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Abstract: To solve the general problems surrounding the application of genetic algorithms in stereo 
matching, two measures are proposed. Firstly, the strategy of simplified population-based incremental 
learning (PBIL) is adopted to reduce the problems with memory consumption and search inefficiency， 
and a scheme for controlling the distance of neighbors for disparity smoothness is inserted to obtain a 
wide-area consistency of disparities. In addition, an alternative version of the proposed algorithm, 
without the use of a probability vector, is also presented for simpler set-ups. Secondly, programmable 
graphics-hardware (GPU) consists of multiple multi-processors and has a powerful parallelism which 
can perform operations in parallel at low cost. Therefore, in order to decrease the running time further, 
a model of the proposed algorithm, which can be run on programmable graphics-hardware (GPU), is 
presented for the first time. The algorithms are implemented on the CPU as well as on the GPU and are 
evaluated by experiments. The experimental results show that the proposed algorithm offers better 
performance than traditional BMA methods with a deliberate relaxation and its modified version in 
terms of both running speed and stability. The comparison of computation times for the algorithm both 
on the GPU and the CPU shows that the former has more speed-up than the latter, the bigger the image 
size is. 
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1. Introduction 

 
Binocular stereo-matching algorithms perform a group 

of operations repeatedly on each pixel point or block of 
pixel points to identify the corresponding points between 
the source image and the target image, which require a 
considerable amount of CPU time. Therefore, parallelism 
possibly benefits the efficiency of these algorithms. The 
graphics processor units (GPU) consist of multiple multi-
processors, which are very efficient, to perform parallel 
computation. They were originally designed to give a fast 
rendering of geometric primitives for computer games and 
image generation. They are now available in all personal 
computers and many handheld devices. Current GPUs also 
support floating point arithmetic. Moreover, GPU perfor-
mance has been improving at a faster rate than Moore’s law 
[1], by about 2-3 times a year. However, we have to solve 
certain problems which arise in GPU implementation.  

Recently, an evolutionary computation strategy known 
as the genetic algorithm has been used to solve stereo- 
matching problems [2-4]. However, the general problems 

with genetic algorithms, such as memory consumption and 
search inefficiency, are more critical the larger image size 
is. Han’s algorithm [5] tried to solve those problems to 
some extent, but its memory cost was a little high due to 
the use of the probability vector. Then, Han et al. proposed 
a simplified version, which produced the same results as 
the initial version, to decrease the memory cost of a serial 
manner CPU algorithm, but it required at least three layers 
of loops to perform these computations. For more improve-
ments, Han’s algorithm is needed to consider that the GPU-
based scheme should be designed to perform repetitive 
operations based on a group of vertices or fragments and a 
stereo-matching algorithm with a PBIL [6] strategy executed 
on commodity graphics card to solve these problems. 
Therefore, we describe the algorithm of the stereo algorithm 
using PBIL and simplify it by not using a probability vector. 
Then, the model of the algorithm run on GPU is given. 
Finally, we evaluate the implementation by comparing the 
runtime between the CPU and the GPU. The experimental 
results show that the GPU algorithm had more than twice 
the speedup of the CPU algorithm. 

 
 

2. Related Work 
 
The existing techniques for stereo matching are roughly 

grouped into two categories. One is feature-based and the 
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other is intensity or area-based. Since the feature-based 
methods use relatively sparse primitives, a complicated 
interpolation process including occlusion modeling and 
disparity continuity must be taken into account to obtain a 
dense disparity map. Conversely, intensity-based methods 
use dense low-level features and intensity values them-
selves, thus a feature extraction and an interpolation 
process are not necessary for a dense disparity map to be 
obtained; unfortunately, they are sensitive to noise and 
small differences of intensity. Consequently, other enhance-
ments of stereo approaches using chromatic information [7, 
8], windowed Fourier phase [9], and transformed images 
[10], etc. have been studied. However, these methods 
possess the nature of feature- and intensity-based techniques, 
thus the problems mentioned above occur in the enhancements 
as usual. 
Genetic algorithms are efficient search methods based on 

the principles of natural selection and population genetics 
[11]. They have been used to solve the stereo matching 
problem. The matching environment is considered as an 
optimization problem in this approach and finds the 
optimal solution under a pre-defined condition. Since the 
matching and the relaxation processes are used at the same 
time in this method, there are some improvements in the 
output quality. However, general problems, such as memory 
consumption and search inefficiency occur in genetic 
algorithms. The problems are more critical the bigger the 
image size is. Han proposed a genetic stereo- matching 
scheme using PBIL. The PBIL is a modified search technique 
for genetic algorithms using stochastic search and 
competetive learning based on a probability vector (PV). 
Its structure is much simpler than that of other algorithms 
such as serial and parallel genetic methods. The algorithm 
can avoid using a gene pool, crossover and mutation, while 
preserving the important rules of evolution. Han’s method 
improved search efficiency and the matching performance 
remarkably, but led to only a slight enhancement of the 
memory consumption because of the PV and loop structure 

with three layers. In other words，it has to perform kernel 

computation repeatedly. So, we can achieve higher speedup 
in parallel by using the GPU, which is composed of 
multiple multi-processors. 

Since nVidia made the GPU highly programmable in 

2001，the programmability of GPU has steadily increased. 

Many high level shader languages, such as Cg, Brook, and 
so forth, which can be used to make programs on the GPU, 
have also been developed. Moreover the cheaper cost and 
increasing rate more than Moore’s law are also attracting 
more and more researchers to use the parallelism of GPU 
in both graphics and non-graphics applications. General 
purpose computations have become a popular area of 
research by using commodity GPU. Many classical 

algorithms in the areas of image processing and numerical 
computation, etc. have been implemented on GPU, such as 
FFT [12, 13], convolution [12], numerical algorithms [14], 
sparse matrix solvers [15] and so on. So far, no research 
has been conducted on a stereo matching algorithm 
running on GPU. 

 
 

3. Stereo Matching with PBIL 
 

3.1 Population-Based Incremental Learning 

 
PBIL is a variation of genetic algorithms using a stochastic 

search based on a probability vector. It transforms the 
survival degree of a chromosome into a probability in the 
range of [0, 1]. In each generation, the production of 
chromosomes is based on the probability value. The 
generated chromosomes change their survival probabilities 
owing to the adaptation and disappear. In the next 
generation, chromosomes are also produced by the updated 
probability. Through the recursive process, if the probability 
converges, the process will be terminated. Therefore, 
unlike conventional genetic algorithms, it is not necessary 
for survival chromosomes to be saved. The probability 
vector holds all the survival information. 

Fig. 1 shows the basic outline of PBIL, where l and n 
denote the number of all possible chromosomes and the 
size of the population, respectively. Initial probabilities of 
all possible chromosomes in the probability vector are set 
to 0.5 or 1/l in step 1), and then n chromosomes are 
randomly generated by a production function. The function 
generates two random numbers, which are the chromosome 
index and its survival probability. If the stored value in the 
generated index of the probability vector is greater than the 
generated survival probability, the chromosome can be 
produced. After the production step, the n chromosomes 
are evaluated by the fitness function and the probability 
vector is updated according to the fitness value. This pro-
cess is called learning. A mutation altering the probability 
value may be inserted after the learning process. Finally,  

 

 
Fig. 1. Outline of PBIL. 
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the convergence of the vector is checked in step 5). If the 
vector has converged, the recursive process is terminated. 
Otherwise the process will be continued.  

As seen in Fig. 1, the fittest or the winner, among the 
generated chromosomes in each generation updates the 
probability vector, and then disappears. Since the proba-
bility vector implies the survival information of chromosomes, 
it is not necessary to store the survival chromosomes 
explicitly. The algorithm using PBIL may be very compact 
if the solution space is small. 

 
3.2 Probability Model 

 
The objective of stereo matching is to find the corres-

ponding point of a reference pixel in a target image. Since 
it is assumed that the epipolar constraint is satisfied, the 
search-range of the matching is limited to only the horizontal 
direction. If not, a rectification process is required before 
stereo matching can begin [16, 17]. A pixel, or a center of a 
block, in the reference image can be matched to a certain 
pixel on the target image within a given 1-D range, as 

shown in Fig. 2(a) where fr(⋅) and ft(⋅) are the gray levels 
of the reference and the target image, respectively. That is 
to say, each pixel of the target image within the search 
range has the probability of being matched to a reference 
one, as seen in Fig. 2(b). In this way, the matching proba-
bility vector of one point (0-dimension) has to be a 1-D 
array. Hence, the dimension of the probability vector can 
simply be expanded for 2-D images. The probability that 
the pixel (i, j) on the reference image matches to the pixel 
(i, j+k) of the target image can be represented as p(i, j, k). 
Thus, a total 3-D probability vector is needed for the 2-D 
image matching. In this probability model, stereo matching 
corresponds to finding the disparity k which has the 
maximum matched probability for all image points (i, j). 
That is, there is a 1-D probability vector per matching point, 
which is to be a pixel for dense matching or a center of a 
block for a skipped block matching algorithm (BMA). 

 

 
Fig. 2. Probability mapping for pixel matching. (a) 

General stereo matching environment (b) Matched 
probabilities of candidates. 

In the PBIL model, the number of probability vectors 
depends on all possible solutions, so the space of the 
solutions may become immense according to the type of 
problem. However, the number of all possible solutions 
concerning a pixel in the stereo matching problem is the 
same as the size of the search range, thus is quite a small 
and finite number. Furthermore, since PBIL uses the 
chromosome index and its probability during evolution, the 
proposed stereo matching strategy using PBIL is very 
effective. 

To obtain a disparity map from this model, the 3-D 
probability vector is initialized and updated by PBIL. Then, 
the disparity index having the maximum probability along 
the k-directions is selected as the solution for the pixel. The 
flow diagram of the matching algorithm is shown in Fig. 3. 
Steps 1) and 2) are equal to that of Fig. 1 except for its 
dimensions. Since each image point has an independent 1-
D PBIL structure, the algorithm is executed as a raster-
scanning procedure. The number of generated chromosomes 
in PBIL must be greater than 1 because the fittest must be 
selected. Also, the number depends on the convergence rate. 
The larger the n used, the faster the convergence rate 
obtained, and with less diversity. After production of the 
chromosomes, the generated chromosomes are evaluated 
by a problem-dependent function. In conventional GAs, 
after fitness allotment, the fitness values of all individuals 
should be transformed into survival probabilities according 
to the degree of their fitness, in order to prepare natural 
selection. This transformation is not a trivial task because it 
is difficult to assign a probability amount relative to cost or 
error measurements. However, in PBIL only the fittest 
needs to be identified as the winner by comparing the  

 

 
Fig. 3. Flow diagram of the proposed matching algorithm. 
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fitness values, which makes the matching structure simple 
because the transformation is not necessary. Additionally a 
constant learning rate is used in the probability update as 
shown in step 2). In step 3), the current disparity having the 
maximum probability in each generation is checked with 
that of the previous generation. If there is little or no 
change, then the recursive process is terminated. 
 

3.3 Chromosome production function 

 

The chromosome production process shown in Fig.3 
based on the probability vector uses a random function. It 
generates two random numbers as mentioned in Section 
2.1.1: One is a chromosome index denoting the disparity 
value, the other is its survival probability that will be 
generated. When a duplicated chromosome occurs or the 
when the probability of the vector is less than the survival 
one, another chromosome is produced. The flow diagram 
of the production stage is shown in Fig. 4, where 
MAX_NUM denotes the maximum number generated by 
the random function. In general, the chromosome index in 
PBIL differs from its chromosome itself. The index number 
only stands for a certain encoded chromosome. However, 
the chromosome index is equal to the chromosome value, 
i.e., its disparity value, in the proposed algorithm. That is 
to say, the chromosome structure of the proposed algorithm 
has only one gene and the gene value is the disparity. 

 

 
Fig. 4. Flow diagram of the chromosome production 

function. 
 

3.4 Evaluation Function 

To identify the winner of each generation, the evaluation 
function, or fitness function must assign a degree of fitness 
to the generated chromosomes. Therefore, it has to operate 
as a matching criterion function. In stereo matching, several 
constraints - such as intensity similarity and disparity 
smoothness - are commonly used to find the best match. 
The intensity similarity implies that the reference pixel or 
block is similar to the target one. The disparity smoothness 
denotes that disparities are smooth across neighboring 
pixels. Thus, the fitness function of the proposed algorithm 

is constructed by taking into account both similarity and 
smoothness terms. The mean of the absolute intensity 
difference between the reference and the target blocks is 
defined as the intensity similarity measure. Therefore, the 
mean intensity difference of the k-th chromosome at the 
considering point (i, j) is represented by 
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where S(W) is the size of window W, fr and ft are the 
intensity values, and Ck denotes the chromosome value, or 
disparity value, of the k-th chromosome. Another important 
constraint is disparity smoothness. There are many false 
matches in stereo matching when only using a similarity 
measure, so they should be carefully replaced with con-
sistent disparities according to their adjacent values. The 
disparity ordering and uniqueness constraints may be 
inserted into the fitness function. The smoothness is only 
considered because it is a more dominant factor than the 
ordering constraint. And, also, the uniqueness term is 
automatically included in the proposed scheme. Since one 
winner along the disparity axis is selected at an image 
point, the matched point is unique. Therefore, we can say 
that three constraints are used in the fitness function of the 
proposed algorithm, which are intensity similarity, dis-
parity smoothness, and uniqueness. If all disparities are 
known, the mean of the absolute disparity difference 
between the current and the 8-neighbor’s disparities, i.e. 
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can be used as the measure of smoothness. However, since 
the proposed algorithm is executed in a raster-scan order, 4 
disparities out of 8 neighbors, namely the lower 3 pixels 
and the right one of the current pixel, are not known at that 
moment, as shown in Fig. 5. Therefore, the disparities of 
the previous generation are used for the smoothness check 
of the current pixel, except in the first generation. The 
disparity having the maximum probability at each genera-
tion is temporarily stored and used for smoothness and 
convergence checking in the next generation. Also, in order 
to obtain a wide-area consistency of disparity and to 
include a coarse-to-fine strategy, the distance of a neighbor 
pixel is controlled by a scale factor, s, in the proposed 
scheme. Thus, the final disparity smoothness function 
about the k-th chromosome can be rewritten as 
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Fig. 5. Stereo matching sequence in raster-scan order, 

where × denotes the current matching point, and d 
and n are the pixels by which disparities are 
determined or not-determined at each point, 
respectively. 

 

where dp denotes the disparity value having the maximum 
probability at the pixel in the previous generation. The 
larger the scale factor used, the coarser the result obtained. 
Thus, the scale factor should be set to decreasing order to 
obtain a finer output. In the proposed algorithm, three steps 
of the scale factor, i.e., 4, 2, and 1, are used for a certain 
generation. Fig. 6 shows the 8 neighbors according to the 
scale factor in the sense of chess-board distance. The 
symbol X and each number denote the considering point 
and the scale factor, respectively. Four or more steps of 
scaling can be used to obtain a wide range of disparity. 
The evaluation function of the k-th chromosome is 

defined as 
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where wi and wd are the weights of the similarity and the 
smoothness, respectively, and wi + wd = 1. In the first 
generation, the intensity similarity is only used because the 
previous disparity does not exist. Since Eq. (4) is composed 
of differences in intensity and disparity, it is referred to as 
an error function, and the fitness function about the error 
may be represented with the reciprocal of Eq. (4). Normally, 
a fitness value would be transformed into a survival pro 
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Fig. 6. Eight neighbors participating in disparity smooth-

ness according to each scale factor. 

bability in conventional GAs because of natural selection, 
as mentioned above. Since the relation between fitness and 
survival probability cannot be modeled clearly, there are 
many difficulties. However, this process of transformation 
from an error into a fitness and survival probability value is 
not essential in the proposed scheme, because only the 
fittest, or the winner, needs to be identified. 
 

 

4. Simplified Scheme without PV 
 
In this section, an alternative version of the proposed 

algorithm is presented to obtain the fastest convergence 
and the smallest memory space. If we allow all the possible 
chromosomes to always be generated at every generation, 
the convergence speed will be maximized while diversity 
will be minimized and the production function eliminated, 
because it can be assumed that all chromosomes have 
already been generated. This modification makes the 
proposed algorithm simple and fast. Next, in order to 
reduce the memory space, the 3D probability vector can be 
eliminated if the disparity is deterministically decided as 
the solution at each generation. The survival probability 
does not need to be saved in this case, thus this second 
modification is neither a PBIL nor a genetic algorithm. 
However, it will be shown that the performance due to 
these modifications is similar to that of the original version 
of the proposed algorithm in experiments. Fig. 7 shows the 
flow diagram of the alternative scheme including the two 
modifications. 

 

 
Fig. 7. Flow diagram of the alternative scheme of the 

proposed matching. 
 
 

5. Overview of GPU 
 

Seen from the GPU pipeline in Fig.8, vertices are passed 
to a vertex shader, which can compute positions, colors, 
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texture coordinates, and other attributes. These results are 
then interpolated to each fragment bounded by the resulting 
vertices. The interpolated results and textures are input into 
the fragment shader, which uses them to obtain the final 
fragment color. The graphics pipeline in Fig. 8 shows that 
computation on GPU is based on data streaming. The input 
data, vertex, texture, vertex index, etc. are represented as 
data streams. The kernels or shaders then input into the 
vertex processor and fragment processor perform compu-
tations on those data streams, including vertex, texture etc. 
A kernel or shader can execute similar computations on 
each record of those streams. Actually, we can easily think 
of GPU as SIMD. 
The details at each stage of the GPU pipeline, such as the 

vertex processor, primitive assembly, interpolation, rasterization, 
fragment processor, etc. are not listed here, because one 
can find them in many materials about GPU. In the 
following, we will provide some information about texture 
as input data, which are helpful to understanding our 
algorithm. 

 

 
Fig. 8. Overview of the GPU Pipeline 

 
5.1 Texture Coordinate and texture sampling 

 

One-dimensional arrays constitute the native CPU data 
layout. Higher-dimensional arrays are typically accessed 
by offsetting coordinates in a large 1-D array. An example 
of this is the row-wise mapping of a two-dimensional array 
a[i][j] of dimensions M and N into the one-dimensional 

array a[i ×M+j]. 
For GPU, the native data layout is a two-dimensional 

array. Of course, one- and three-dimensional arrays are also 
supported. Arrays in GPU memory are called textures or 
texture samplers. Any data in textures can be obtained by 
sampling with the coordinates of that point. 

The model for the proposed algorithm on the GPU 
comprises a few shaders. For each shader, multiple input 
textures of different sizes are used, but the viewport size 
(which is also the range of the sampling coordinate indices) 
is only the same as the output texture size. That being the 
case, for those input textures, the sampling coordinate for 
each point is different. Actually, the whole algorithm is 
separated into a few shaders according to the input and 
output texture size. 

5.2 Texture Coordinate and texture sampling 

 

Since GPU data stored in textures are updated by a 
rendering operation, a special projection that maps from 
the 3-D world (world or model coordinate space) to the 2-
D screen (screen or display coordinate space) and which 
additionally performs 1:1 mapping between the pixel (to 
which we want to render) and the texel (from which we 
access data) are needed to precisely control the data ele-
ments for computing or accessing from the texture memory. 
The key to success here is to choose an orthogonal pro-
jection and a proper viewport that will enable 1:1 mapping 
between the geometry coordinates (used in rendering), the 
texture coordinates (used for data input), and the pixel 
coordinates (used for data output). The mapping is based 
on the only value that has been available to us so far, or the 
size (in each dimension) we allocate to the textures.  

 
5.3 Texture Coordinate and texture sampling 

 
One key functionality for achieving good performance 

rates is the possibility of using textures not only for data 
input, but also for data output. Internally, GPU schedule 
rendering tasks into several pipelines work in parallel, 
independently of each other. During the process of ren-
dering into texture, the output texture can be used directly 
as the input texture of the next shader without data transfer 
from CPU again, which decreases the cost of transmission. 
 

 

6. Modeling on GPU for the Proposed Algorithm 
 
GPU comprises multiple multi-processors which can 

perform parallel algorithms. Thus, we have to change the 
algorithm for CPU into that for GPU. In order to imple-
ment the proposed GPU algorithm to obtain a disparity 
map, the algorithm has to be divided into a few indepen-
dent computational kernels (each kernel is a shader). They 
are as follows: production, evaluation, learning and checking, 
except for initialization. The complete data flow diagram is 
shown in Fig. 9. 

The input data of the input texture can be obtained only 
by sampling texture in the correct coordinates. Before each 
shader is executed, the attributes of the viewport have to be 
set. It has to retain the same size as output texture. That is 
to say, the viewport can be covered wholly by the output 
texture. In this way, the computation results of each shader 
can be output into the correct positions of the output 
texture. In addition, some of the shaders have multiple 
input textures whose sizes differ from the viewport. In this 
case, it means that the map of corresponding sampling 
coordinates between the input texture and the output  
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Fig. 9. The data flow diagram for PBIL stereo matching 

on GPU. 
 

texture is multiple to one. Then, the input data can be 
obtained by transforming the sampling coordinates of the 
output texture. 

Here, a cluster of alphabets with the postfix “[]” ex-
presses an array, while the postfix “Texture” expresses a 
texture. ImgWidth and ImgHeight denote the width and the 
height of an image. DisparityRange denotes the range of 
disparity. In Fig. 9, rImg[] and tImg[] are arrays for the 
reference and target images, with the dimension of 1 by 

ImgWidth×ImgHeight. Prep[] and P[] are the arrays of the 
probability vectors for the previous and the present gene-
ration. C[] is the array for the chromosome flag, with a 

dimension of 1 by DisparityRange×ImgWidth×ImgHeight. 
D[] is the array for disparity with the dimensions of 

ImgWidth×ImgHeight. The rTexture, tTexture, preTexture, 
pTexture, dTexture, and cTexture are textures corresponding 
to the arrays mentioned above. The fTexture denotes the 
texture containing the fittest winner of each matching point. 
If the disparity is computed pixel by pixel, the dTexture 
and fTexture will have the same dimensions - ImgWidth by 
ImgHeight - as rTexture and tTexture. Their data layout is 
similarly shown in Fig. 10(a). If the disparity is computed 
using block by block with the size of BlockSize, the data 
layout of fTexture and dTexture is shown as Fig. 10(b). 
Another three textures have the same structure. Their size 
is expanded up to the dimension of DisparityRange from 
each matching point, as shown in Fig. 11(a). 

By using some specific OpenGL instructions, the dimen-
sion of textures does not have to match a power of 2 in 
each dimension. However, for some cases, the dimension 
of three textures - preTexture, pTexture and cTexture - may  

 
Fig. 10. The data layout of the initial image texture and the 

disparity texture: (a) Data layout of image, disparity 
and fittest winner texture with pixel by pixel 
dimension; (b) Data layout of disparity and fittest 
winner textures with block by block dimension. 

 
exceed the maximum value supported by the graphics 

hardware. Currently, this maximum value is 2048×2048 or 

4096×4096. To go beyond that, the following scheme is 
adopted: 

For example, let the DisparityRange = M×N, where M 
and N are integers and denote the maximal displacement of 
disparity in the direction of the vertical and horizontal 
respectively, and the maximum value supported by GPU is 

4096×4096. If the constraints M×ImgWidth ≤ 4096 and N× 
ImgHeight ≤ 4096 can be satisfied, then M ≤ 4096/ImgWidth 
and N ≤ 4096/ImgHeight. The texture with the size of those 

textures = M×ImgWidth by N×ImgHeight can be supported 
by hardware. Fig. 11(b) shows the data layout of those 
three textures. If letting M = 1, which means a rectified 
stereo matching environments, then N = DisparityRange, 
and the texture layout is the same as that shown in Fig. 
11(a). The texture data of Fig. 10(a) is expanded and stored 
row-wise with a dimension of 1 by DispaityRange, as 
shown in Fig. 11(a). However, in the case of 2-D search 
environments such as motion estimation, the data can be 
stored by a local block-wise texture with the dimensions of  

 

 
Fig. 11. Data layout of chromosome producing flag and 

probability vector textures for the previous and the 
present generation. (a) Arranged row-wise with 
dimensions of 1 by DisparityRange. (b) Arranged 

block-wise with dimensions of M×N. 
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M by N, as shown in Fig. 11(b). 
Suppose that the coordinate of one pixel point in the 

viewport is (i, j). The value of the vector corresponding to 
that matching point (shown in Fig. 11(a)) can be obtained 

by sampling with the coordinate of (i×DisparityRange+k, j), 
where k is opposite to the k-th disparity. In Fig. 11(b) the 

coordinate will become (i×M+k, j×N+l), and d = k×M+l 
will thus be opposite to the d-th disparity. 

Uploading an array onto texture or downloading data 
into an array from texture can be implemented easily by 
using some OpenGL instructions, but transmission between 
the CPU and the GPU is costly. Therefore, it should be 
avoided as much as possible although it is necessary in 
some steps. 

In the following sections, we will use (i, j) to denote the 
coordinate of a pixel in the viewport corresponding to the 
matching point (i, j). 

 
6.1 Initialization 

 
The initialization operation on the GPU is different from 

that used for the CPU. The reference and the target image 
data saved in the arrays rImg[] and tImg[] will be uploaded 
into rTexture and tTexture on the GPU by using a few 
OpenGL commands. The data layout of the two textures is 
shown in Fig. 10(a). The loop variable count is initialized 
to 0. The array Prep[] is the probability vector for all 
matching points in the image rather than for one matching 
point. It is first initialized to the value 0.5 and then has to 
be uploaded onto PrepTexture, for which the layout is 
shown in Fig. 11(a). 

 
6.2 Shader1: Generating the Chromosome Flag Array 

 

The computation in this section will use a random 
function which cannot be supported very well by the GPU, 
so the random function will still be computed on the CPU. 
For that reason, the routine should not be called a shader. 
However, because it is included in the loop of the proposed 
algorithm, as shown in Fig. 9, we call it a shader tem-
porarily. The computed result is to assign value 0 or 1 into 
the array cFlag[]. The 1 denotes whether the chromosome 
for the next generation can be produced or not. The array 
cFlag[] is then uploaded onto cTexture on GPU as shown 
in Fig. 10. 

 
6.3 Shader2: Evaluating the Fittest Winner 

 

As shown in Fig. 9, the input of shader 2 includes four 
textures, rTexture, tTexture, cTexture and dTexture. The 
output is the fTexture. In this process, off-screen rendering 
is used. The result of shader 2 is not shown on-screen, but 

rendered into texture on the GPU. Thus, the output 
fTexture can be used as the input directly to shader 3, 
which avoids data transfer between the CPU and the GPU. 

The evaluation is performed by computing similarity and 
disparity smoothness measures which are similar to those 
on the CPU. Therefore, the key is how to obtain data from 
all the input textures by sampling and to set the viewport 
size. Fig. 12 shows the data flow diagram of the computation 
of one matching point for shader 2. Since the computation 
is theoretically run in parallel on the GPU [16], other 
points are also processed in the same way. According to the 
rule in which the size of the viewport must be the same as 
the output texture, the coordinate range of shader 2 should 
be (0, 0) – (ImgWidth, ImgHeight). The three input tex-
tures of rTexture, tTexture, and dTexture have the same 
dimensions as the output texture. Then, we can identify 
whether their texture coordinate is a one-to-one mapping. 

However, the size of cTexture is M×N times of the output 
texture. As can be seen in Fig. 12, a local block of texture 

with the dimensions of M×N corresponds to a texel in 
fTexture. If the output texture coordinate is (i, j), then the 
coordinate of the texel attended for the computation for 
rTexture, tTexture, and dTexture, is also (i, j), but for 
cTexture it is a block of texture with the coordinates 

ranging from (i×M, j×N) to ((i+1)×M-1, (j+1)×N-1). 
 

 
Fig. 12. Data flow diagram of shader 2. 

 
The dTexture is the disparity texture map for the pre-

vious generation. In the first generation phase, the disparity 
smoothness measure has not yet been computed. Therefore, 
the dTexture will not be used until the 2nd generation, 
which is the result of the 1st generation phase. 
 

6.4 Shader3: Adjusting Probability Vector 

 

Shader 3 accepts the output texture of fTexture from 
shader 2, and prePtexture as the input texture for updating 
or adjusting the probability vector. Fig. 13 shows the data  
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Fig. 13. The data flow diagram for shader 3. 

 
flow diagram for shader 3. It is also using the off-screen 
rendering approach. As seen in Fig. 13, the relationship of 
the coordinates between prePtexture and pTexture is that of 
one-to-one mapping, and between fTexure and pTexture is 
that of one-to-a-block-of-texture mapping, with the coordi-

nates ranging from (k×M, l×N) to ((k+1)×M-1, (l+1)×N-1). 
It is supposed that the output texture coordinate is (i, j), 
while the corresponding coordinate in prePTexture is also 
(i, j), but (i mod M, j mod N) for fTexture. Only to identify 
those relations between the input textures and the output 
texture, the shader can be run exactly. 
Here, two textures for saving the probability vectors of 

the previous and the present generations are used, because 
the textures cannot be written and read at the same time in 
a shader. Therefore, before executing the next-generation 
computation, the buffers for the two textures are simply 
swapped by OpenGL instruction. 
 
6.5 Shader4: Checking Disparity according to PV 
 

Shader 4 checks the disparity for the fittest by using the 
updated probability vector textures from the output of shader 
3. The index, k, at the point or block which has the maximum 
probability will be selected as disparity. The relationship of 
the coordinates between dTexture and pTexture is that of 
one-to-a-block-of-texture, with the coordinates ranging 

from (i×M, j×N) to ((i+1)×M-1, (j+1)×N-1). Fig. 14 gives 
the details of the processing steps for this shader. 

 

 
Fig. 14. The data flow diagram of shader 4. 

6.6 Convergence Condition 

 

If the loop count does not change or is more than the 
NoG (no. of generations), the whole computation ends or 
else the frame buffer swaps prePTexture for pTexture, and 
then downloads prePTexture into the array preP[], i.e. the 
data is transferred from the GPU to the CPU. The array 
prep[] will be used to produce chromosomes for the next 
generation. 
 

6.7 Simplified Scheme 

 

All chromosomes in each generation are produced in the 
alternative version, as mentioned in section 3.3. The 
simplified version does not need the probability vector, so 
there is no texture which has to be expanded in size. Thus, 
it is easy to implement in a shader. The details are not 
listed here for reasons of scope. 
 

 

7. Experiments and Results 
 

In order to evaluate the proposed algorithm, the 
conventional BMA with a relaxation scheme is compared 
with the proposed algorithm, because the strategy of the 
proposed scheme is very close to the BMA with relaxation. 
30%, 50% random dot stereogram (RDS) images, “tsukuba” 
and “pentagon” are used in the experiments, as shown in 
Figs. 15 to 18. Experimental constants are shown in Table 
1. 10% and 20% random noise are added to the 30% and 
50% RDS and there is no added noise in the two real-world 
scene images. Three steps of distance for disparity smooth-
ness checking, 4-, 2-, and 1-pixel, are applied in all experi-
mental images. 0.8, 0.6 and 0.4 are used as the three values 
of wd and the number of generations for each step are set 
to 6, 4, and 2, respectively. It is also assumed that all the 
disparity candidates are generated to obtain the maximum 
convergence speed in all experiments. Fig. 19 shows the 
results of the conventional BMA with a 5×5 window. Fig. 
20 shows the improved results with the relaxation process 
using fixed neighbors for disparity smoothness, which is a 
modified version [18] of the cooperative algorithm pro-
posed by Marr and Poggio [19]. The results of Han’s 
algorithm are shown in Fig. 21. Fig. 22 shows each result 
of the proposed method without PV. As compared with the 
results of Fig. 20, the proposed algorithms clearly give 
faster and more stable results, due to the use of controlling 
smoothness distances of 8 neighbors from being coarse to 
be fine. The results of Figs. 21 and 22 are almost the same, 
where even the memory size of each scheme is definitely 

different. Table Ⅱ shows the comparison of the computation 

time for each step on an Intel(R) Pentium-4 PC with a  



114                GPU-based Stereo Matching Algorithm with the Strategy of Population-based Incremental Learning 

   

Fig. 15. 30% RDS. 10% dots 
of the right image 
are randomly décor-
related. 

Fig. 16. 50% RDS. 20% dots
of the right image 
are randomly décor-
related. 

 

   
Fig. 17. “Tsukuba” stereo image 

pair. 
Fig. 18. “Pentagon” stereo 

image pair. 
 

(a) (b) (c) (d) 

Fig. 19. Conventional BMA results using a 5×5 window. 
(a) 30% RDS (b) 50% RDS (c) “tsukuba” (d) 
“pentagon”. 

 

(a) (b) (c) (d) 

Fig. 20. Relaxed BMA results after 12 iterations. (a) 30% 
RDS (b) 50% RDS (c) “tsukuba” (d) “pentagon”.

 

(a) (b) (c) (d) 

Fig. 21. The results of Han’s algorithm after 12 
generations. (a) 30% RDS (b) 50% RDS (c) 
“tsukuba” (d) “pentagon”. 

 

(a) (b) (c) (d) 

Fig. 22. The results of the proposed algorithm after 12 
generations. (a) 30% RDS (b) 50% RDS (c) 
“tsukuba” (d) “pentagon”. 

3.00GHz CPU and 512MB of main memory. It is shown 
that the proposed algorithm requires the least computation 
time among the three methods and produces good results 
compared to those of the original one. The good results of 
the full resolution PBIL-based method only require a little 
additional computing time compared to the relaxed-BMA, 
but provide significantly better results. 

The experiment for the GPU-based approach was 
executed on an nVidia Geforce 7300GS graphic card with 
256MB of memory. The fragment shaders were programmed 
with OpenGL and the Cg language. The proposed algorithm 
and its alternative on the graphics card were implemented 
as outlined above. Due to the GPU’s features, the running 
speed was greatly improved for both the original and the 
proposed version. Table III shows a comparison of the 
running time on the GPU. Compared with Table II, Han’s 
version of the GPU takes even less time than the simplified  
 

Table 1. Experimental Constants 

 
 

Table 2. Comparison of Computation  
Time on CPU (in seconds) 

 
 

Table 3. Comparison of Computation  
Time on GPU (in seconds) 
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algorithm on the CPU. When the image sizes are smaller, 
the running time is similar, but when the image size is 
larger, more time is gained by implementing the GPU. For 
example, the computing time taken for the “pentagon” image 
at each step decreases by twice that taken by the CPU. 
 

 

8. Conclusion 
 

A hardware specific stereo matching algorithm using 
PBIL was presented in this paper to improve the running 
efficiency of genetic-based matching algorithms while 
preserving its compact structure. The stereo-matching 
problem has been modeled as a probability model and the 
PBIL strategy has been adapted for stereo matching. As a 
result, the matching structure of the proposed algorithm has 
been simplified and is comparable to a BMA, plus the 
relaxation scheme. Moreover, the 8-neighbor’s distance 
participating in the disparity smoothness is gradually 
changed by 3 steps in order to obtain a wide-area con-
sistency of disparities. Because of this distance control, the 
proposed algorithm can produce good results while using 
only a small fixed-size matching window of 5×5. It has 
been shown that the multi-step distance control for smooth-
ness plays a dominant role in matching. At the same time, 
an alternative version including two modifications to the 
proposed algorithm, without using the probability vector 
and the production function, has also been presented for a 
simpler set-up. Experimental results have shown that the 
proposed matching algorithm improves both the conver-
gence rate and the output quality over previous approaches. 
The alternative variant has been proposed as a good and 
effective choice with even less memory space and compu-
tation time cost. 

In addition, an implementation exploiting the high 
performance of the GPU for a general purpose computation 
has been presented, which demonstrated significant perfor-
mance improvements over the CPU-based algorithms. The 
experimental results using the GPU show savings in 
computing time by a factor of two over the CPU imple-
mentation for larger image sizes. Actually, GPU chips with 
higher speedup than the ones used in our experiment are 
now on sale, and would offer even better results. 
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