
 Journal of Information Processing Systems, Vol.5, No.2, June 2009 105

GPU-based Stereo Matching Algorithm with the Strategy

of Population-based Incremental Learning

Dong-Hu Nie*, Kyu-Phil Han** and Heng-Suk Lee**

Abstract: To solve the general problems surrounding the application of genetic algorithms in stereo
matching, two measures are proposed. Firstly, the strategy of simplified population-based incremental
learning (PBIL) is adopted to reduce the problems with memory consumption and search inefficiency，
and a scheme for controlling the distance of neighbors for disparity smoothness is inserted to obtain a
wide-area consistency of disparities. In addition, an alternative version of the proposed algorithm,
without the use of a probability vector, is also presented for simpler set-ups. Secondly, programmable
graphics-hardware (GPU) consists of multiple multi-processors and has a powerful parallelism which
can perform operations in parallel at low cost. Therefore, in order to decrease the running time further,
a model of the proposed algorithm, which can be run on programmable graphics-hardware (GPU), is
presented for the first time. The algorithms are implemented on the CPU as well as on the GPU and are
evaluated by experiments. The experimental results show that the proposed algorithm offers better
performance than traditional BMA methods with a deliberate relaxation and its modified version in
terms of both running speed and stability. The comparison of computation times for the algorithm both
on the GPU and the CPU shows that the former has more speed-up than the latter, the bigger the image
size is.

Keywords: Image filtering, Performance Evaluation, General-Purpose Computation Based on GPU,

GPU, Population-Based Incremental Learning

1. Introduction

Binocular stereo-matching algorithms perform a group

of operations repeatedly on each pixel point or block of
pixel points to identify the corresponding points between
the source image and the target image, which require a
considerable amount of CPU time. Therefore, parallelism
possibly benefits the efficiency of these algorithms. The
graphics processor units (GPU) consist of multiple multi-
processors, which are very efficient, to perform parallel
computation. They were originally designed to give a fast
rendering of geometric primitives for computer games and
image generation. They are now available in all personal
computers and many handheld devices. Current GPUs also
support floating point arithmetic. Moreover, GPU perfor-
mance has been improving at a faster rate than Moore’s law
[1], by about 2-3 times a year. However, we have to solve
certain problems which arise in GPU implementation.

Recently, an evolutionary computation strategy known
as the genetic algorithm has been used to solve stereo-
matching problems [2-4]. However, the general problems

with genetic algorithms, such as memory consumption and
search inefficiency, are more critical the larger image size
is. Han’s algorithm [5] tried to solve those problems to
some extent, but its memory cost was a little high due to
the use of the probability vector. Then, Han et al. proposed
a simplified version, which produced the same results as
the initial version, to decrease the memory cost of a serial
manner CPU algorithm, but it required at least three layers
of loops to perform these computations. For more improve-
ments, Han’s algorithm is needed to consider that the GPU-
based scheme should be designed to perform repetitive
operations based on a group of vertices or fragments and a
stereo-matching algorithm with a PBIL [6] strategy executed
on commodity graphics card to solve these problems.
Therefore, we describe the algorithm of the stereo algorithm
using PBIL and simplify it by not using a probability vector.
Then, the model of the algorithm run on GPU is given.
Finally, we evaluate the implementation by comparing the
runtime between the CPU and the GPU. The experimental
results show that the GPU algorithm had more than twice
the speedup of the CPU algorithm.

2. Related Work

The existing techniques for stereo matching are roughly

grouped into two categories. One is feature-based and the

DOI : 10.3745/JIPS.2009.5.2.105

Copyright ⓒ 2009 KIPS (ISSN 1976-913X)

Manuscript received 1 October, 2008; first revision 24 February, 2009;
second revision 8 April, 2009; accepted 25 May, 2009.
Corresponding Author: Kyu-Phil Han

* Coll. of Computer Science and Technology, Harbin Engineering
University, Harbin, China (niedonghu@hrbeu.edu.cn)

** Dept. of Computer Engineering, Kumoh National Institute of Technology,
Gumi, South Korea (kphan@kumoh.ac.kr, hslee@kumoh.ac.kr)

106 GPU-based Stereo Matching Algorithm with the Strategy of Population-based Incremental Learning

other is intensity or area-based. Since the feature-based
methods use relatively sparse primitives, a complicated
interpolation process including occlusion modeling and
disparity continuity must be taken into account to obtain a
dense disparity map. Conversely, intensity-based methods
use dense low-level features and intensity values them-
selves, thus a feature extraction and an interpolation
process are not necessary for a dense disparity map to be
obtained; unfortunately, they are sensitive to noise and
small differences of intensity. Consequently, other enhance-
ments of stereo approaches using chromatic information [7,
8], windowed Fourier phase [9], and transformed images
[10], etc. have been studied. However, these methods
possess the nature of feature- and intensity-based techniques,
thus the problems mentioned above occur in the enhancements
as usual.
Genetic algorithms are efficient search methods based on

the principles of natural selection and population genetics
[11]. They have been used to solve the stereo matching
problem. The matching environment is considered as an
optimization problem in this approach and finds the
optimal solution under a pre-defined condition. Since the
matching and the relaxation processes are used at the same
time in this method, there are some improvements in the
output quality. However, general problems, such as memory
consumption and search inefficiency occur in genetic
algorithms. The problems are more critical the bigger the
image size is. Han proposed a genetic stereo- matching
scheme using PBIL. The PBIL is a modified search technique
for genetic algorithms using stochastic search and
competetive learning based on a probability vector (PV).
Its structure is much simpler than that of other algorithms
such as serial and parallel genetic methods. The algorithm
can avoid using a gene pool, crossover and mutation, while
preserving the important rules of evolution. Han’s method
improved search efficiency and the matching performance
remarkably, but led to only a slight enhancement of the
memory consumption because of the PV and loop structure

with three layers. In other words，it has to perform kernel

computation repeatedly. So, we can achieve higher speedup
in parallel by using the GPU, which is composed of
multiple multi-processors.

Since nVidia made the GPU highly programmable in

2001，the programmability of GPU has steadily increased.

Many high level shader languages, such as Cg, Brook, and
so forth, which can be used to make programs on the GPU,
have also been developed. Moreover the cheaper cost and
increasing rate more than Moore’s law are also attracting
more and more researchers to use the parallelism of GPU
in both graphics and non-graphics applications. General
purpose computations have become a popular area of
research by using commodity GPU. Many classical

algorithms in the areas of image processing and numerical
computation, etc. have been implemented on GPU, such as
FFT [12, 13], convolution [12], numerical algorithms [14],
sparse matrix solvers [15] and so on. So far, no research
has been conducted on a stereo matching algorithm
running on GPU.

3. Stereo Matching with PBIL

3.1 Population-Based Incremental Learning

PBIL is a variation of genetic algorithms using a stochastic

search based on a probability vector. It transforms the
survival degree of a chromosome into a probability in the
range of [0, 1]. In each generation, the production of
chromosomes is based on the probability value. The
generated chromosomes change their survival probabilities
owing to the adaptation and disappear. In the next
generation, chromosomes are also produced by the updated
probability. Through the recursive process, if the probability
converges, the process will be terminated. Therefore,
unlike conventional genetic algorithms, it is not necessary
for survival chromosomes to be saved. The probability
vector holds all the survival information.

Fig. 1 shows the basic outline of PBIL, where l and n
denote the number of all possible chromosomes and the
size of the population, respectively. Initial probabilities of
all possible chromosomes in the probability vector are set
to 0.5 or 1/l in step 1), and then n chromosomes are
randomly generated by a production function. The function
generates two random numbers, which are the chromosome
index and its survival probability. If the stored value in the
generated index of the probability vector is greater than the
generated survival probability, the chromosome can be
produced. After the production step, the n chromosomes
are evaluated by the fitness function and the probability
vector is updated according to the fitness value. This pro-
cess is called learning. A mutation altering the probability
value may be inserted after the learning process. Finally,

Fig. 1. Outline of PBIL.

Dong-Hu Nie, Kyu-Phil Han and Heng-Suk Lee 107

the convergence of the vector is checked in step 5). If the
vector has converged, the recursive process is terminated.
Otherwise the process will be continued.

As seen in Fig. 1, the fittest or the winner, among the
generated chromosomes in each generation updates the
probability vector, and then disappears. Since the proba-
bility vector implies the survival information of chromosomes,
it is not necessary to store the survival chromosomes
explicitly. The algorithm using PBIL may be very compact
if the solution space is small.

3.2 Probability Model

The objective of stereo matching is to find the corres-

ponding point of a reference pixel in a target image. Since
it is assumed that the epipolar constraint is satisfied, the
search-range of the matching is limited to only the horizontal
direction. If not, a rectification process is required before
stereo matching can begin [16, 17]. A pixel, or a center of a
block, in the reference image can be matched to a certain
pixel on the target image within a given 1-D range, as

shown in Fig. 2(a) where fr(⋅) and ft(⋅) are the gray levels
of the reference and the target image, respectively. That is
to say, each pixel of the target image within the search
range has the probability of being matched to a reference
one, as seen in Fig. 2(b). In this way, the matching proba-
bility vector of one point (0-dimension) has to be a 1-D
array. Hence, the dimension of the probability vector can
simply be expanded for 2-D images. The probability that
the pixel (i, j) on the reference image matches to the pixel
(i, j+k) of the target image can be represented as p(i, j, k).
Thus, a total 3-D probability vector is needed for the 2-D
image matching. In this probability model, stereo matching
corresponds to finding the disparity k which has the
maximum matched probability for all image points (i, j).
That is, there is a 1-D probability vector per matching point,
which is to be a pixel for dense matching or a center of a
block for a skipped block matching algorithm (BMA).

Fig. 2. Probability mapping for pixel matching. (a)

General stereo matching environment (b) Matched
probabilities of candidates.

In the PBIL model, the number of probability vectors
depends on all possible solutions, so the space of the
solutions may become immense according to the type of
problem. However, the number of all possible solutions
concerning a pixel in the stereo matching problem is the
same as the size of the search range, thus is quite a small
and finite number. Furthermore, since PBIL uses the
chromosome index and its probability during evolution, the
proposed stereo matching strategy using PBIL is very
effective.

To obtain a disparity map from this model, the 3-D
probability vector is initialized and updated by PBIL. Then,
the disparity index having the maximum probability along
the k-directions is selected as the solution for the pixel. The
flow diagram of the matching algorithm is shown in Fig. 3.
Steps 1) and 2) are equal to that of Fig. 1 except for its
dimensions. Since each image point has an independent 1-
D PBIL structure, the algorithm is executed as a raster-
scanning procedure. The number of generated chromosomes
in PBIL must be greater than 1 because the fittest must be
selected. Also, the number depends on the convergence rate.
The larger the n used, the faster the convergence rate
obtained, and with less diversity. After production of the
chromosomes, the generated chromosomes are evaluated
by a problem-dependent function. In conventional GAs,
after fitness allotment, the fitness values of all individuals
should be transformed into survival probabilities according
to the degree of their fitness, in order to prepare natural
selection. This transformation is not a trivial task because it
is difficult to assign a probability amount relative to cost or
error measurements. However, in PBIL only the fittest
needs to be identified as the winner by comparing the

Fig. 3. Flow diagram of the proposed matching algorithm.

108 GPU-based Stereo Matching Algorithm with the Strategy of Population-based Incremental Learning

fitness values, which makes the matching structure simple
because the transformation is not necessary. Additionally a
constant learning rate is used in the probability update as
shown in step 2). In step 3), the current disparity having the
maximum probability in each generation is checked with
that of the previous generation. If there is little or no
change, then the recursive process is terminated.

3.3 Chromosome production function

The chromosome production process shown in Fig.3
based on the probability vector uses a random function. It
generates two random numbers as mentioned in Section
2.1.1: One is a chromosome index denoting the disparity
value, the other is its survival probability that will be
generated. When a duplicated chromosome occurs or the
when the probability of the vector is less than the survival
one, another chromosome is produced. The flow diagram
of the production stage is shown in Fig. 4, where
MAX_NUM denotes the maximum number generated by
the random function. In general, the chromosome index in
PBIL differs from its chromosome itself. The index number
only stands for a certain encoded chromosome. However,
the chromosome index is equal to the chromosome value,
i.e., its disparity value, in the proposed algorithm. That is
to say, the chromosome structure of the proposed algorithm
has only one gene and the gene value is the disparity.

Fig. 4. Flow diagram of the chromosome production

function.

3.4 Evaluation Function

To identify the winner of each generation, the evaluation
function, or fitness function must assign a degree of fitness
to the generated chromosomes. Therefore, it has to operate
as a matching criterion function. In stereo matching, several
constraints - such as intensity similarity and disparity
smoothness - are commonly used to find the best match.
The intensity similarity implies that the reference pixel or
block is similar to the target one. The disparity smoothness
denotes that disparities are smooth across neighboring
pixels. Thus, the fitness function of the proposed algorithm

is constructed by taking into account both similarity and
smoothness terms. The mean of the absolute intensity
difference between the reference and the target blocks is
defined as the intensity similarity measure. Therefore, the
mean intensity difference of the k-th chromosome at the
considering point (i, j) is represented by

∑ ∑
∈ +++−

++
=

Wnm kt

r

ik
Cnjmif

njmif

WS
jim

),(),(

),(

)(

1
),((1)

where S(W) is the size of window W, fr and ft are the
intensity values, and Ck denotes the chromosome value, or
disparity value, of the k-th chromosome. Another important
constraint is disparity smoothness. There are many false
matches in stereo matching when only using a similarity
measure, so they should be carefully replaced with con-
sistent disparities according to their adjacent values. The
disparity ordering and uniqueness constraints may be
inserted into the fitness function. The smoothness is only
considered because it is a more dominant factor than the
ordering constraint. And, also, the uniqueness term is
automatically included in the proposed scheme. Since one
winner along the disparity axis is selected at an image
point, the matched point is unique. Therefore, we can say
that three constraints are used in the fitness function of the
proposed algorithm, which are intensity similarity, dis-
parity smoothness, and uniqueness. If all disparities are
known, the mean of the absolute disparity difference
between the current and the 8-neighbor’s disparities, i.e.

0,0

),(),(
8

1
),(

1

1

1

1

≠≠

++−= ∑ ∑
−= −=

nm

njmidjidjim
m n

d

 (2)

can be used as the measure of smoothness. However, since
the proposed algorithm is executed in a raster-scan order, 4
disparities out of 8 neighbors, namely the lower 3 pixels
and the right one of the current pixel, are not known at that
moment, as shown in Fig. 5. Therefore, the disparities of
the previous generation are used for the smoothness check
of the current pixel, except in the first generation. The
disparity having the maximum probability at each genera-
tion is temporarily stored and used for smoothness and
convergence checking in the next generation. Also, in order
to obtain a wide-area consistency of disparity and to
include a coarse-to-fine strategy, the distance of a neighbor
pixel is controlled by a scale factor, s, in the proposed
scheme. Thus, the final disparity smoothness function
about the k-th chromosome can be rewritten as

0,0

),(
8

1
),(

1

1

1

1

≠≠

⋅+⋅+−= ∑ ∑
−= −=

nm

nsjmsidCjim
m n

p

kdk

 (3)

Dong-Hu Nie, Kyu-Phil Han and Heng-Suk Lee 109

d d d d d d d d d

d d d d d d d d d

d d d d n n n n

n n n n n n n n n

n n n n n n n n n

Fig. 5. Stereo matching sequence in raster-scan order,

where × denotes the current matching point, and d
and n are the pixels by which disparities are
determined or not-determined at each point,
respectively.

where dp denotes the disparity value having the maximum
probability at the pixel in the previous generation. The
larger the scale factor used, the coarser the result obtained.
Thus, the scale factor should be set to decreasing order to
obtain a finer output. In the proposed algorithm, three steps
of the scale factor, i.e., 4, 2, and 1, are used for a certain
generation. Fig. 6 shows the 8 neighbors according to the
scale factor in the sense of chess-board distance. The
symbol X and each number denote the considering point
and the scale factor, respectively. Four or more steps of
scaling can be used to obtain a wide range of disparity.
The evaluation function of the k-th chromosome is

defined as

⎩
⎨
⎧

>+
=

=
1 generation ,

1generation ,
)(

dkdiki

ik

mwmw

m
iE (4)

where wi and wd are the weights of the similarity and the
smoothness, respectively, and wi + wd = 1. In the first
generation, the intensity similarity is only used because the
previous disparity does not exist. Since Eq. (4) is composed
of differences in intensity and disparity, it is referred to as
an error function, and the fitness function about the error
may be represented with the reciprocal of Eq. (4). Normally,
a fitness value would be transformed into a survival pro

1
X

1 1
1 1
1 1 1

2 2 2

2 2

2 2 2

4 4 4

4 4

4 4 4

Fig. 6. Eight neighbors participating in disparity smooth-

ness according to each scale factor.

bability in conventional GAs because of natural selection,
as mentioned above. Since the relation between fitness and
survival probability cannot be modeled clearly, there are
many difficulties. However, this process of transformation
from an error into a fitness and survival probability value is
not essential in the proposed scheme, because only the
fittest, or the winner, needs to be identified.

4. Simplified Scheme without PV

In this section, an alternative version of the proposed

algorithm is presented to obtain the fastest convergence
and the smallest memory space. If we allow all the possible
chromosomes to always be generated at every generation,
the convergence speed will be maximized while diversity
will be minimized and the production function eliminated,
because it can be assumed that all chromosomes have
already been generated. This modification makes the
proposed algorithm simple and fast. Next, in order to
reduce the memory space, the 3D probability vector can be
eliminated if the disparity is deterministically decided as
the solution at each generation. The survival probability
does not need to be saved in this case, thus this second
modification is neither a PBIL nor a genetic algorithm.
However, it will be shown that the performance due to
these modifications is similar to that of the original version
of the proposed algorithm in experiments. Fig. 7 shows the
flow diagram of the alternative scheme including the two
modifications.

Fig. 7. Flow diagram of the alternative scheme of the

proposed matching.

5. Overview of GPU

Seen from the GPU pipeline in Fig.8, vertices are passed
to a vertex shader, which can compute positions, colors,

110 GPU-based Stereo Matching Algorithm with the Strategy of Population-based Incremental Learning

texture coordinates, and other attributes. These results are
then interpolated to each fragment bounded by the resulting
vertices. The interpolated results and textures are input into
the fragment shader, which uses them to obtain the final
fragment color. The graphics pipeline in Fig. 8 shows that
computation on GPU is based on data streaming. The input
data, vertex, texture, vertex index, etc. are represented as
data streams. The kernels or shaders then input into the
vertex processor and fragment processor perform compu-
tations on those data streams, including vertex, texture etc.
A kernel or shader can execute similar computations on
each record of those streams. Actually, we can easily think
of GPU as SIMD.
The details at each stage of the GPU pipeline, such as the

vertex processor, primitive assembly, interpolation, rasterization,
fragment processor, etc. are not listed here, because one
can find them in many materials about GPU. In the
following, we will provide some information about texture
as input data, which are helpful to understanding our
algorithm.

Fig. 8. Overview of the GPU Pipeline

5.1 Texture Coordinate and texture sampling

One-dimensional arrays constitute the native CPU data
layout. Higher-dimensional arrays are typically accessed
by offsetting coordinates in a large 1-D array. An example
of this is the row-wise mapping of a two-dimensional array
a[i][j] of dimensions M and N into the one-dimensional

array a[i ×M+j].
For GPU, the native data layout is a two-dimensional

array. Of course, one- and three-dimensional arrays are also
supported. Arrays in GPU memory are called textures or
texture samplers. Any data in textures can be obtained by
sampling with the coordinates of that point.

The model for the proposed algorithm on the GPU
comprises a few shaders. For each shader, multiple input
textures of different sizes are used, but the viewport size
(which is also the range of the sampling coordinate indices)
is only the same as the output texture size. That being the
case, for those input textures, the sampling coordinate for
each point is different. Actually, the whole algorithm is
separated into a few shaders according to the input and
output texture size.

5.2 Texture Coordinate and texture sampling

Since GPU data stored in textures are updated by a
rendering operation, a special projection that maps from
the 3-D world (world or model coordinate space) to the 2-
D screen (screen or display coordinate space) and which
additionally performs 1:1 mapping between the pixel (to
which we want to render) and the texel (from which we
access data) are needed to precisely control the data ele-
ments for computing or accessing from the texture memory.
The key to success here is to choose an orthogonal pro-
jection and a proper viewport that will enable 1:1 mapping
between the geometry coordinates (used in rendering), the
texture coordinates (used for data input), and the pixel
coordinates (used for data output). The mapping is based
on the only value that has been available to us so far, or the
size (in each dimension) we allocate to the textures.

5.3 Texture Coordinate and texture sampling

One key functionality for achieving good performance

rates is the possibility of using textures not only for data
input, but also for data output. Internally, GPU schedule
rendering tasks into several pipelines work in parallel,
independently of each other. During the process of ren-
dering into texture, the output texture can be used directly
as the input texture of the next shader without data transfer
from CPU again, which decreases the cost of transmission.

6. Modeling on GPU for the Proposed Algorithm

GPU comprises multiple multi-processors which can

perform parallel algorithms. Thus, we have to change the
algorithm for CPU into that for GPU. In order to imple-
ment the proposed GPU algorithm to obtain a disparity
map, the algorithm has to be divided into a few indepen-
dent computational kernels (each kernel is a shader). They
are as follows: production, evaluation, learning and checking,
except for initialization. The complete data flow diagram is
shown in Fig. 9.

The input data of the input texture can be obtained only
by sampling texture in the correct coordinates. Before each
shader is executed, the attributes of the viewport have to be
set. It has to retain the same size as output texture. That is
to say, the viewport can be covered wholly by the output
texture. In this way, the computation results of each shader
can be output into the correct positions of the output
texture. In addition, some of the shaders have multiple
input textures whose sizes differ from the viewport. In this
case, it means that the map of corresponding sampling
coordinates between the input texture and the output

Dong-Hu Nie, Kyu-Phil Han and Heng-Suk Lee 111

Fig. 9. The data flow diagram for PBIL stereo matching

on GPU.

texture is multiple to one. Then, the input data can be
obtained by transforming the sampling coordinates of the
output texture.

Here, a cluster of alphabets with the postfix “[]” ex-
presses an array, while the postfix “Texture” expresses a
texture. ImgWidth and ImgHeight denote the width and the
height of an image. DisparityRange denotes the range of
disparity. In Fig. 9, rImg[] and tImg[] are arrays for the
reference and target images, with the dimension of 1 by

ImgWidth×ImgHeight. Prep[] and P[] are the arrays of the
probability vectors for the previous and the present gene-
ration. C[] is the array for the chromosome flag, with a

dimension of 1 by DisparityRange×ImgWidth×ImgHeight.
D[] is the array for disparity with the dimensions of

ImgWidth×ImgHeight. The rTexture, tTexture, preTexture,
pTexture, dTexture, and cTexture are textures corresponding
to the arrays mentioned above. The fTexture denotes the
texture containing the fittest winner of each matching point.
If the disparity is computed pixel by pixel, the dTexture
and fTexture will have the same dimensions - ImgWidth by
ImgHeight - as rTexture and tTexture. Their data layout is
similarly shown in Fig. 10(a). If the disparity is computed
using block by block with the size of BlockSize, the data
layout of fTexture and dTexture is shown as Fig. 10(b).
Another three textures have the same structure. Their size
is expanded up to the dimension of DisparityRange from
each matching point, as shown in Fig. 11(a).

By using some specific OpenGL instructions, the dimen-
sion of textures does not have to match a power of 2 in
each dimension. However, for some cases, the dimension
of three textures - preTexture, pTexture and cTexture - may

Fig. 10. The data layout of the initial image texture and the

disparity texture: (a) Data layout of image, disparity
and fittest winner texture with pixel by pixel
dimension; (b) Data layout of disparity and fittest
winner textures with block by block dimension.

exceed the maximum value supported by the graphics

hardware. Currently, this maximum value is 2048×2048 or

4096×4096. To go beyond that, the following scheme is
adopted:

For example, let the DisparityRange = M×N, where M
and N are integers and denote the maximal displacement of
disparity in the direction of the vertical and horizontal
respectively, and the maximum value supported by GPU is

4096×4096. If the constraints M×ImgWidth ≤ 4096 and N×
ImgHeight ≤ 4096 can be satisfied, then M ≤ 4096/ImgWidth
and N ≤ 4096/ImgHeight. The texture with the size of those

textures = M×ImgWidth by N×ImgHeight can be supported
by hardware. Fig. 11(b) shows the data layout of those
three textures. If letting M = 1, which means a rectified
stereo matching environments, then N = DisparityRange,
and the texture layout is the same as that shown in Fig.
11(a). The texture data of Fig. 10(a) is expanded and stored
row-wise with a dimension of 1 by DispaityRange, as
shown in Fig. 11(a). However, in the case of 2-D search
environments such as motion estimation, the data can be
stored by a local block-wise texture with the dimensions of

Fig. 11. Data layout of chromosome producing flag and

probability vector textures for the previous and the
present generation. (a) Arranged row-wise with
dimensions of 1 by DisparityRange. (b) Arranged

block-wise with dimensions of M×N.

112 GPU-based Stereo Matching Algorithm with the Strategy of Population-based Incremental Learning

M by N, as shown in Fig. 11(b).
Suppose that the coordinate of one pixel point in the

viewport is (i, j). The value of the vector corresponding to
that matching point (shown in Fig. 11(a)) can be obtained

by sampling with the coordinate of (i×DisparityRange+k, j),
where k is opposite to the k-th disparity. In Fig. 11(b) the

coordinate will become (i×M+k, j×N+l), and d = k×M+l
will thus be opposite to the d-th disparity.

Uploading an array onto texture or downloading data
into an array from texture can be implemented easily by
using some OpenGL instructions, but transmission between
the CPU and the GPU is costly. Therefore, it should be
avoided as much as possible although it is necessary in
some steps.

In the following sections, we will use (i, j) to denote the
coordinate of a pixel in the viewport corresponding to the
matching point (i, j).

6.1 Initialization

The initialization operation on the GPU is different from

that used for the CPU. The reference and the target image
data saved in the arrays rImg[] and tImg[] will be uploaded
into rTexture and tTexture on the GPU by using a few
OpenGL commands. The data layout of the two textures is
shown in Fig. 10(a). The loop variable count is initialized
to 0. The array Prep[] is the probability vector for all
matching points in the image rather than for one matching
point. It is first initialized to the value 0.5 and then has to
be uploaded onto PrepTexture, for which the layout is
shown in Fig. 11(a).

6.2 Shader1: Generating the Chromosome Flag Array

The computation in this section will use a random
function which cannot be supported very well by the GPU,
so the random function will still be computed on the CPU.
For that reason, the routine should not be called a shader.
However, because it is included in the loop of the proposed
algorithm, as shown in Fig. 9, we call it a shader tem-
porarily. The computed result is to assign value 0 or 1 into
the array cFlag[]. The 1 denotes whether the chromosome
for the next generation can be produced or not. The array
cFlag[] is then uploaded onto cTexture on GPU as shown
in Fig. 10.

6.3 Shader2: Evaluating the Fittest Winner

As shown in Fig. 9, the input of shader 2 includes four
textures, rTexture, tTexture, cTexture and dTexture. The
output is the fTexture. In this process, off-screen rendering
is used. The result of shader 2 is not shown on-screen, but

rendered into texture on the GPU. Thus, the output
fTexture can be used as the input directly to shader 3,
which avoids data transfer between the CPU and the GPU.

The evaluation is performed by computing similarity and
disparity smoothness measures which are similar to those
on the CPU. Therefore, the key is how to obtain data from
all the input textures by sampling and to set the viewport
size. Fig. 12 shows the data flow diagram of the computation
of one matching point for shader 2. Since the computation
is theoretically run in parallel on the GPU [16], other
points are also processed in the same way. According to the
rule in which the size of the viewport must be the same as
the output texture, the coordinate range of shader 2 should
be (0, 0) – (ImgWidth, ImgHeight). The three input tex-
tures of rTexture, tTexture, and dTexture have the same
dimensions as the output texture. Then, we can identify
whether their texture coordinate is a one-to-one mapping.

However, the size of cTexture is M×N times of the output
texture. As can be seen in Fig. 12, a local block of texture

with the dimensions of M×N corresponds to a texel in
fTexture. If the output texture coordinate is (i, j), then the
coordinate of the texel attended for the computation for
rTexture, tTexture, and dTexture, is also (i, j), but for
cTexture it is a block of texture with the coordinates

ranging from (i×M, j×N) to ((i+1)×M-1, (j+1)×N-1).

Fig. 12. Data flow diagram of shader 2.

The dTexture is the disparity texture map for the pre-

vious generation. In the first generation phase, the disparity
smoothness measure has not yet been computed. Therefore,
the dTexture will not be used until the 2nd generation,
which is the result of the 1st generation phase.

6.4 Shader3: Adjusting Probability Vector

Shader 3 accepts the output texture of fTexture from
shader 2, and prePtexture as the input texture for updating
or adjusting the probability vector. Fig. 13 shows the data

Dong-Hu Nie, Kyu-Phil Han and Heng-Suk Lee 113

Fig. 13. The data flow diagram for shader 3.

flow diagram for shader 3. It is also using the off-screen
rendering approach. As seen in Fig. 13, the relationship of
the coordinates between prePtexture and pTexture is that of
one-to-one mapping, and between fTexure and pTexture is
that of one-to-a-block-of-texture mapping, with the coordi-

nates ranging from (k×M, l×N) to ((k+1)×M-1, (l+1)×N-1).
It is supposed that the output texture coordinate is (i, j),
while the corresponding coordinate in prePTexture is also
(i, j), but (i mod M, j mod N) for fTexture. Only to identify
those relations between the input textures and the output
texture, the shader can be run exactly.
Here, two textures for saving the probability vectors of

the previous and the present generations are used, because
the textures cannot be written and read at the same time in
a shader. Therefore, before executing the next-generation
computation, the buffers for the two textures are simply
swapped by OpenGL instruction.

6.5 Shader4: Checking Disparity according to PV

Shader 4 checks the disparity for the fittest by using the
updated probability vector textures from the output of shader
3. The index, k, at the point or block which has the maximum
probability will be selected as disparity. The relationship of
the coordinates between dTexture and pTexture is that of
one-to-a-block-of-texture, with the coordinates ranging

from (i×M, j×N) to ((i+1)×M-1, (j+1)×N-1). Fig. 14 gives
the details of the processing steps for this shader.

Fig. 14. The data flow diagram of shader 4.

6.6 Convergence Condition

If the loop count does not change or is more than the
NoG (no. of generations), the whole computation ends or
else the frame buffer swaps prePTexture for pTexture, and
then downloads prePTexture into the array preP[], i.e. the
data is transferred from the GPU to the CPU. The array
prep[] will be used to produce chromosomes for the next
generation.

6.7 Simplified Scheme

All chromosomes in each generation are produced in the
alternative version, as mentioned in section 3.3. The
simplified version does not need the probability vector, so
there is no texture which has to be expanded in size. Thus,
it is easy to implement in a shader. The details are not
listed here for reasons of scope.

7. Experiments and Results

In order to evaluate the proposed algorithm, the
conventional BMA with a relaxation scheme is compared
with the proposed algorithm, because the strategy of the
proposed scheme is very close to the BMA with relaxation.
30%, 50% random dot stereogram (RDS) images, “tsukuba”
and “pentagon” are used in the experiments, as shown in
Figs. 15 to 18. Experimental constants are shown in Table
1. 10% and 20% random noise are added to the 30% and
50% RDS and there is no added noise in the two real-world
scene images. Three steps of distance for disparity smooth-
ness checking, 4-, 2-, and 1-pixel, are applied in all experi-
mental images. 0.8, 0.6 and 0.4 are used as the three values
of wd and the number of generations for each step are set
to 6, 4, and 2, respectively. It is also assumed that all the
disparity candidates are generated to obtain the maximum
convergence speed in all experiments. Fig. 19 shows the
results of the conventional BMA with a 5×5 window. Fig.
20 shows the improved results with the relaxation process
using fixed neighbors for disparity smoothness, which is a
modified version [18] of the cooperative algorithm pro-
posed by Marr and Poggio [19]. The results of Han’s
algorithm are shown in Fig. 21. Fig. 22 shows each result
of the proposed method without PV. As compared with the
results of Fig. 20, the proposed algorithms clearly give
faster and more stable results, due to the use of controlling
smoothness distances of 8 neighbors from being coarse to
be fine. The results of Figs. 21 and 22 are almost the same,
where even the memory size of each scheme is definitely

different. Table Ⅱ shows the comparison of the computation

time for each step on an Intel(R) Pentium-4 PC with a

114 GPU-based Stereo Matching Algorithm with the Strategy of Population-based Incremental Learning

Fig. 15. 30% RDS. 10% dots
of the right image
are randomly décor-
related.

Fig. 16. 50% RDS. 20% dots
of the right image
are randomly décor-
related.

Fig. 17. “Tsukuba” stereo image

pair.
Fig. 18. “Pentagon” stereo

image pair.

(a) (b) (c) (d)

Fig. 19. Conventional BMA results using a 5×5 window.
(a) 30% RDS (b) 50% RDS (c) “tsukuba” (d)
“pentagon”.

(a) (b) (c) (d)

Fig. 20. Relaxed BMA results after 12 iterations. (a) 30%
RDS (b) 50% RDS (c) “tsukuba” (d) “pentagon”.

(a) (b) (c) (d)

Fig. 21. The results of Han’s algorithm after 12
generations. (a) 30% RDS (b) 50% RDS (c)
“tsukuba” (d) “pentagon”.

(a) (b) (c) (d)

Fig. 22. The results of the proposed algorithm after 12
generations. (a) 30% RDS (b) 50% RDS (c)
“tsukuba” (d) “pentagon”.

3.00GHz CPU and 512MB of main memory. It is shown
that the proposed algorithm requires the least computation
time among the three methods and produces good results
compared to those of the original one. The good results of
the full resolution PBIL-based method only require a little
additional computing time compared to the relaxed-BMA,
but provide significantly better results.

The experiment for the GPU-based approach was
executed on an nVidia Geforce 7300GS graphic card with
256MB of memory. The fragment shaders were programmed
with OpenGL and the Cg language. The proposed algorithm
and its alternative on the graphics card were implemented
as outlined above. Due to the GPU’s features, the running
speed was greatly improved for both the original and the
proposed version. Table III shows a comparison of the
running time on the GPU. Compared with Table II, Han’s
version of the GPU takes even less time than the simplified

Table 1. Experimental Constants

Table 2. Comparison of Computation
Time on CPU (in seconds)

Table 3. Comparison of Computation
Time on GPU (in seconds)

Dong-Hu Nie, Kyu-Phil Han and Heng-Suk Lee 115

algorithm on the CPU. When the image sizes are smaller,
the running time is similar, but when the image size is
larger, more time is gained by implementing the GPU. For
example, the computing time taken for the “pentagon” image
at each step decreases by twice that taken by the CPU.

8. Conclusion

A hardware specific stereo matching algorithm using
PBIL was presented in this paper to improve the running
efficiency of genetic-based matching algorithms while
preserving its compact structure. The stereo-matching
problem has been modeled as a probability model and the
PBIL strategy has been adapted for stereo matching. As a
result, the matching structure of the proposed algorithm has
been simplified and is comparable to a BMA, plus the
relaxation scheme. Moreover, the 8-neighbor’s distance
participating in the disparity smoothness is gradually
changed by 3 steps in order to obtain a wide-area con-
sistency of disparities. Because of this distance control, the
proposed algorithm can produce good results while using
only a small fixed-size matching window of 5×5. It has
been shown that the multi-step distance control for smooth-
ness plays a dominant role in matching. At the same time,
an alternative version including two modifications to the
proposed algorithm, without using the probability vector
and the production function, has also been presented for a
simpler set-up. Experimental results have shown that the
proposed matching algorithm improves both the conver-
gence rate and the output quality over previous approaches.
The alternative variant has been proposed as a good and
effective choice with even less memory space and compu-
tation time cost.

In addition, an implementation exploiting the high
performance of the GPU for a general purpose computation
has been presented, which demonstrated significant perfor-
mance improvements over the CPU-based algorithms. The
experimental results using the GPU show savings in
computing time by a factor of two over the CPU imple-
mentation for larger image sizes. Actually, GPU chips with
higher speedup than the ones used in our experiment are
now on sale, and would offer even better results.

References

[1] D.Luebke, M. Harris, J.Krüger, T. Purcell, N.Govind
araju etc.. GPGPU: general purpose computation on
graphics hardware, in ACM SIGGRAPH 2004
Course Notes, ACM, New York, NY, 2004, pp.33.

[2] P. H. Winston, Artificial Intelligence-3rd edition,

New York: Addison-Wesley Publishing Co., pp.505-
528, 1993.

[3] Fang-Chih Tien, Te-Hsiu Sun.Solving Line-Feature
Stereo Matching with Genetic Algorithms in Hough
Space..Journal of the Chinese Institute of Industrial
Engineers,Vol.21, No.5, pp.516-526, 2004

[4] Régis Vaillant and Laurent Gueguen. Genetic algorithms
applied to binocular stereovision. Computer Vision-
ECCV '94. Vol.801, pp.193-198, 2006

[5] Kyu-Phil Han, “A Simple Stereo Matching Algorithm
Using PBIL and its Alternative,” Korea Information
Processing Society, Vol.12-B, No.4, pp.429-436,
Aug., 2005.

[6] Shumeet Baluja, “Population-based Incremental
Learning: A Method for Integrating Genetic Search
Based Function Optimization and Competitive Learning,”
Technical reports CMU-CS-94-163, Carnegie Mellon
Univ., Jun., 1994.

[7] Q. Yang, L. Wang, R. yang, H. Stewenius, and D.
nister, “Stereo Matching with Color-Weighted
correlation, hierarchical Belief Propagation and
occlusion Handling”, Proceedings of the 2006 IEEE
Computer society Conference on Computer Vision
and Pattern recognition (CVPR’06), 2006, pp.2347-
2354.

[8] John R. Jordan and Alan C. Bovik, “Using Chromatic
Information in Edge-based Stereo Correspondence,”
CVGIP: Image Understanding, Vol.54, No.1, pp.98-
118, 1991.

[9] John (Juyang) Weng, “Image Matching Using the
Windowed Fourier Phase,” International Journal of
Computer Vision, Vol.11, No.3, pp.211-236, 1993.

[10] Yong-Suk Kim, Jun-Jae Lee, and Yeong-Ho Ha,
“Stereo Matching Algorithm Based on Modified
Wavelet Decomposition Process,” Pattern Recognition,
Vol.30, pp.929-952, 1997.

[11] Kyu-Phil Han, Kun-Woen Song, Eui-Yoon Chung,
Seok-Je Cho, and Yeong-Ho Ha, “Stereo Matching
Using Genetic Algorithm with Adaptive Chromosomes,”
Pattern Recognition, Vol.34, No.9, pp.1729-1740,
2001.

[12] Ondřej Fialka and Martin Čadik. Cadĺk, “FFT and
Convolution Performance in Image Filtering on
GPU,” Proceedings of the 10th International Con-
ference on Information Visualisation, Los Alamitos,
IEEE Computer Society, pp.609-614, 2006.

[13] Kenneth Moreland and Edward Angel, “The FFT on
a GPU,” SIGGRAPH/Eurographics Workshop on
Graphics Hardware 2003 Proceedings, San Diego,
pp.112-119, 2003.

[14] J. KRÜGER AND R. WESTERMANN, Linear
algebra operators for GPU implementation of
numerical algorithms, in ACM SIGGRAPH 2005

116 GPU-based Stereo Matching Algorithm with the Strategy of Population-based Incremental Learning

Courses, ACM, New York, NY, 2005, p.234.
[15] J. BOLZ, I. FARMER, E. GRINSPUN, AND P.

SCHRO ODER, Sparse matrix solvers on the GPU:
conjugate gradients and multigrid, in ACM SIGGRAPH
2003 Papers, ACM, New York, NY, 2003, pp.917–
924.

[16] M. Pollefeys, L. Van Gool, M. Vergauwen, F.
Verbiest, K. Cornelis, J. Tops, R. Koch, “Visual
Modeling with a Hand-held Camera,” International
Journal of Computer Vision, Vol.59, No.3, pp.207-
232, 2004.

[17] D. V. Papadimitriou and T. J. Dennis, “Epipolar Line
Estimation and Rectification for Stereo Image Pairs,”
IEEE Transactions on Image Processing, Vol.5, No.4,
pp.672-676, 1996.

[18] Kyu-Phil Han, Tae-Min Bae, and Yeong-Ho Ha,
“Hybrid Stereo Matching with a New Relaxation
Scheme of Preserving Disparity Discontinuity,”
Pattern Recognition, Vol.33, No.5, pp.767-785, 2000.

[19] D. Marr and T. Poggio, A Computational Theory of
Human Stereo Vision, Proc. Royal Soc. London, Vol.
B204, pp.301-328, 1979.

Dong-Hu Nie

He received his B.S. degree in
Econom-ics and h isM.S. degree in
Computer Application from Harbin
Engineering University, Harbin, China
in 2001 and 2004 respectively. He has
been a full-time lector at Harbin
Engineering University since 2004. He

is now studying as a Ph.D. course student at the
Department of Computer Engineering of the Kumoh
National Institute of Technology, Gumi, Korea. His
interests lie in the fields of digital image and speech
processing, computer vision, underwater acoustic signal
processing. He is a member of the China Computer
Federation and the Heilongjiang Province Computer
Society.

Kyu-Phil Han
He received his B. S. and M. S., Ph. D.
degrees in Electronic Engineering from
Kyungpook National University, Daegu,
Korea, in 1993 and 1995, and 1999,
respectively. His main interests include
digital image processing, image-based
rendering, computer vision, and

augmented reality. He was a researcher at Sindo Ricoh
Advanced Research Institute, Seoul, Korea, from 1995 to
1996. He was awarded a bronze prize in the 5th Samsung
Humantech Thesis Competition in Feb. 1999. In March
2000, he joined the School of Computer Engineering of the
Kumoh National Institute of Technology, Gumi, Korea, as
a full-time instructor, and is now an associate professor. He
studied as a research professor in CG lab at the University
of California, Irvine, from 2004 to 2005. He is a member
of the Institute of Electronic Engineers of Korea, the
Korean Institute of Communication Sciences, and the
Korean Society for Imaging Science and Technology.

Heng-Suk, Lee

He received his BS, MS and Ph.D.
degrees in Computer Engineering from
Kumoh National Institute of
Technology, Gumi, Korea, in 2001,
2003 and 2007, respectively. He is a
contract professor in the School of
Computer Engineering at the Kumoh

National Institute of Technology, Korea. His research
interests lie in the fields of Image Processing, Computer
Vision, and Computer Graphics.

