Sequential time
required is 5884.6 seconds.

when combined with COO-vector in HYB-kernel we observe
the performance improvement over COO-vector and COO-
scalar kernels.

With IBM’s Library: We experiment with two main compile-
time optimizations proposed in [12], CSR-Aligned Access,
aligned global memory accesses, and Thread Mapping, opti-
mized thread mapping, for the CSR format. CSR-Aligned
Access kernel is similar to CSR-vector but uses 16-thread
warp per matrix row and makes alignment adjustments. The
matrices resulting from combination technique have very low
number of nonzeros per row, usually less than 16, which con-
tributes to the poor performance of these optimizations.

In terms of speed, the performance of the CPU remains
constant (around 4 MFLOPs) while the performance of GPU
based solvers boosts with the increasing problem sizes, see
Figure 6 and Figure 7. CPUs generally mask the latency
with on-chip cache, while GPUs mask the latency with a
large number of threads and assigned work load. The in-
creasing work load can promise to hide the latency to do
texture accesses. With the problem sizes at our disposal,
most of the cached kernels fail to hide the latency causing
unexpected slowdown. For small grids, both CPU and GPU
implementations exhibit equivalent performance. Figure 8
displays a histogram with the distribution of number of grids
as per the speedups achieved using GPU based BiCGStab.
We observed that solvers achieve better speedups for the
grids with large unknowns than for the smaller grids.

The speedup achieved using GPU based BiCGStab for
solving a full grid with d = 3 and l = 5 is presented in Figure
9. The sequential time required for solving the linear sys-
tems associated with this problem is 5884.6 seconds (while
the total time is 6280.84 seconds). We can clearly see the
solver using the HYB sparse format (with and without cache
enabled) achieves the highest absolute performance with the
speedup of more than 1000. In the figure we can also observe
the benefit of enabling cache for the large size vector, with
an average of 20% improvement in the performance. Thus
we can observe the influence of cache on the optimum choice
of the storage format, and that the exploitation of storage
formats is necessary for achieving higher performance. Fur-

ther performance analysis of HYB-kernels for general set of
problems can be found in [16].

7. CONCLUSION AND FUTURE WORK
In this paper we presented parallel implementations of

Krylov subspace based iterative solvers harnesssing GPUs
for solving high dimensional PDEs stemming from multi-
dimensional option pricing problems. The efficiency and
performance of various SpMVs and therefore of the linear
solvers is demonstrated by numerical experimental results
carried out on a NVIDIA GPU. Our results show that the
choice of sparse format is not only important for scalabil-
ity of iterative solvers to solve the sparse grids but the effi-
cient implementation and parameter tuning of matrix-vector
kernels is also essential for maximal performance. The solu-
tion of grids with low approximation levels results in smaller
problem sizes attributing to the overhead of the parallel plat-
form and performs poorly compared to sequential version.
For higher approximation levels, we observed that the sig-
nificant amount of time is spent on creating partial sparse
grids. An interesting engineering problem would be to con-
struct these grids on the GPU itself. Further, in order to ex-
ploit the inherent parallelism in the combination technique,
it is essential to distribute the solving of sparse grids over a
cluster of GPUs. Such scheme poses several interesting fu-
ture research directions. The variable times needed to solve
the discrete systems would require either a reasonable dis-
tribution scheme or ways to decompose large systems over
multiple GPUs.

We will also work toward a comprehensive object-oriented
library of high-performance iterative linear solvers using var-
ious SpMV routines and effective preconditioners for the
solvers, targeting future generation GPU devices. Future
work will also include investigating the performance and
convergence behavior of these solvers on the latest double
precision NVIDIA CUDA enabled devices.
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