
BIOINFORMATICS ORIGINAL PAPER
Vol. 27 no. 2 2011, pages 182–188

doi:10.1093/bioinformatics/btq644

Sequence analysis Advance Access publication November 18, 2010

GPU-BLAST: using graphics processors to accelerate protein

sequence alignment

Panagiotis D. Vouzis1 and Nikolaos V. Sahinidis1,2,∗

1Department of Chemical Engineering and 2Lane Center for Computational Biology, School of Computer Science,

Carnegie Mellon University, Pittsburgh, PA 15213, USA

Associate Editor: Burkhard Rost

ABSTRACT

Motivation: The Basic Local Alignment Search Tool (BLAST) is one

of the most widely used bioinformatics tools. The widespread impact

of BLAST is reflected in over 53 000 citations that this software has

received in the past two decades, and the use of the word ‘blast’ as a

verb referring to biological sequence comparison. Any improvement

in the execution speed of BLAST would be of great importance in the

practice of bioinformatics, and facilitate coping with ever increasing

sizes of biomolecular databases.

Results: Using a general-purpose graphics processing unit (GPU),

we have developed GPU-BLAST, an accelerated version of the

popular NCBI-BLAST. The implementation is based on the source

code of NCBI-BLAST, thus maintaining the same input and output

interface while producing identical results. In comparison to the

sequential NCBI-BLAST, the speedups achieved by GPU-BLAST

range mostly between 3 and 4.

Availability: The source code of GPU-BLAST is freely available at

http://archimedes.cheme.cmu.edu/biosoftware.html.

Contact: sahinidis@cmu.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on June 3, 2010; revised on October 19, 2010; accepted

on November 12, 2010

1 INTRODUCTION

BLAST was introduced as a sequence alignment heuristic that was

an order of magnitude faster than earlier approaches for analyzing

biological information. Very quickly, this software became a

landmark enabling technique for bioinformatics. According to the

Web of Science, the paper that describes the first version of ungapped

BLAST (Altschul et al., 1990) has been cited more than 28 000

times. In addition, the paper that describes the gapped version of the

algorithm and a technique to speed up the earlier version by a factor

of three (Altschul et al., 1997) has been cited more than 25 000 times.

The level of usage of BLAST suggests that any improvement in its

execution speed will result in significant impact in bioinformatics.

Research efforts in this direction have been substantial and have

relied mainly on custom-designed hardware (Sotiriades and Dollas,

2007) and parallel supercomputing (Lin et al., 2008). Even though

these efforts have resulted in impressive speedups of up to three

orders of magnitude, neither custom hardware nor supercomputers

are easily accessible by the majority of BLAST users.

∗To whom correspondence should be addressed.

With the advent of multicore processors, there have been

several efforts to parallelize BLAST and speedup its execution

on commodity hardware. The National Center for Biotechnology

Information (NCBI) has developed a version of BLAST that exploits

multicore processors for the first phase of the algorithm (Camacho

et al., 2009). Another parallel version of BLAST (Nguyen and

Lavenier, 2009) exploits two features of modern microprocessors–

SSE instructions and multithreading–and achieves speedups of up

to 5.6 times compared with NCBI-BLAST. However, the resulting

protein alignments are up to 5.9% different than those produced by

NCBI-BLAST (Table 4 in Nguyen and Lavenier, 2009).

Recently, Graphics Processing Units (GPUs) became available

as a general purpose processing platforms. We were drawn to

GPUs because of their exceptionally high performance-to-cost

ratio. For around $1500, it is possible to combine a personal

computer with a GPU and achieve trillions of peak floating point

operations per second (FLOPS) performance. GPU technology

brings supercomputing power to the desktop, thus facilitating

the widespread use of parallel algorithms by bioinformaticians.

However, algorithms that perform well on a CPU may not perform

as well on a GPU (c.f. Elble et al., 2010). Algorithm developers

must develop new algorithms in order to harvest the GPU’s massive

parallel nature.

GPUs were designed to accelerate graphics processing and

quickly outperformed CPUs by over an order of a magnitude

in terms of FLOPS and memory bandwidth performance. This

potential was initially difficult to harness in applications beyond

graphics. The situation changed in 2007 with the introduction

of NVIDIA’s Compute Unified Device Architecture (CUDA), a

software and hardware environment that facilitates the adoption

of GPUs in general purpose computing (Nickolls, 2007). Since

then, the use of GPUs has proved advantageous in a number

of computationally intensive bioinformatics problems, including

the Smith–Waterman alignment algorithm (Manavski and Valle,

2008), molecular docking (Sukhwani and Herbordt, 2009), the

protein-folding problem (Beberg et al., 2009; Shirts and Pande,

2000), DNA sequencing (Schatz et al., 2007), computational

proteomics (Hussong et al., 2009), statistical phylogenetics (Suchard

and Rambaut, 2009), biological systems simulation (Dematte and

Prandi, 2010) and cellular-level simulation (Richmond et al., 2010).

Several GPU-based bioinformatics software can be found at http://

www.nvidia.com/object/tesla_bio_workbench.html.

A GPU-based BLAST was recently developed by Ling and

Benkrid (2010), leading to speedups between 1.7 and 2.7

in comparison to NCBI-BLAST. Its authors report that this

© The Author(s) 2010. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/2
7
/2

/1
8
2
/2

8
5
9
5
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

http://archimedes.cheme.cmu.edu/biosoftware.html
http://
http://creativecommons.org/licenses/

GPU-BLAST

implementation is not guaranteed to give results identical to those

from NCBI-BLAST. Liu’s GPU-based BLAST (www.nvidia.com/

object/blastp_on_tesla.html) achieves speedups of six. Using default

options for Liu’s code and NCBI-BLAST 2.2.24, we obtained

different alignments for all 51 sequences provided in the ‘queries’

directory of the installation of GPU-BLAST. However, most users

of bioinformatics software are reluctant to use implementations of

BLAST that may produce alignments that are not identical to those

obtained from NCBI-BLAST.

We built GPU-BLAST directly on top of the NCBI-BLAST code.

As a result, GPU-BLAST has a familiar interface to the user and,

most importantly, produces identical search results with NCBI-

BLAST. We took advantage of the algorithm’s parallel aspects by

mapping it on the GPU multithreaded processing environment, while

also allowing the concurrent utilization of multiple CPU threads in

parallel. Although GPU-BLAST shares many data structures with

NCBI-BLAST, we made necessary modifications to exploit the GPU

without compromising the accuracy of the produced alignments.

The current version of GPU-BLAST can perform protein alignments

up to 4 times faster than the single-threaded NCBI-BLAST. Even

compared to a six-threaded NCBI-BLAST, the GPU-BLAST is

nearly twice as fast. These attributes are likely to facilitate the

adoption of GPU-BLAST by the bioinformatics community.

The remainder of the article is organized as follows. In Section 2,

we present an overview of the BLAST algorithm. In Section 3, we

describe the most important architectural features related to GPU-

BLAST, and in Section 4 we present the implementation of the

algorithm on the GPU. In Section 5, we present the quantitative

results of the implementation, followed by conclusions in Section 6.

2 ALGORITHM

The sequence alignment problem calls for searching a sequence

database for matches with a query sequence. The first proposed

method to solve this problem was the Smith–Waterman algorithm

(Smith and Waterman, 1981). Although this algorithm produces

an optimal alignment between two sequences and runs in time

polynomial in the length of the two sequences, it is computationally

expensive for long sequences, and, in many cases, overlooks

alignments that are suboptimal but may provide useful biological

information. These shortcomings became increasingly pronounced

with the increasing size of biological databases.

BLAST addresses these problems with a heuristic that is fast and

biologically relevant. The approach consists of three main steps:

seeding, extension, and evaluation. The seeding step identifies short

words common between the query and a database sequence and uses

them as seeds in the extension step. The word length is user defined

and affects the accuracy and speed of the algorithm; longer words

result in fewer seeds, and, consequently, shorter execution times.

The second step investigates whether the seeds belong to longer,

common subsequences. This step discards the false positive seeds

that occur by chance and keeps the seeds that occur because they

are part of a longer common subsequence. This is achieved by

extending the alignment to the left and right of the seed. The

unconditional left and right extension in the initial version of BLAST

(Altschul et al., 1990) is called the one-hit method and typically

consumes over 90% of BLAST’s total execution time (Peters and

Sikorski, 1997). In order to improve this computationally intensive

part of the algorithm, the two-hit extension was introduced in 1997

(Altschul et al., 1997). In this method, an extension is invoked

only for seeds that are within a user-defined distance from non-

overlapping seeds, thus reducing the computational cost by half.

Initially, the seeds are extended from both the left and right without

inserting any gaps. During this process, the quality of the ungapped

alignment is gauged by the score of each pair of aligned amino acids

using a scoring matrix, such as the popular BLOSUM62 (Henikoff

and Henikoff, 1992). If the ungapped score is above a user-defined

threshold, the seed can be used to produce a gapped alignment based

on a Smith–Waterman type algorithm (Smith and Waterman, 1981).

The evaluation step relies on the score produced by the ungapped

or the gapped extension step, the query and database sequence

lengths, the substitution matrix and the sequence statistics. With this

information, the alignment is accepted as statistically significant if

the probability of finding such an alignment by chance is lower than

a user-defined value (Karlin and Altschul, 1990).

A profiling study of NCBI-BLAST for protein alignment is

depicted in Figure 1. The time spent in each step of the algorithm

can vary substantially with different queries. However, as Figure 1

reveals, the seeding and the ungapped extension are the most

computationally intensive parts. For ungapped alignments, these two

steps consume over 95% of the total execution time. For gapped

alignments, the seeding and the ungapped extension steps consume

75% of the time, while 20% of the time is spent on the gapped

extension. Based on these observations, we decided to focus our

parallelization efforts on the seeding and ungapped extension steps.

3 SYSTEM AND METHODS

A GPU is a massively parallel computer designed to accelerate

computationally intensive applications by operating in a single-instruction

multiple-thread (SIMT) mode. The same instructions are executed in parallel

by multiple threads that run on identical cores and can operate on different

data. Figure 2 presents a block diagram of an NVIDIA GPU as it is executing

GPU-BLAST. The schematic shows that there are N GPU multiprocessors,

each containing M processors.

The executing threads are organized into so-called blocks, and the blocks

are organized into a so-called grid of blocks. The number of threads and

blocks is user defined, and the GPU scheduling mechanism assigns the

execution of each thread block to a specific GPU multiprocessor. Since

each GPU multiprocessor has N processors, there is a maximum number

of threads that can physically execute in parallel. This thread group is called

a warp. A thread block may contain more than one warp, and the GPU

scheduler decides in which order and when to execute each warp. This gives

the capability to the scheduler to increase the overall utilization of the GPU

multiprocessor by putting a warp on hold, e.g. when waiting for data, and

allow another one to execute.

Since each GPU multiprocessor has a single-instruction unit, there is one

instruction dispatched at any given time. Hence, parallelization is maximized

when all threads of a warp agree on their execution path. If threads of a warp

diverge via a data-dependent conditional branch, the warp serially executes

each branch path taken, disabling threads that are not on that path. When

all paths complete, the threads converge back to the same execution path.

Extensive thread divergence can have a detrimental effect on performance.

The schematic in Figure 2 illustrates that there are available different types

of memory, each with different functionality, size and speed. Depending on

the amount of data and anticipated data access pattern, the programmer must

organize and store the data in the most appropriate memory, in order to

achieve the best possible utilization of the available memory bandwidth.

The global memory is the largest in size and the slowest. It can be read and

written by the CPU and the GPU threads, thus allowing the CPU to send data

to the GPU and vise versa. The global memory access pattern by the threads

183

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/2
7
/2

/1
8
2
/2

8
5
9
5
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

P.D.Vouzis and N.V.Sahinidis

A B

Fig. 1. Profiling of the NCBI-BLAST code for queries of length 2 to 4998 for two-hit extensions. (A) For ungapped alignments, on average, the seed

identification and extension steps, respectively, consume 75% of the total time (blue) and 20% of the total time (green). (B) For gapped alignment, on average,

the seed identification, two-hit ungapped extension and gapped extension steps, respectively, consume 55% of the total time (blue), 20% of the total time

(green) and 20% of the total time (orange).

Fig. 2. The architecture and the memory organization of an NVIDIA GPU as it is executing GPU-BLAST. The data structures used by GPU BLAST are

stored in the appropriate memory type, according to their size and access pattern.

can affect substantially the data transfer bandwidth; the more coalesced the

memory accessing within a half warp, the higher the achieved bandwidth.

The constant memory is part of the global memory and is read-write for

the CPU and read-only for the GPU threads. Constant memory can offer

higher bandwidth than the global memory when all threads of a half warp

access the same input data. The shared memory is the smallest and the fastest

and is shared by all processors of a GPU multiprocessor. It is a read-write

memory by the GPU threads only, and it can be used to communicate data

between threads that belong to the same block. Shared memory bandwidth

can be affected by the thread-access pattern, but to a lesser extent than the

global memory accessing.

The registers of a GPU multiprocessor are shared between its processors,

and each thread uses an exclusive set of registers. The programmer does

not have explicit control on the registers, as the latter are used for the

execution of a program in the same way as on a general purpose CPU.

GPUs also contain local and texture memory, which were not found useful

in the context of GPU-BLAST and are not depicted in Figure 2. Local

memory, in particular, is used by the compiler automatically to store variables

184

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/2
7
/2

/1
8
2
/2

8
5
9
5
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

GPU-BLAST

if needed, but was not used for GPU-BLAST. Texture memory, on the

other hand, is controlled by the programmer and can benefit applications

with spatial locality where global memory access is the bottleneck. As

discussed later, however, thread divergence instead of global memory access

is GPU-BLAST’s bottleneck.

4 IMPLEMENTATION

The most important component of the implementation is the

design of the data structures, which affect the efficiency of the

parallelization and overall implementation. Since GPU-BLAST is

embedded in the NCBI-BLAST code, the two implementations

share data structures. As shown in Figure 2, the most important

data structures used by GPU-BLAST consist of a table holding the

substitution matrix, a presence bit vector holding information on

whether a specific amino acid word is present in the query, a query-

index table and an overflow table holding the positions of the words

of the query, a table holding the database subjects and an index table

holding the resulting ungapped alignments between the query and

each of the database subjects. The location of each data structure

in memory was carefully selected, depending on data size and how

often each structure is accessed during execution. In particular, we

have stored frequently accessed structures in the fastest possible

memories that could accommodate their size.

The query-index table is created in a preprocessing step of the

algorithm. For each word, this table stores how many times the

word appears in the query, and the location of each appearance.

Theoretically, if the word length is w and the query length is l, a

word can appear up to l−w+1 times (corresponding to the case

when all the query amino acids are identical). In practice, however,

each word appears only a few times in a query. For this reason, the

locations of words that appear up to three times are stored in the

query index table. For all other cases, instead of locations, the index

table contains a pointer to an overflow vector that holds the locations

of the words in the query. The index table and the overflow vector

cannot fit in the shared memory and are stored in the global memory,

as shown in Figure 2. Each bit of the presence vector corresponds

to a word and is set only if that word appears in the query. Since

its size is only a fraction of the query index table, this vector can

be stored in the smaller but faster shared memory. The query is

uniformly accessed by all GPU threads. For this reason, it is stored

in the constant memory, which is the most suitable for this access

pattern. The protein database that the query is compared against is

also stored in the global memory due to its size.

Parallelization in the execution step of GPU-BLAST involves

assigning the database subjects to different GPU threads. In order

to balance the load between the threads and avoid having threads of

the same warp work on database sequences with substantial length

differences, the sequences are first sorted according to the number

of amino acids they contain. Sorting is embedded in the formatting

of a FASTA database, which is required by NCBI-BLAST. This

operation is done once per database before this database is used and

does not affect the alignment obtained. Thus, this operation does not

add any overhead to the execution time of the algorithm for NCBI- or

GPU-BLAST. Not having the database sorted would result in cases

where threads of the same warp have to compare the query with

sequences that differ significantly in length, thus causing excessive

thread divergence. By sorting, this thread divergence overhead is

reduced considerably.

Each thread scans consecutive words of a different subject and

checks, via the presence vector, whether these words exist in

the query or not. The presence vector is not necessary for the

implementation of the algorithm since the query index table stores

the word locations. Yet, the presence vector is small enough to

fit in the shared memory of a GPU multiprocessor. Thanks to the

information provided by this vector, a processor can identify word

matches through information readily available in the fast shared

memory, without having to access the slow global memory. Only

when matches exist, the processor accesses the query index table

in the global memory to retrieve information on the number and

locations of the seeds. The substitution matrix is stored in the shared

memory because it is used very frequently during the alignment

score calculations.

In the next step, each seed is extended left and right according to

the two-hit method. Each extension that achieves a score above the

user-defined threshold is characterized as a high scoring pair and its

coordinates are stored in the output table. Since it is not known in

advance how many high scoring pairs per database subject will be

discovered, for their storage we follow a similar technique used for

the query index table. In practice, for each subject, there are only

a few high scoring pairs discovered. Thus, the coordinates of only

up to two pairs are stored in the output table. Database subjects that

have more pairs are processed by the CPU after completion of the

GPU execution.

The CPU has a copy of the database and the data structures, and,

instead of waiting idle for the GPU to parse the entire database,

carries out part of the alignment task, thus reducing the total

execution time. The database is split in two parts that are processed

separately, and when both processors finish execution, the CPU

merges the results, and, if desired, carries out a gapped alignment.

In BLAST, comparison of a query with any sequence in the

database can be carried out independently from comparisons

with other database sequences. While this observation makes

parallelization of this algorithm appear an obvious task, the

challenge here is to develop a mechanism capable of distributing

comparisons to different processors so that processors are fully

utilized and complete their assigned tasks at the same time. The

processing of short and long database sequences must be done in a

way that minimizes idle times for processors. The data structures

used in GPU-BLAST result in a carefully orchestrated parallel

execution of comparisons of short and long sequences, thus utilizing

the GPU as much as possible.

Since GPU-BLAST is built on top of NCBI-BLAST, both share a

common user interface. GPU-BLAST has the following additional

options:

*** GPU options

-gpu <Boolean>

Use GPU for blastp

Default = ‘F’

-gpu_threads <Integer, 1...1024>

Number of GPU threads per block

Default = ‘64’

-gpu_blocks <Integer, 1...65536>

Number of GPU block per grid

Default = ‘512’

-method <Integer, 1...2>

185

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/2
7
/2

/1
8
2
/2

8
5
9
5
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

P.D.Vouzis and N.V.Sahinidis

Method to be used

1 = for GPU-based sequence alignment

2 = for GPU database creation

Default = ‘1’

* Incompatible with: num_threads

‘-gpu <Boolean>’ determines whether the GPU is used or

not. With ‘-gpu_blocks’ and ‘-gpu_threads’, the user can

define the number of blocks and threads per block to be used by

the GPU. When ‘-gpu T’ GPU-BLAST carries out the sequence

alignment using the aforementioned options. When ‘-method 2’,

and provided that ‘-gpu T’, GPU-BLAST converts the input

database into the format required by GPU-BLAST, stores the

produced database into a separate file and produces a second file

which includes information about the GPU database. The conversion

has to be done only once for each database, and all subsequent

executions of GPU-BLAST read this database from the disk. Hence,

this time is amortized over thousands or millions of future queries.

For ‘-gpu F’, all the previous options are ignored and GPU-

BLAST executes according to NCBI-BLAST. The current version of

GPU-BLAST works only for protein alignments and can utilize more

than one CPU threads in parallel with the GPU by using the NCBI-

BLAST option ‘-num_threads <Integer>=1>’. The option

‘-method’ is incompatible with the option ‘-num_threads’

because the creation of the GPU database does not support multiple

threads.

The execution of GPU-BLAST consists of three basic

components: (i) initialization of the GPU and data transfer from

the CPU to the GPU, (ii) concurrent GPU-CPU algorithm execution

and (iii) transfer of results from the GPU to the CPU. These basic

steps are depicted in the flow chart of Figure 3. We can see BLAST’s

basic steps and their execution sequence depending on whether the

user chooses to use the GPU or not. If the GPU is used (‘-gpu T’),

the CPU reads the GPU-BLAST database and sends all the necessary

data to the GPU. For the seeding and extensions steps, the CPU and

GPU work concurrently; the GPU by deploying multiple parallel

threads on the sequences, as defined by ‘-gpu_blocks’ and

‘-gpu_threads’, and the CPU on the remaining sequences by

using one or more threads as defined by ‘-num_threads’. After

both platforms finish, the high scoring pairs are transferred from

the GPU to the CPU, and the CPU merges them with its own high

scoring pairs. From that point, the algorithm follows the NCBI-

BLAST execution path without any modifications. GPU-BLAST

follows the NCBI-BLAST execution path when ‘-gpu F’.

GPU-BLAST was implemented on an NVIDIA Fermi C2050

GPU with 448 processors at 1.15 GHz, 64 KB of shared memory per

GPU multiprocessor, 64 KB of constant memory and 3 GB of global

memory. The implementation was built using CUDA, which offers

better performance than OpenCL on NVIDIA GPUs (Weber et al.,

2010). While this software choice limits GPU-BLAST to NVIDIA

cards, future versions will provide support for OpenCL in order to

extend applicability to other GPU hardware.

The GPU was combined with a six-core Intel Xeon host CPU

at 2.67 GHz with 12 GB of memory. Since GPU-BLAST uses

the GPU and the CPU concurrently, the workload has to be

properly distributed between the two in order to maximize the

utilization of the CPU–GPU combination. The ideal load balancing

is achieved when the execution times on the CPU and the GPU

are equal. GPU-BLAST assigns predetermined fractions of the

Fig. 3. Execution flow of GPU-BLAST. The blue blocks are executed on the

CPU and orange ones on the GPU (HSP: high scoring pairs, DB: database).

database between the CPU and the GPU, based on the number of

available CPU threads. We determined these ratios after extensive

experimentation with different databases and number of available

CPU threads.

5 RESULTS

The database used for computations was the latest releases of

the env_nr (ftp://ftp.ncbi.nlm.nih.gov/blast/db/) protein database,

which contains 6 031 291 sequences and its size is 1.3 GB (October

2010). The queries were 51 mouse sequences with lengths from

2 to 4998. These sequences were obtained from the UniProt database

(http://www.uniprot.org/) and are provided in the ‘queries’ directory

of the GPU-BLAST distribution.

Figure 4A depicts the speedups achieved by the ungapped and

gapped versions of GPU-BLAST, in comparison to one-threaded and

six-threaded NCBI-BLAST for the env_nr database. These speedups

depend on the query length. The speedups increase for query lengths

186

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/2
7
/2

/1
8
2
/2

8
5
9
5
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

ftp://ftp.ncbi.nlm.nih.gov/blast/db/
http://www.uniprot.org/

GPU-BLAST

A B

Fig. 4. GPU-BLAST speedups relative to the CPU as a function of sequence length (A), and average speedups as a function of CPU threads working in

parallel with GPU-BLAST (B). Speedups were calculated based on start-to-finish wall-clock times.

of approximately up to 1000 amino acids for the one-threaded and

2000 for the six-threaded implementations, after which the speedup

remains essentially constant. For shorter queries, the speedup is

slightly lower because the seed identification and the extension steps

consume a smaller percentage of the total execution time, as seen

in Figure 1. The scattering of the speedups in Figure 4A can be

attributed to several factors, including the number of seeds identified,

the extension length around each seed and the number of ungapped

and/or gapped extensions, which affect the thread divergence on the

GPU and consequently its performance.

The GPU’s theoretical peak performance is 1030 GFLOPS

in single precision and 515 GFLOPS in double precision. The

corresponding numbers for the CPU are 128 GFLOPS and 64

GFLOPS. Although the GPU’s peak performance in GFLOPS is

about eight times higher than the CPU’s, the speedups achieved

by GPU-BLAST are currently around four. The reason for this

difference is that the SIMT architecture of the GPU executes

concurrently multiple threads that operate on different data and

follow the same execution path in each warp. Whenever the

execution paths within a warp diverge, the threads are serialized

and overall performance is reduced.

The one-threaded GPU-BLAST is faster for ungapped than

gapped alignments because it is possible to transfer 95% of the

computations to the GPU in the ungapped case, compared with

only 75% in the gapped case as shown in Figure 1. For the

six-threaded GPU-BLAST, the total speedup is smaller and the

difference between the ungapped and gapped version diminished

because the CPU can handle a bigger workload leaving a smaller

margin to the GPU to speedup the total running time. For the

one-threaded GPU-BLAST the speedup is always bigger than one,

except for the first sequence which has length two. The six-threaded

GPU-BLAST offers speedup for sequences longer than 500 amino

acids.

In Figure 4B, we present average GPU-BLAST speedups when

using up to six CPU threads in parallel with the GPU. The times

used to calculate each speedup are elapsed times to carry out

a sequence alignment, which start from the beginning of GPU-

BLAST’s execution and finish with the writing of the output

alignments to a file. We can see that GPU-BLAST achieves the

largest speedups compared with single-threaded NCBI-BLAST, and

the speedups decrease as the number of CPU threads increase.

Finally, in Figure 5, we present speedups relative to a

single-threaded CPU. Both multi-threaded CPU and CPU/GPU

combinations are considered as a function of the number of available

CPU threads. In all cases, speedups were calculated based on the

total time to align the entire set of queries. As this figure shows,

the multithreaded NCBI-BLAST itself does not scale linearly. For

instance, with six CPU threads, the NCBI-BLAST speedup is less

than four. GPU-BLAST inherits some of these limitations as it

is built on top of NCBI-BLAST in order to guarantee the same

output results. Nonetheless, in all cases, the addition of the GPU

considerably increases the observed speedups. For instance, the six-

threaded GPU-BLAST achieves a speedup of nearly six for both

gapped and ungapped alignments.

6 CONCLUSIONS

Using carefully orchestrated parallel execution of comparisons of

short and long sequences on a GPU, this article has demonstrated

that GPU-BLAST can speed up the popular NCBI-BLAST code by

nearly four times while producing identical results. Moreover, our

implementation is capable of using the GPU along with multiple

CPU cores concurrently. Hence, the performance of GPU-BLAST

will benefit from future hardware advances of both CPU and GPU

technologies.

The present version of GPU-BLAST only works for BLASTP.

Future work will extend the implementation to other BLAST

methods, including PSI-BLAST which is more sensitive in detecting

weak relationships between protein sequences (Altschul et al.,

1997). PSI-BLAST uses multiple iterations to scan the database,

with each iteration constructing a position-specific score matrix that

replaces the simple query. Although there are differences in the

implementations of BLAST and PSI-BLAST, both algorithms share

several subroutines. A profiling study of PSI-BLAST reveals that

PSI-BLAST and gapped BLAST share the same subroutines that

take most of their execution time. In particular, the profiling graph

187

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/2
7
/2

/1
8
2
/2

8
5
9
5
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

P.D.Vouzis and N.V.Sahinidis

Fig. 5. Speedups relative to a single-threaded CPU as a function of CPU threads. Speedups were calculated based on start-to-finish wall-clock times to align

the entire set of queries.

of PSI-BLAST is almost identical to Figure 1B. This suggests that

PSI-BLAST can be implemented on the GPU in a similar fashion

with GPU-BLAST and that similar speedups are likely.

Conflicts of Interest: none declared.

REFERENCES

Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–410.

Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST:Anew generation of protein

database search programs. Nucleic Acids Res., 25, 3389–3402.

Beberg,A.L. et al. (2009) Folding@home: lessons from eight years of volunteer

distributed computing. In Proceedings of the 8th IEEE International Workshop on

High Performance Computational Biology. IEEE, Rome, Italy, pp. 1–8.

Camacho,C. et al. (2009) BLAST+: architecture and applications. BMC Bioinformatics,

10, 421.

Dematte,L. and Prandi,D. (2010) GPU computing for systems biology. Brief.

Bioinform., 11, 323–333.

Elble,J.M. et al. (2010) GPU computing with Kaczmarz’s and other iterative algorithms

for linear systems. Parallel Comput., 36, 215–231.

Henikoff,S. and Henikoff,J. (1992) Amino acid substitution matrices from protein

blocks. Proc. Natl Acad. Sci. USA, 89, 10915–10919.

Hussong,R. et al. (2009) Highly accelerated feature detection in proteomics data sets

using modern graphics processing units. Bioinformatics, 25, 1937–1943.

Karlin,S. and Altschul,S.F. (1990) Methods for assessing the statistical significance of

molecular sequence features by using general scoring schemes. Proc. Natl Acad.

Sci. USA, 87, 2264–2268.

Lin,H. et al. (2008) Massively parallel genomic sequence search on the Blue Gene/P

architecture. In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing,

Austin, TX, pp.1–11.

Ling,C. and Benkrid,K. (2010) Design and implementation of a CUDA-compatible

GPU-based core for gapped BLAST algorithm. Procedia Comput. Sci. USA, 1,

495–504.

Manavski,S. and Valle,G. (2008) CUDA compatible GPU cards as efficient hardware

accelerators for Smith-Waterman sequence alignment. BMC Bioinformatics, 9

(Suppl. 2), S10.

Nguyen,V.H. and Lavenier,D. (2009) PLAST: parallel local alignment search tool for

database comparison. BMC Bioinformatics, 10, 329.

Nickolls,J. (2007) Nvidia GPU parallel computing architecture. In IEEE Hot Chips

19, IEEE Technical Committee on Microprocessors and Microcomputers, Stanford,

CA.

Peters,R. and Sikorski,R. (1997) BLAST off! Science, 278, 510–502.

Richmond,P. et al. (2010) High performance cellular level agent-based simulation with

FLAME for the GPU. Brief. Bioinform., 11, 334–347.

Schatz,M. et al. (2007) High-throughput sequence alignment using graphics processing

units. BMC Bioinformatics, 8, 474.

Shirts,M. and Pande,V.S. (2000) Screen savers of the world unite! Science, 290,

5498.

Smith,T. and Waterman,M. (1981) Identification of common molecular subsequences.

J. Mol. Biol., 137, 195–197.

Sotiriades,E. and Dollas,A. (2007) A general reconfigurable architecture for the BLAST

algorithm. J. VLSI Signal Process., 48, 189–200.

Suchard,M.A. and Rambaut,A. (2009) Many-core algorithms for statistical

phylogenetics. Bioinformatics, 25, 1370–1376.

Sukhwani,B. and Herbordt,M.C. (2009) GPU acceleration of a production molecular

docking code. In Proceedings of 2nd Workshop on General Purpose Processing on

Graphics Processing Units, ACM, Washington, DC, pp.19–27.

Weber,R. et al. (2010). Comparing hardware accelerators in scientific applications:

a case study. IEEE Trans.Parallel and Distributed Systems. IEEE computer

Society Digital Library, IEEE Computer Society. Available at http://doi.

ieeecomputersociety.org/10.1109/TPDS.2010.125 (last accessed date June 2, 2010)

188

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/2
7
/2

/1
8
2
/2

8
5
9
5
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

http://doi

